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Microelectrode arrays and microprobes have been widely utilized to measure neuronal
activity, both in vitro and in vivo. The key advantage is the capability to record and
stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or
single-channel resolution of intracellular recording, microelectrodes detect signals from
all possible sources around every sensor. Here, we review the current understanding of
microelectrode signals and the techniques for analyzing them. We introduce the ongoing
advancements in microelectrode technology, with focus on achieving higher resolution
and quality of recordings by means of monolithic integration with on-chip circuitry. We
show how recent advanced microelectrode array measurement methods facilitate the
understanding of single neurons as well as network function.
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INTRODUCTION
Studying the function and connectivity of neurons in the brain
involves coordinated, interdisciplinary efforts among scientists
from various fields. Through the years, advancements in genetic
markers, immunostaining, optical and electro-optical methods,
electrophysiology, and computational tools have been made
to identify neuronal types, explain their molecular machinery,
untangle their wiring, decipher principles of neural coding, and
to attribute functional roles to specific regions of the brain. The
brain is a complex system and its activity spans over multiple
temporal and spatial scales that require a comprehensive set of
technologies to address these scales. Innovations in experimental
methods to observe and perturb brain activity and in computa-
tional tools to analyze recorded data are needed to master the
brain’s complexity and advance our understanding of its func-
tion. Systems biology has allowed to bridge between molecular
dynamics and whole cell simulations using multi-scale mod-
eling. Applying similar approaches to brain activity will allow
us to gain a more encompassing understanding of it. However,
quantitative data at all these spatial and temporal scales are
a prerequisite.

Electrophysiology has been the preferred means of analyzing
brain activity due to the ability to capture a wide range of neu-
ral phenomena, from the spiking activity of individual neurons to
the slower network oscillations of small populations (Llinás, 1988;
Contreras, 2004; Assad et al., 2014). The electrical nature of neu-
ronal activity makes it possible to detect signals on electrodes at a
distance from the source, but not without caveats. It is necessary
to determine the recording capabilities and limits of the device
used and to understand how the neuronal signal is transduced

into a recorded digital form. Typical electrophysiological methods
are shown in Figure 1 and further described below.

At the microscale, patch-clamp can be used to measure cur-
rents of single ion channels. The function of single neurons is
often explored by direct measurements of the intracellular volt-
age, using patch-clamp or a sharp microelectrode. It is a powerful
but tedious method and often its use is limited to a few neu-
rons per experiment (Wood et al., 2004). Planar patch-clamp
systems allow rapid in vitro patch-clamping, mostly used for high-
throughput ion channel screening of dissociated cells (Dunlop
et al., 2008). Automated patch-clamp allows for fast in vivo intra-
cellular recording and it is feasible to extend the method to
measure several neurons simultaneously (Kodandaramaiah et al.,
2012). The bulkiness of current micromanipulators and patch-
clamp systems together with the necessity for accurate and precise
control have limited simultaneous patch-clamp recordings to a
few—maximum of four and twelve for in vivo (Kodandaramaiah
et al., 2014) and in vitro (Perin et al., 2011), respectively.

At the macroscale, indirect measurement of large areas of
the brain’s activity is achieved via functional magnetic resonance
imaging (fMRI), positron emission tomography (PET), and elec-
troencephalography (EEG). These methods can be used to resolve
functional connectivity among brain regions. For example, EEG
detects spontaneous or evoked electrical activity from the scalp
with low spatial resolution (cm range).

In this review, we focus on electrophysiology at the
mesoscale—extracellular recordings via metal electrodes, open-
gate field-effect transistors (OGFETs) or oxide-semiconductor
FET (OSFET) integrated into large arrays, so-called microelec-
trode arrays (MEAs). This method enables simultaneous and
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FIGURE 1 | Typical electrophysiological methods. (A) Macroscopic
recording via electroencephalography (EEG) and mesoscopic recording
through electrocorticography (ECoG) and implantable electrodes, with the
corresponding representative waveforms recorded in a patient with
drug-resistant epilepsy. The measured signal amplitudes are larger for ECoG
and implanted electrodes (local field potential or LFP recording) compared to
EEG. The waveforms for EEG, ECoG, and implant are modified with

permission from Buzsáki et al. (2012). (B) Mesoscopic and microscopic
recording using a tetrode (extracellular) and a glass micropipette
(intracellular), respectively. The fast EAP extracted from the raw tetrode
recordings correlate with the intracellular APs recorded from a pyramidal cell.
(Left) Illustration of cells across cortical layers modified with permission from
Buzsáki et al. (2012). (Right) Signals for simultaneous extracellular and
intracellular recordings modified with permission from Henze et al. (2000).

long-term recordings of local field potentials (LFPs) and extra-
cellular action potentials (EAPs) from a population of neurons at
millisecond time scale. It also allows perturbing neuronal activ-
ity using electrical stimulation. As data obtained from in vivo
and in vitro experiments are often very similar, the MEA tech-
nology, concepts, and applications we include here apply to both
and will be helpful for scientists and engineers from either field.
In particular, we explain the interface between the neuron and
the electrode in order to understand how to interpret the record-
ings. We highlight trends in the development of complementary
metal-oxide-semiconductor (CMOS) based high-density MEAs
(HDMEAs). The advantages of HDMEAs include the capability
to map neuronal activity at sub-cellular resolution, localize single
cells, and to constrain full-compartmental neuron models.

The outline is as follows. Chapter 2 gives an overview of the
MEA technologies, including the comparison between in vivo
and in vitro MEA devices from a technical aspect. Chapter 3
describes the current understanding on microelectrode record-
ings and introduces the different factors that shape the recorded
signals. Chapter 4 discusses how to process MEA signals and
reviews recent works on using MEAs for neuroscience studies.
We then conclude in Chapter 5 with perspectives on advanced
measurements and applications of MEAs for studying neuronal
function.

MEA TECHNOLOGY
This chapter reviews the technology involved in MEA develop-
ment.

DEVICE TYPES AND TERMINOLOGY
Over the years, a wide repertoire of terms has been used to refer
to and distinguish between all the different forms of MEAs, e.g.,
emphasizing the type of transducers used (multi-transistor array,
microelectrode array, multielectrode array, micro-nail array,
capacitive-coupled array, 3D MEA), the type of substrate (active
array, passive array, silicon array, CMOS array), the shape of the

device (needle-type probe, polytrode, neuro dish), the channel
count (multichannel array), the electrode density (HDMEA) or
the application (implantable array, in vivo MEA, in vitro MEA)
and more. We would therefore like to briefly explain the termi-
nology used in the context of this review. We generalize the term
microelectrodes and MEA to cover both substrate-integrated
planar MEAs and implantable neural probes. We also include
capacitive-coupled devices, such as multi-transistor arrays in the
definition of MEAs. We then distinguish between implantable,
in vivo MEAs, such as polytrodes and neural probes, and in vitro
MEAs that generally include a cell culture dish or some other sort
of medium chamber. Further, we classify the different array archi-
tectures, as will be explained in Section Advances in MEA and
Probe Devices (Figure 3). Briefly, we distinguish between “fixed
wiring” arrays, meaning that each transducer in the array has a
direct wire to the outside of the array and “multiplexed arrays,”
in which some sort of switching mechanism is employed within
the array. We use the term “array” to refer to the actual area
that encompasses the transducer elements only and we use device
or MEA to refer to the entire device. With system, we refer to
the MEA and all required components to operate it, such as the
data acquisition hardware and software. We use the terms “active”
and “passive” to distinguish between devices with active circuit
elements, such as transistors, and devices without such elements.

ELECTRODES AND TRANSDUCERS
There are various techniques for fabricating microelectrodes,
which are reviewed by Li et al. (2003), Park and Shuler (2003),
Huang et al. (2009). Choosing the materials for the insulator, con-
ductor, microelectrode, and substrate is crucial, in particular with
respect to biocompatibility. All materials in the MEA that will be
near to or in contact with cells and tissue need to be tested for tox-
icity in prolonged periods of time (Hassler et al., 2011). It is also
important to consider the biological experiments for which the
microelectrodes will be used, whether in vivo or in vitro, culture or
acute preparation. Moreover, deciding the type of MEA to use is
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highly dependent on the type of recorded signals needed, whether
EAPs and/or LFPs or intracellular action potentials (IAPs), single
cell resolution or not. If the MEA is to be used for stimulation, the
charge capacity of electrodes is an important aspect. The electrode
needs to be able to mediate reactions at the electrode-electrolyte
interface to allow electron flow in the electrode to transition into
ion flow in the electrolyte toward stimulating nearby cells (Cogan,
2008).

Generally, an important goal of electrode fabrication is to
achieve low impedance. Low electrode impedance results in
higher signal-to-noise ratio (SNR), with the usual target SNR of
5:1 or higher. Uniformity of the electrode impedance across an
array of electrodes may also be important to obtain consistent
data.

Typically, electrodes are made with metallic conductors such as
gold (Au), titanium nitride (TiN), platinum (Pt), stainless steel,
aluminum (Al), and alloys like iridium oxide (IrOx). Since the
electrodes used in MEAs are on the micrometer scale, it is a
challenge to achieve low electrode impedance with plain conduc-
tors only. Increasing the effective surface area of electrodes can
be achieved by modification with porous conductive materials
such as Pt-black, Au nanostructures, carbon nanotubes (CNTs),
and conductive polymers like poly(3,4-ethylenedioxythiophene)
(PEDOT). Emerging materials aside from PEDOT and CNTs
include doped diamond and graphene. By modifying the sur-
face, the electrode impedance can be decreased drastically and
neuronal recording can be improved (Cui et al., 2001; Franks
et al., 2005; Ludwig et al., 2006; Keefer et al., 2008; Viswam et al.,
2014). Nam and Wheeler (2011), Kim et al. (2014) for a review of
electrode materials and surface modification.

Non-metallic electrodes have been mostly used in conjunction
with field-effect transistor (FET) based transducers (Bergveld,
1970; Fromherz et al., 1991). An OGFET can, e.g., be obtained
if the fabrication process of a FET is stopped before deposit-
ing the gate material (Jenkner et al., 2004). Easier to fabricate is
the so-called extended-gate FET (EGFET), in which the FET is
fabricated without modification from a standard CMOS process.
Metal and via interconnections are used to extend the gate to the
surface of the chip, where an insulated electrode implements the
“extended gate.” Such insulation ensures that no faradaic currents
occur. However, as Hierlemann et al., pointed out, devices with
metal electrodes also usually connect to a FET directly (Imfeld
et al., 2008) or through a filter capacitor (Heer et al., 2006),
resulting in a largely capacitive recording situation (Hierlemann
et al., 2011). OGFET, EGFET, and devices that directly connect
the electrode to the first FET usually need to include some mea-
sures to properly bias the gate or some calibration mechanism,
which may cause transient currents to flow at the electrode.
Whereas for devices with a capacitively coupled front-end stage,
controlling the electrode input node is generally not needed.
Devices with a FET-based transducer, but using a metalized gate
exposed to the liquid, have also been developed (Jobling et al.,
1981).

Recently, ultra-small electrodes are being developed to record
intracellular activity, including subthreshold signals, as reviewed
in Spira and Hai (2013). This is achieved by 3D structured
electrodes such as silicon nanowires (Robinson et al., 2013) and
Au mushrooms (Hai et al., 2009) penetrating the cell membrane.

Electroporation was shown to facilitate measurement of intracel-
lular activity (Koester et al., 2010; Hai and Spira, 2012).

ADVANCES IN MEA AND PROBE DEVICES
Since the single extracellular microelectrodes used in the middle
of the last century (Weale, 1951; Gesteland et al., 1959), devel-
opment quickly proceeded to MEAs with multiple transducers
for the purpose of increasing the number of neurons observed
(Thomas et al., 1972; Gross et al., 1977; Pine, 1980; Csicsvari et al.,
2003) to increase reliability of spike sorting (Gray et al., 1995;
Harris et al., 2000) and to allow for source localization (Blanche
et al., 2005; Chelaru and Jog, 2005; Frey et al., 2009b; Somogyvári
et al., 2012; Delgado Ruz and Schultz, 2014). The advances in
lithographic techniques, fueled by the semiconductor industry,
allowed a gradual increase in performance and reliability of such
multichannel devices. Passive transducer devices based on elec-
trodes embedded in glass or silicon substrates with fixed wiring
to amplifiers for in vitro and also in vivo applications became
commercially available in the late 90 s and early years of this
century. Already early on, silicon-based biosensors for interfac-
ing cells with microelectronics were developed (Bergveld, 1970;
Parce et al., 1989). Active devices, employing FETs were fabricated
and 2D arrays demonstrated (Besl and Fromherz, 2002). Devices
using CMOS technology were fabricated in academic facilities
(DeBusschere and Kovacs, 2001) and industrial foundries, usually
in conjunction with additional processing steps for biocompati-
bility reasons (Berdondini et al., 2002; Eversmann et al., 2003b;
Franks et al., 2003).

The key advantage of integrating active electronic components
on the same substrate as the actual electrodes is the possibil-
ity of a much higher electrode number and density. Due to the
possibility of using active switches to time multiplex signals,
integrated circuits make it feasible to transfer data from such
high channel counts off chip and to overcome the connectiv-
ity limitation of passive devices. Additionally, such co-integration
allows amplifying the signals with optimal quality, due to minimal
parasitic capacitances and resistances (Hierlemann et al., 2011).
The monolithic co-integration also allows including additional
functionality, e.g., on-chip spike detection, closed-loop capabil-
ities, electrical stimulation, electronic chip identification, device
calibration, and other type of sensing modalities, such as temper-
ature, pH or optical sensing (Baumann et al., 1999; Tokuda et al.,
2006; Johnson et al., 2013b).

Figure 2A compares a variety of historical and current devices,
to illustrate the evolution of MEAs with respect to overall sensing
area and electrode densities. The electrode count is shown with
solid lines. The devices are categorized into fixed wiring (Type
A&B in Figure 3) and multiplexed arrays (Types C–E in Figure 3).
Fixed-wiring arrays include devices without any on-chip cir-
cuitry (Alpha MED Science Co., Ltd.1; Multi Channel Systems
GmbH2 ; Thomas et al., 1972; Gross et al., 1977; Pine, 1980;

1Alpha MED Science Co., Ltd. MED64: A low-noise and user-friendly multi-
electrode array system for in-vitro electrophysiology. Available at: http://www.

med64.com [Accessed December 1, 2014].
2Multi Channel Systems GmbH. MCS: Innovations in Electrophysiology.
Available at: http://www.multichannelsystems.com [Accessed December 1,
2014].
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FIGURE 2 | Device comparison. MEA comparison with respect to (A)

electrode density and total sensing area, and (B) parallel recording channel
count and noise level. (A) For devices with a regular sensor pitch, such as
most in vitro MEA devices, the total area is calculated as number of
electrodes times the pixel area. For all devices, the number of electrode
times the inverse of the electrode density matches the total area. The light
gray lines illustrate the number of electrodes. (B) The noise values shown are
approximated RMS values stated in the respective citations. The conditions

under which these measurements were taken usually differ significantly
(such as noise bandwidth, in- or exclusion of electrode noise, inclusion of
ADC quantization noise, etc.). Therefore, this graph only serves as a rough
comparison. The waveforms to illustrate the noise levels are simulated and
have a spectrum typical for MEA recordings. The simulated spikes are typical
spikes for acute brain slice measurements recorded with microelectrodes.
The recorded amplitudes may vary significantly depending on preparation and
sensor characteristics. See Footnotes:3,4,5,6,7.

Regehr et al., 1989; Nisch et al., 1994; Oka et al., 1999; Litke et al.,
2004; Segev et al., 2004; Greschner et al., 2014), but also MEAs
with on-chip circuitry limited to the surrounding of the array
(Greve et al., 2007) and arrays that include FETs (Offenhäusser
et al., 1997) and source follower devices directly wired to circuitry
outside the array (DeBusschere and Kovacs, 2001). Multiplexed
arrays employ some sort of multiplexing within the actual array

3The area is calculated as the rectangle of the maximum vertical extend times
the maximum horizontal extend, whereas for probes, the horizontal extend is
taken as the shaft width.
4Only a single sub array of 16 electrodes is considered.
5Features a frame rate significantly lower as compared to the other devices.
6Noise values are taken from Lambacher et al. (2010).
7The authors state that with a new acquisition board, the parallel channel
count could be increased to 1024 at 9300 fps.
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(Eversmann et al., 2003a, 2011; Heer et al., 2006; Tokuda et al.,
2006; Aziz et al., 2009; Berdondini et al., 2005, 2009; Frey et al.,
2010; Huys et al., 2012; Johnson et al., 2012, 2013a,b; Maccione
et al., 2013; Ballini et al., 2014; Bertotti et al., 2014).

For in vivo MEAs, the connectivity limitation is even more
severe, as connections cannot be wired out on all four sides of
the array, but only on one of the narrow sides. Figure 2A includes
some examples of such devices using fixed wiring (Wise et al.,
1970; Najafi and Wise, 1986; Jones et al., 1992; O’Keefe and Recce,
1993; Gray et al., 1995; Bai and Wise, 2001; Csicsvari et al., 2003;
Kipke et al., 2003; Blanche et al., 2005; Olsson and Wise, 2005;
Fujisawa et al., 2008; Montgomery et al., 2008; Herwik et al., 2009;
Du et al., 2011; Berényi et al., 2014) and three recent in vivo MEAs
with multiplexing on the shaft itself (Shahrokhi et al., 2010; Seidl
et al., 2011; Lopez et al., 2014). For detailed reviews of in vivo
MEAs (see Wise et al., 2008, 2004; Ruther et al., 2010).

Figure 2B, on the other hand, focuses only on CMOS-based
devices and illustrates the tradeoff between the number of par-
allel (or quasi parallel) readout channels and the input referred
noise of the amplification chain. It illustrates the fundamental
fact that a low-noise front-end amplifier requires both area and
power. Limiting either will inherently increase the noise levels.

The power budget for the entire device, including all circuitry
within the array and surrounding it, is limited by the amount of
produced heat that one can tolerate. For the area constraints, one
has to separately consider the area within the array and surround-
ing it. Within the array, the electrode density dictates the available
area per pixel. Outside the array, the area is limited mostly by
the fabrication cost. As a trivial approach to decouple the area
requirement from the noise specifications, one can simply place
the amplifiers outside the array and directly wire one electrode to
one amplifier (Figure 3B). However, this approach still does not
allow achieving both a high density and a large electrode count
at the same time. Figure 3 lists these fixed-wiring approaches and
typical array architectures using multiplexing within the array to
overcome this limitation.

Active switching can be integrated into the array, allowing to
time multiplex the signals from many electrodes to a few wires
that carry the signals out of the array. We now consider two
types of time multiplexing, static (Figures 3C,D) and dynamic
(Figure 3E) operation (Imfeld et al., 2008). In dynamic mode,
each pixel (or electrode) is sampled once within each frame,
with typical frame-rates of 2–10 kHz for CMOS-based MEAs
(Eversmann et al., 2003a; Johnson et al., 2013b) and some devices
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FIGURE 3 | Array architectures. This table summarizes and classifies the
different architectures that are typically used for MEAs. Advantages,
disadvantages are stated and representative selected references given. (A,B)

Fixed wiring. (A) Electrodes are directly connected to signal pads with no
active circuitry. (B) Electrodes are directly connected to on-chip active

circuitry for signal conditioning. (C–E) Multiplexed arrays. (C) Signals are
multiplexed to the signal pads via column, row addressing in static mode. (D)

More flexible addressing is achieved by adding more routing resources within
the array in the switch-matrix mode. (E) All electrodes can be sampled at fast
speeds in full-frame readout implemented in active pixel sensor (APS) MEAs.
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allowing as high as 77 kHz (Bertotti et al., 2014). This mode is
similar to image sensors used in cameras. Typically, rectangular
sub-arrays can be chosen as regions of interest and sampled at
faster rates. From a circuit perspective, the challenge in design-
ing full-frame readout MEAs lies in the fact that the multiplexing
within the array requires the front-end amplifier to be located
within the pixel itself, as the electrode alone exhibits a high
impedance and therefore cannot drive the multiplexed readout
lines at sufficient speed. Inherently, the available area within the
pixels is limited in high-density arrays, making it difficult to build
very low noise amplifiers. In addition, the electrodes themselves
and the activity within the culture medium show wide band noise
(see Section Noise and SNR), thus requiring a low-pass filter
within the pixel to prevent noise from being aliased into the sig-
nal band due to the sampling. Generally full-frame readout arrays
have a high channel count, and therefore the power budget per
channel is very limited.

Alternative approaches to circumvent this issue and to allow
for devices in which the circuit itself is not the limiting factor with
respect to noise performance have been demonstrated. Arrays
operating in static mode (Figures 3C,D) have only switches and
no amplifiers as active devices within the array. The switches are
used to wire electrodes to front-end amplifiers placed outside of
the array, where sufficient area for the implementation of low-
noise amplifiers is available. This also decouples the number of
electrodes from the number of readout channels, which allows
budgeting of the available power in more flexible ways. Devices
that employ a simple column and row based static addressing
are limited in the flexibility of choosing electrodes for parallel
readout. A switch-matrix implementation, which consists of a
large set of routing wires, routing switches, and local memory,
such as SRAM cells within the array, allows the use of complex
routing paths to rewire a subset of electrodes to the available
readout and stimulation channels in a flexible manner. Often,
such an approach is sufficient to observe biological phenomena
of interest, as typically not all electrodes exhibit activity. However,
experimental protocols tend to get more complex, as one needs
to select the “right” electrodes during the experiment. One of
the protocols commonly used for such devices is to first scan the
entire array in static mode, i.e., record from each rectangular sub
block for, e.g., a few minutes, run some online or quasi online
data processing on the recorded data, and select a more refined
subset based on the recorded activity and the scientific objective
of the experiment.

Apart from the array, CMOS devices also require the design
of neuronal amplifiers and some sort of data transmitter, either
of the amplified analog signals or, more typically, of the already
digitized data. Generally, a neural amplifier needs to have high
input impedance, which is significantly higher than the electrode
impedance, to ensure signal integrity. The amplifier should be of
low power to prevent substrate heating that could damage cells
or tissue. For in vitro MEA devices, a variety of target applica-
tions have to be considered. Therefore, gain and dynamic range
requirements can be quite demanding and should be adjustable,
such as to cover applications with maximal amplitudes of a few
hundred microvolts in acute slice preparations and, on the other
hand, up to 10 mV in measurements from cardiomyocytes. The

same also holds true for the flexibility in the recording band-
width. Some applications may require lower frequency signals
only, some only spikes in the EAP band, some both bands with
different gain requirements at the same time. The circuits need
to implement some sort of high-pass filter to block the large 1/f
noise of the electrode-liquid interface typically observed. MEA
systems can also include stimulation circuitry, covered in the
next section, and analog-to-digital conversion (ADC). They need
to include an interface to transmit the data and receive com-
mands for controlling the system’s operation. The requirements
are different for implantable devices, where usually the target
application is much more defined, but also the power, reliability,
and safety requirements are more stringent. These systems often
implement spike detection or classification and wireless trans-
mission in the system, either as a monolithic implementation
or hybrid approach using multiple ICs. They may also be pow-
ered wirelessly. On the other hand, in vitro MEA systems do not
require wireless power or data transmission, as they can gener-
ally be directly wired to the data-receiving device. In this case,
often common interface standards are employed, such as USB
(Multi Channel Systems GmbH2), Ethernet (Frey et al., 2010),
National Instrument’s DAQ card (Alpha MED Science Co., Ltd.1),
CameraLink (Imfeld et al., 2008), or others. Most of these sys-
tems support online storage of the full raw data to hard disks,
sometimes including some form of lossless data compression
(Sedivy et al., 2007).

Many of the circuit requirements can be traded against each
other, e.g., one can easily lower the noise by increasing the area
or power consumption. The key challenge therefore is to set the
target specifications for the given application accurately and opti-
mize the systems for it, without overdesigning specific require-
ments. Further considerations with respect to noise are given
in Section Noise and SNR. Reviews focusing on circuit related
issues can be found here: (Wise et al., 2004, 2008; Harrison, 2008;
Jochum et al., 2009; Gosselin, 2011).

STIMULATION
MEAs allow passive observation, and also active influence and
control of neuronal activity. Metal electrodes can deliver electrical
stimuli directly using the microelectrodes, whereas for OGFET-
based devices, typically an extra capacitive stimulation spot is
used to deliver stimuli (Stett et al., 1997). In addition, monolithic
CMOS integration of MEAs opens up the possibility to include
electrical stimulation circuitry directly on-chip, in turn allowing
a high degree of flexibility in generating spatiotemporal patterns
of stimulation, higher spatial resolution for stimulation and direct
on-chip stimulation artifact blanking or suppression.

Already the very first electrophysiological experiments with
frogs by Galvani (1791) involved electrical stimulations using
metal wires connected to various sources, e.g., Leyden jars,
Franklin’s magic squares, and even atmospheric electricity dur-
ing lightning. In vivo, electrical stimulation is commonly used
to stimulate nerves for transmitting sensory information to the
brain, such as for cochlear implants (Wilson and Dorman, 2008)
and retinal implants (Ahuja et al., 2011; Zrenner et al., 2011); to
control, e.g., limbs for neurorehabilitation after nervous system
injury; and to treat disorders, e.g., Parkinson’s disease by deep
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brain stimulation using brain pacemakers (Montgomery and
Gale, 2008). In such applications, the physical distance between
the stimulation electrode and target nerves can be rather large,
requiring the delivery of high amplitude stimuli.

Lilly et al. (1955) established charged balanced methods using
biphasic brief pulses to limit the damage to the tissue and the
degradation of the electrodes themselves. Merrill et al. reviewed
electrical stimulation using electrodes, listing various materials
(Merrill et al., 2005). For in vitro MEAs, effective stimulation pro-
tocols were characterized by Wagenaar et al. (2004). The authors
studied different stimulation parameters (pulse width, amplitude,
pulse shape) that evoke neuronal activity.

One application of electrical stimulation is the use of it as
a “trigger,” so-called stimulus-triggered averaging (Cheney and
Fetz, 1985). Electrical stimulation allows delivering trigger pulses
of high temporal resolution in the order of a few microseconds,
depending on the stimulation buffer used and the capacitive load
of the electrode. Stimulation can evoke responses with small
temporal jitter, e.g., Bakkum et al. observed a jitter of 160 μs
using passive MEAs (Bakkum et al., 2008). Bakkum et al. used
trigger signals to study the velocity of action potential (AP) prop-
agation in axons of cultured neurons (Bakkum et al., 2013).
Figure 4A shows how such stimulus-triggered averages revealed
small axonal spikes of different shapes, such as bi- and tri-phasic
types. Figure 4B illustrates the reduction in uncorrelated noise
with increasing number of averaged repetitions. One potential
issue with delivering electrical stimulation to neuronal cells and
tissue is the occurrence of artifacts in recording channels, due
to the fact that stimulation pulses are typically three to four
orders of magnitude larger than the recorded signals. This cou-
pling between stimulation and recording is difficult to prevent,
and artifacts are picked up both within the wiring of the array
and circuits, but also through the medium of the cell culture or
tissue. However, as long as the coupling is purely capacitive, arti-
facts usually only prevent recording during the stimulation period
itself. If the amplitude of an artifact is large, which can occur when
a recording electrode is near the stimulation electrode, the artifact
may saturate the amplification circuits of the recording electrode.
This saturation will prevent recording for an extended period
of time after the stimulation ended. Figure 4C shows an exam-
ple of such a saturated signal from an electrode located 18 μm
(center-center) away from the stimulation electrode and a signal
without saturation from an electrode located about a 1 mm away.
Figure 4D shows the relationship between the distance from stim-
ulation to recording electrode and the duration of saturation for
a 11,011-electrode MEA (Frey et al., 2010), without employing
any artifact suppression measures. As long as the amplifiers do
not fully saturate, it is possible to suppress such artifacts in soft-
ware by subtracting the estimated artifact (based on templates,
filters or local curve fitting) from the data (Hashimoto et al.,
2002; Wagenaar and Potter, 2002). To also allow recording from
electrodes on which saturation would occur, counter measures in
hardware have to be employed. One solution is to use a “reset”
switch that can bring back the saturated amplifier into normal
operation quickly, by resetting the high-pass filter of the front-end
amplifier (Heer et al., 2006; Frey et al., 2010). To suppress arti-
facts even on the stimulation electrode itself, more sophisticated

methods are used. Jimbo et al. proposed a method to decouple
the recording amplifiers during stimulation, sample the electrode
potential during recording and add the stimulation pulse to the
stored electrode potential (Jimbo et al., 2003). This scheme has
also been implemented on dedicated ASICs to be used in conjunc-
tion with MEA devices (Brown et al., 2008; Hottowy et al., 2012;
Tateno and Nishikawa, 2014). Figures 4E,F show stimuli activated
neuronal responses with high spatiotemporal precision. In a study
to track axonal APs (Bakkum et al., 2013) several ten thousands
of stimuli were required, which was possible without damaging
the electrodes or cells. In this case, voltage-mode stimulation was
used, although the stimulation hardware supported both current-
and voltage-mode (Livi et al., 2010).

Closed-loop experiments, in which neural activity triggers
electrical stimulation, employing on-chip stimulation circuitry
have been presented by Hafizovic et al. (2007) and Müller et al.
(2013). In both cases, the spike detection is performed off-chip on
dedicated FPGA hardware. The actual decision to stimulate and
the selection of the stimulation waveform patterns is performed
on a personal computer in Hafizovic et al. (2007), whereas in
Müller et al. (2013) an event engine performing this task is imple-
mented directly on the FPGA platform, making the latency until
stimulation shorter and, importantly, reducing its temporal jitter.

CMOS-based devices exclusively devoted to stimulation at
high spatio-temporal resolution of close to 7000 electrode per
square millimeter and with variable voltage mode pulses have
been developed as well (Lei et al., 2008, 2011). Circuit considera-
tions for CMOS-based devices for clinical in vivo application are
reviewed (e.g., Ortmanns et al., 2008; Ohta et al., 2009).

APPLICATIONS OF IN VITRO CMOS-BASED MEAs
In vitro CMOS MEAs have already been used in a wide vari-
ety of applications, for recording, for electrical stimulation or
for both. Figure 5 lists in vitro CMOS MEAs, their key specifi-
cations and preparations for which they have been used so far.
Some additional in vitro CMOS-based MEAs that are not listed
in Figure 5 can be found here: (Tokuda et al., 2006; Greve et al.,
2007; Meyburg et al., 2007; Yegin et al., 2009; Johnson et al., 2012).
In addition, the functionality of some in vivo CMOS MEAs has
also been demonstrated using in vitro applications (Aziz et al.,
2009).

The two most prominent preparations investigated with
in vitro CMOS MEAs so far are acute retina preparations from
mice (Menzler and Zeck, 2011; Fiscella et al., 2012; Maccione
et al., 2014), rats (Eickenscheidt et al., 2012; Lloyd et al., 2014;
Stutzki et al., 2014), rabbits (Zeck et al., 2011; Ballini et al.,
2014; Fiscella et al., 2014), guinea pig (Velychko et al., 2014)
and humans (Reinhardt and Blickhan, 2014); and cultured neu-
ronal cells from snails (Eversmann et al., 2003a), rats (Hafizovic
et al., 2007; Heer et al., 2007; Gandolfo et al., 2010; Lambacher
et al., 2010; Bakkum et al., 2013; Ballini et al., 2014) and chicken
(Hafizovic et al., 2007). Additionally, data from acute slices of
the cerebellum (Frey et al., 2009a; Obien et al., 2014), cortex
(Ferrea et al., 2012; Medrihan et al., 2014) and olfactory bulb
(Johnson et al., 2013a) have been shown. Also cultured cardiomy-
ocytes were studied (DeBusschere and Kovacs, 2001; Heer et al.,
2004; Imfeld et al., 2008; Sanchez-Bustamante et al., 2008; Huys

www.frontiersin.org January 2015 | Volume 8 | Article 423 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Systems_Biology/archive


Obien et al. Revealing neuronal function through MEA recordings

FIGURE 4 | Stimulation capability of high-resolution CMOS-based MEA.

(A) Examples of evoked spikes detected at three sites (columns) along the
same axon. The top row shows individual raw traces, and the other rows
show traces averaged as indicated. Scale bars, 1 ms horizontal, 10 μV vertical.

(B) The amount of averaging necessary to detect a spike with a given height
(0.5–3 σ) with respect to the detection threshold. (C) Left: A raw voltage
trace recorded at an electrode neighboring a stimulation electrode

(Continued)
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FIGURE 4 | Continued

saturated for about 4 ms (flat line). Right: A raw voltage trace recorded at
an electrode located 1.46 mm away from a stimulation electrode did not
saturate. (D) The duration of a saturated signal occurring after stimuli is
plotted vs. distance from the stimulation electrode (mean ± s.e.m.;
N = 18 stimulation electrodes from five CMOS-based MEAs). Stimuli
consisted of biphasic voltage pulses between 100 and 200 ms duration
per phase and between ± 400 and 800 mV amplitude. (E) Locations of
stimulation electrodes that directly evoked (black boxes) or did not evoke

(empty or filled gray boxes) APs detected at a soma located ∼890 μm
away. The line arrow indicates the orthodromic propagation direction.
Scale bar, 20 μm. (F) Voltage traces of somatic APs elicited by biphasic
voltage stimuli. Traces in response to eight stimuli are overlaid for each
of three stimulation magnitudes (indicated at the top), plotted for all
effective (black) and four ineffective stimulation sites (gray at the bottom).
Stimulation electrode locations are represented as numbered boxes in
(E). Scale bar, 200 μV. All panels and description adapted with permission
from Bakkum et al. (2013).

et al., 2012) and first results from mice organotypic slices were
presented (Gong et al., 2014).

Certainly, in vitro CMOS-based MEAs, being still an emerg-
ing technology with commercial availability only starting recently,
have a high potential for future biomedical research and
diagnostics (Jones et al., 2011).

UNDERSTANDING MEA SIGNALS
Here, we describe the parameters that contribute to neuronal
signal transduction from the source into digital form.

WHAT DO MICROELECTRODES DETECT?
A microelectrode can detect the changes in the extracellular field
caused by the current flows from all ionic processes across the
morphology of the closest neuron and from other nearby cells,
not only neurons (Buzsáki et al., 2012; Anastassiou et al., 2013).
The effect of the transmembrane currents on the electric field and
the detected potential on a microelectrode depend on the magni-
tude, sign, and the distance from the recording site (Nunez and
Srinivasan, 2006), see Section The extracellular space.

An AP is a biophysical event that occurs once the neuron’s
transmembrane potential reaches a threshold due to stimuli or
other inputs (e.g., synapses, gap junctions). On the other hand, we
consider a “spike” to be the signal from a putative AP. For extracel-
lular recordings, spikes are commonly identified as voltage signals
that exceed a threshold. During an AP, the initial rapid Na+ ion
influx creates a sink and results in a large negative spike in the
EAP. Thereafter, the slow K+ efflux produces a source resulting in
a small positive spike. In contrast, IAP first shows a positive spike
and later a negative volley. EAPs are usually around tens to hun-
dreds of microvolts in amplitude and <2 ms in duration while
IAPs are at tens of millivolts and around the same duration as
EAPs (Buzsáki et al., 2012). If IAPs can only be detected by direct
access inside the neuron, e.g., patch-clamp, EAPs can be identi-
fied when electrodes are placed at the vicinity (∼100 μm) of the
spike origin (Henze et al., 2000; Egert et al., 2002), usually at the
perisomatic area, i.e., around the soma or near the axon initial
segment.

Aside from measuring single- and multi-unit spiking activity,
electrodes also sample LFPs. The LFP is assessed by the signal con-
tent in the low-frequency band of the recorded signal (<300 Hz)
(Belitski et al., 2008; Buzsáki et al., 2012), while EAPs are ana-
lyzed after filtering the LFP out (300–3000 Hz) (Quian Quiroga,
2009). Although the contribution of EAPs to LFP is still unclear, a
synchrony of APs from many neurons can participate in the gen-
eration of LFPs (Buzsáki et al., 2012). The current opinion is that
synchronized synaptic currents in cortical neurons produce LFPs,

through the formation of dipoles (Niedermeyer and da Silva,
2005; Nunez and Srinivasan, 2006). We refer the reader to Einevoll
et al.’s extensive review on the modeling and analysis of LFPs for
further details (Einevoll et al., 2013). The relationship between
LFPs and spikes has also been discussed and studied in several
works (Khazipov et al., 2004; Belitski et al., 2008; Montemurro
et al., 2008; Minlebaev et al., 2011; Kayser et al., 2012; Cingolani,
2014).

MEA SIGNAL FLOW
We consider the components of the MEA recording and stimu-
lation system diagram as shown in Figure 6: (A) the conductive
extracellular volume where the electric field caused by neu-
ral signal sources forms; (B) the substrate with the embedded
microelectrodes; and (C) the hardware connected to the elec-
trodes, including amplifiers, filters, digitizer, data transmission,
and stimulator (Stett et al., 2003; Fejtl et al., 2006).

Noise and SNR
One crucial aspect of the MEA signal flow is how noise is fed
into the amplification chain and how it affects the SNR of the
recorded data. SNR is the key specification for the amplifier
design, regardless of the actual amplification (Jochum et al.,
2009). It is important to consider where the noise, or interfer-
ence, is injected in the signal chain, as the implications on SNR
will differ.

(a) Biological noise. This is a major source of noise stems from
the electrical activity of other cells around the recording elec-
trode, e.g., APs of distant cells, but also ionic activity, e.g.,
subthreshold events in neurites of nearby cells, and synaptic
noise due to the stochastic nature of synaptic transmis-
sion. Several models of biological noise, or sometimes also
called background noise, have been developed by simulat-
ing uncorrelated single-unit spiking activities or examining
multi-compartmental neuron models located at distances far
enough away from the electrodes such that the spikes can-
not be resolved (Eaton and Henriquez, 2005; Martinez et al.,
2009; Lempka et al., 2011; Jäckel et al., 2012; Camuñas-Mesa
and Quian Quiroga, 2013). Although such models replicate
the average biological noise in experiments, it is possible that
the cell type, size, and morphology, along with the firing rates
and correlated activity, can affect the shape of the background
signal. For spike analysis, the LFP is also considered biological
noise and filtered out.

(b) Electrode-electrolyte interface noise. On top of the biological
noise, the liquid-metal interface also adds to noise. At low
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FIGURE 5 | CMOS-based in vitro MEAs. CMOS-based in vitro MEAs, their
key specifications and references to biological applications for recording and
stimulation are listed in this table. The application list includes only one

representative citation for each type of preparation. The specification for each
device are taken from the reference listed on top and may differ for other
versions of the device.
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FIGURE 6 | MEA stimulation and recording system diagram with

the noise sources. The neuron is stimulated by the pulses or
waveform generated digitally through the MEA. The response of the

neuron, typically an action potential, is transformed by different
parameters across the components of the MEA toward the recorded
signal.

frequencies, such as below 10 Hz, processes at the electrode
generate noise with a steep roll-off of 1/f or even 1/f 2 (Hassibi
et al., 2004; Heer, 2005). More relevant for electrophysiol-
ogy are the frequencies above that, where thermal noise is the
main contributor (Gesteland et al., 1959; Liu et al., 2007). The
equivalent thermal noise can be calculated as follows:

vn =
√

4 · k · T · Re
(
Z′

e

) · �f ,

where k is the Boltzmann constant, T is the absolute tem-
perature, Re(Z

′
e) is the real part of the effective electrode

impedance (see Section Neuron-electrode interface), and �f
is the noise bandwidth. Another source of noise is the 50–
60 Hz hum from power lines. This noise is largely picked
up between the microelectrode and the connection to the
input of the preamplifier, due to its high impedance at that
frequency. Hence, minimizing the distance between the elec-
trode and the amplifier is a major design requirement for
MEA circuits (Harrison, 2008). Proper grounding and shield-
ing of the MEA setup can minimize interference.

(c) Device noise. Finally, the device or the system that amplifies
and digitizes the signals further adds to noise. Usually, the
front-end amplifier is the most important factor to consider.
A general design objective for such amplifiers is to ensure
that the signal acquisition system does not limit the system
performance with regard to noise. As discussed above, this is
a design tradeoff in which also power and circuit area may
play a role. For example, if the maximal allowed contribu-
tion to noise from the circuitry is set to 10%, the amplifier
noise needs to be 45% or less as compared to the noise of
the electrode. A commonly used figure of merit that captures
the tradeoff between noise and amplifiers’ supply current is
the noise efficiency factor (NEF) proposed in Steyaert and
Sansen (1987). This figure has also been adapted to capture
the different supply voltages used to allow a better compar-
ison with respect to power consumption, coined the power

efficiency factor or PEF (Muller et al., 2012). For in vitro
MEAs, area is also of critical importance, as it usually impacts
electrode density and total channel count. The efficient use of
the overall area is reflected in the ratio of the actual array area
divided by the overall chip area (see Figure 5). Quantization
noise is another noise contributor of the hardware. It origi-
nates from the discretization error made at the ADC part of
the MEA system. As an approximation for the quantization
noise, typically a value of 1√

12
times the magnitude of the

least significant bit (LSB) is used. Typical ADCs applied for
MEA systems have a minimum of 8-bit resolution, with sys-
tems that employ off-chip ADCs often using 16-bit or higher
resolution. The transmission of data may also affect the qual-
ity of the recorded signal, e.g., if a lossy compression has to be
used due to bandwidth constraints.

The extracellular space
The analysis of EAPs and LFPs usually assume a homogeneous,
resistive extracellular space based on the volume conductor the-
ory, i.e., Kirchhoff ’s current law or charge conservation and
Ohm’s law (Nunez and Srinivasan, 2006). The difference in wave-
forms of a signal recorded at different locations in the tissue is
mainly due to how each neuronal source linearly sums up, with
source contributions weighted inversely proportional to their dis-
tance (Nunez and Srinivasan, 2006). Under the assumption of a
purely homogeneous, isotropic, and ohmic extracellular medium,
Maxwell’s equations of electromagnetism can be rewritten with
appropriate Laplace boundary conditions, such that for a single
point current source the following equation holds true for the
potential at an electrode, Ve (Klee and Rall, 1977; Nunez and
Srinivasan, 2006; Anastassiou et al., 2013):

Ve = I

4πσ r
,

where I is the point current, σ is the conductivity of the medium,
and r is the distance between the point source and the recording
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electrode. Since the membrane currents are distributed over the
cable-like morphology of a neuron, a line source approximation
(LSA) of current sources was also proposed (Holt, 1997; Gold
et al., 2006; Einevoll et al., 2007).

The presence of numerous cell bodies, dendritic structures,
axonal bundles, blood vessels, and white matter in brain tissue
raises questions as to whether the brain can really be consid-
ered as purely ohmic. Moreover, the frequency spectra observed
in LFP and EEG (Pritchard, 1992; Freeman et al., 2003; Bédard
et al., 2006a; Buzsaki, 2006; Bédard and Destexhe, 2009; Miller
et al., 2009; Milstein et al., 2009) led to uncertainties regarding
the role of extracellular space in frequency dependent filtering.
Pettersen and Einevoll (2008) clarified that in a purely resistive
and homogeneous extracellular medium, amplitude variability
and low-pass filtering of EAPs occur due to the spatial sepa-
ration of correlated current sources and sinks during a spike.
Similarly, Lindén et al. (2010) found that an intrinsic dendritic
low-pass filtering affects the LFP, not the extracellular space.
Other interesting studies described how low-pass filtering effects
can be achieved in a medium of radially decaying conductivity
(exponential) around the source (Bédard et al., 2004, 2006b).

Already in 1968, Robinson (1968) suggested that inhomo-
geneities, such as the presence of glial cells in brain tissue, can
considerably impact the extracellular recording of spiking activ-
ity. He also argued that since the resistance of the paths around the
glial cells are lower (for signals at 1 kHz) than the paths through
them (due to the membranes), the extracellular signals would
flow between the cells, not through them. Thus, the structures
in the tissue can cause directional differences in the conduc-
tion of signals (Rice et al., 1993; Okada et al., 1994). Similar
results were achieved by Nelson et al. (2013) across fiber and
cell obstructions. Various studies explored different properties
of brain tissue conduction, such as anisotropy (Nicholson and
Freeman, 1975; Logothetis et al., 2007); anisotropy and inhomo-
geneity (Ranck, 1963a,b; Hoeltzell and Dykes, 1979; Goto et al.,
2010); and capacitive property (Gabriel et al., 1996a,b; Bédard
et al., 2004; Bédard and Destexhe, 2009). Whole brain analysis
of the electrical tissue properties at the microscale may be use-
ful for modeling and analyzing EAPs and LFPs from different
groups of neurons in different brain areas. Using the four-point
probes method (Kelvin sensing, with separate pairs of current-
carrying and voltage-sensing electrodes) is advisable for measur-
ing the electrical impedance of brain tissue, since it minimizes the
influence of the impedance of the current carrying electrodes.

Neuron-electrode interface
Using an equivalent circuit model, the interface between neurons
and microelectrodes in vivo has been described and character-
ized by Robinson (1968). Later, this concept has been adapted for
substrate integrated MEA devices, e.g., to compare metal micro-
electrodes with OGFET devices in simulations (Grattarola and
Martinoia, 1993). This representation of the neuron-electrode
interface was then coined the point-contact model (Weis and
Fromherz, 1997) and is shown in Figure 7A. It is a standard
model of the electrical characteristics of the interface, which has
also been extended to an area-contact model (Buitenweg et al.,
2003; Fromherz, 2003) to consider the spatial distributions that

can accurately describe the interface at subcellular resolution.
Detailed characterizations of the electrode model for various
materials have been carried out, see Section Electrodes and
Transducers. Other studies on similar neuron-electrode equiv-
alent circuits were conducted by Ingebrandt et al. (2005), Joye
et al. (2008), Thakore et al. (2012). These models assume that a
tight seal between the neuron and electrode is needed to mea-
sure EAPs from isolated neurons. In the in vivo situation, such
close contacts usually do not exist and models usually focus less
on the electrode properties themselves, but more on the electric
field generated by current sources in a conductive volume (Lind
et al., 1991; Moffitt and McIntyre, 2005; Gold et al., 2006). For
HDMEAs, such volume conductor models match measurements
for, e.g., the idealized case of point source in saline (Obien et al.,
2013), but also for complex neuronal morphologies in acute brain
slices (Frey et al., 2009a). In cell cultures, it has been observed
that EAPs are also detected by electrodes that do not have a tight
seal with the isolated neuron, even by electrodes that are relatively
distant from the neuronal source (Bakkum et al., 2013). Thus,
we generalize the neuron-electrode model in Figure 7B, which
applies to tissue slices and dissociated cell cultures.

One important assumption for this generalization is that we
can treat the MEA surface as an insulator allowing us to sepa-
rate the neuron-electrode interface problem into two parts: (i)
“fluid”-side and (ii) “metal”-side. We are able to do this separa-
tion because the high input impedance of MEA amplifiers largely
prevents any effect of the metal electrode on the potential at the
“fluid”-side of the interface. This is valid, as long as the impedance
on the “metal”-side seen by the electrode is much larger as com-
pared to the tissue or fluid impedance at all frequencies of interest.
The generalized interface model can then be interpreted such that
an electrode detects the average voltage present at the record-
ing site, as claimed by Robinson (1968), Nunez and Srinivasan
(2006), Nelson et al. (2008). The detected voltage is then shaped
by the electrical characteristics of the interface. It should be noted
that the model, as shown here, is adapted for the recording sit-
uation, focusing on the understanding of the neuronal signals
as recorded by MEAs. Similar models have also been developed
and used for the application of electrical stimulation using micro-
electrodes or capacitive stimulation spots, as discussed in Section
Stimulation.

“Fluid”-side: voltage at the electrode by volume conduction. For
simple geometries of the “fluid”-side, assuming that the MEA sur-
face is an insulating infinite plane and the fluid a homogenous,
isotropic medium, we can apply the method of images to the
point-source equation given in Section The extracellular space,
such that the potential Ve at any given electrode e can be solved
using the following equation (Obien et al., 2013):

Ve = 1

2πσ

∑ In

rn
.

In represents the nth point current source and rn represents
the distance between the point source and the recording elec-
trode, with n = 1. . . N, where N is the number of individual
point sources. For electrodes larger than an ideal point electrode,
Ve can be solved at multiple locations of the surface area of
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FIGURE 7 | MEA neuron-electrode interface. (A) The classic point or area
contact model derived from Fromherz (2003). The cell membrane is
represented with an equivalent model based on the Hodgkin-Huxley model
of the squid axon (Hodgkin and Huxley, 1952). CM represents the
capacitance across the neuronal membrane, i.e., the lipid bilayer. The
voltage-gated ion channels (K for potassium and Na for sodium) are
represented by non-linear conductances, gK and gNa, and the leak is shown
as a linear conductance, gL. The reversal potentials that drive the flow of
ions are represented by EK, ENa, and EL. The ion flow is shown by IK, INa, IL,
and IC. The other elements are described in the text. Vrec is the recorded
voltage signal. Typical IAP and EAP recordings are shown. The location of
the scissors indicates where the “cut” can be made to separate the
neuron-electrode interface into two parts. (B) Generalized neuron-electrode

interface separating the problem into two parts. Upper—“Fluid”-side: The
potential at the electrode sites can be solved using the volume conductor
theory. The MEA surface is assumed to be an insulator such that the
method of images can be applied on Coulomb’s law to solve the potential at
any point on the MEA surface. The neuron-electrode distance influences the
signal amplitude measured at the electrodes. High spatial resolution allows
for recording at several locations of a single neuron, with large negative
spikes located at the perisomatic area and positive spikes at the dendritic
area, i.e., return current. Lower—“Metal”-side: The voltage measured at the
electrode is shaped by the electrical parameters of the electrode-electrolyte
interface, represented by Ze’ as the effective electrode impedance and Za’
as the effective input impedance. This model is derived from Robinson
(1968), Nelson et al. (2008), Hierlemann et al. (2011).

the microelectrode and then averaged. The larger the electrode
area, the larger the averaging effect (Grimnes and Martinsen,
2008). Anisotropy can also be incorporated in this model easily
(Nicholson and Freeman, 1975). However, more complex geome-
tries of, e.g., the MEA device (such as in vivo neural probes) or
an inhomogeneous medium generally require a finite element
method to solve for the electric field and the potential at the
electrode.

The orientation and distance between the neuronal source and
the measuring electrode affect the amplitude and shape of the
signals detected, as discussed in Section The extracellular space.
The spread and decay of the signal over the MEA surface plane is
highly correlated with the distance of the signal source from the
surface. This makes it possible to estimate the distance between
a current source and the MEA electrodes by measuring the volt-
ages at high spatial resolution using an HDMEA (Obien et al.,
2013). The same concept can be applied to estimate the neuron-
electrode distance given a good model of the membrane currents
of the neuron being recorded (Somogyvári et al., 2005, 2012; Frey
et al., 2009b; Delgado Ruz and Schultz, 2014).

“Metal”-side: signal transformation by the electrode-electrolyte
interface. The “metal”-part of the model is an equivalent circuit
of the microelectrode modified from Robinson (1968), Franks
et al. (2005), Nelson et al. (2008), Hierlemann et al. (2011). In this

model, the input to the circuit is a low impedance voltage source
with the value corresponding to the potential resulting from the
currents in the volume conductor discussed above. This voltage
(Ve) is connected to the effective electrode impedance Z′

e, con-
sisting of Rspread, Rm, Re, Ce. Rspread is the spreading resistance,
which is the resistance a current sees, that spreads from the micro-
electrode into the electrolyte. Its value is mostly dependent on
the electrode geometry and the electrolyte conductivity. Re and
Ce are the resistance and capacitance, respectively, of a simplified
model of the electric double layer that forms at the electrode-
electrolyte interface. This is a reduction of the more complex
model, consisting of a constant-phase-angle impedance, a charge-
transfer resistance, and a Warburg impedance. Rm is an additional
resistance representing the metallic part of the microelectrode.

The effective amplifier input impedance, Z′
a, is connected in

series to Z′
e, which includes the actual input impedance of the

amplifier Za and the shunting paths to ground outside the ampli-
fier (Rs and Cs). Input amplifiers are designed to have a high
Za (above 10 M� at 1 kHz) to limit the influence of Za on the
measured voltage (Robinson, 1968). The shunt resistance (Rs)
is usually negligible, but the shunt capacitance (Cs) reduces Z′

a,
especially at higher frequencies (Robinson, 1968; Nelson et al.,
2008). Cs is the combination of all capacitances from connec-
tors and wires from the bath to the amplifier, and the capacitance
from metal of the electrode (through the insulation) to the bath
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(Robinson, 1968). The ratio of Z′
e (mostly Ce) and Z′

a is of
importance, so if the electrode impedance is low enough, the
influence of shunt capacitance to the signal is small (Robinson,
1968; Nelson et al., 2008). HDMEAs require small electrodes to
achieve a high resolution, and therefore also the Ce is usually
small. However, monolithic integration allows keeping Cs small
too. For example, Cs is estimated to be below 0.5 pF for the
HDMEA presented in Frey et al. (2010), whereas passive MEA can
have a significantly larger parasitic capacitance, depending on the
thickness of the insulation and the track width [e.g., James et al.
measured values of 60–100 pF (James et al., 2004) and Nisch et al.
estimated it to be below 15 pF (Nisch et al., 1994)]. For measure-
ments requiring a high accuracy despite having a device with a
large Cs, capacitance compensation circuits can be used, as those
commonly used in patch-clamp amplifiers and, e.g., also used for
highly accurate tissue impedance measurements (Logothetis et al.,
2007).

Effect of electrode size and density
Sizes of published microelectrodes range from 5 to 50 μm in
diameter (Kim et al., 2014). Larger electrodes have a higher pos-
sibility of getting physically near the neurons and of picking up
higher amplitude spikes (Camuñas-Mesa and Quian Quiroga,
2013), e.g., studies by Moxon (1999), Paik et al. (2003), Ward
et al. (2009), Andersen et al. (2010) claim that larger record-
ing electrodes can record from more neurons simultaneously.
However, large electrodes (>50 μm diameter) can average out
a neuron’s spatially localized peak signal amplitude with nearby
smaller amplitude signals. This reduces the peak signals, which
can result in a lower SNR. Electrode size also affects the elec-
trode impedance Z′

e, which in turn determines electrode noise
(see Section Noise and SNR). With that, there are three effects
for which SNR improves with larger electrodes (reduced electrode
noise, reduced attenuation due to large Ze/Za ratio, and increased
chance to “being at the right spot”), and one effect for which SNR
gets worse with larger electrodes (increased signal averaging).

As discussed above, for EAP recording in the 300–3000 Hz
frequency band, electrode noise is mostly thermal and compa-
rably small, especially if some sort of electrode coating is used
and the electrode size is >5 μm in diameter. Without consider-
ing electrode noise, Camuñas-Mesa et al. studied via simulation
the optimal electrode size for an in vivo situation, considering
neuronal background activity. For their simulation parameters,
they found 40 μm to be the optimum (Camuñas-Mesa and Quian
Quiroga, 2013). For HDMEAs, the situation is a bit different.
Most importantly, there is no need to enlarge the electrode to be
close to the location with the largest signal, as there will always
be another electrode “at the right spot”. Secondly, the effective
input capacitance can be significantly smaller as compared to pas-
sive devices, due to a small Cs, which in turn allows for a smaller
Ce. As a result, small electrodes are much more preferable in this
situation, with only electrode noise being the limiting factor.

LFP and EAP recordings from neurons located distant to the
electrodes feature lower spatial frequencies and therefore allow
for larger electrodes without signal degradation than recordings
from neurons within close proximity. Especially for LFPs, Nelson
and Pouget (2010) discussed that the electrode impedance and

recording site geometry are not crucial. This is because LFPs only
vary in a spatial scale much larger than the size of electrodes used
for extracellular recordings, e.g., by a few hundred micrometers
(Katzner et al., 2009) or even by 1 mm (Destexhe et al., 1999). In
addition, LFPs are of lower temporal frequency, making electrode
noise a more important factor as in that range, it is dominated by
1/f 2 noise, which makes larger electrodes more favorable.

It is therefore important to choose optimal electrode sizes
depending on the targeted application. In addition, a high density
of electrodes will inherently limit the electrode size.

PRACTICAL APPLICATION OF MICROELECTRODE
RECORDINGS
Here, we provide a brief overview on how to extract relevant
information from distorted, convoluted, and noisy recorded sig-
nals. We then review relevant applications of MEAs for the study
of single neurons and networks using various techniques and
preparations.

MEA SIGNAL PROCESSING AND SPIKE SORTING
MEA signal processing usually includes (1) filtering the raw data
traces, (2) spike detection, and (3) spike sorting.

First, the raw signal is processed to separate the fast APs from
LFP and noise by applying a band-pass filter (Quian Quiroga,
2007), with a typical narrow band of 300–3000 Hz. Filtering
methods aim to attain higher SNR and lower false positive rates.
The filtering process can add phase distortions and therefore alter
the shape of the detected EAP. One can avoid such phase dis-
tortions by using non-causal filters when future inputs are also
used for computation. In hardware implementations and online
filters, causal filters are typically used though, as non-causal filters
would require the usage of a data buffer (Quian Quiroga, 2009).
Depending on the scientific goal, good practice is to record data
with wide-band filters (e.g., 1–7000 Hz) and negligible phase dis-
tortion, then apply the narrower band filters only for the purpose
of the extraction of spike timing information, for which undis-
torted spike shapes are not needed. One can then still use the spike
timing information generated by the spike sorter to re-extract the
undistorted spike shapes from the original data.

Once the signal is filtered, the spikes are detected. Amplitude
thresholding is commonly used, although other spike detec-
tion methods have been implemented, e.g., two-point procedure
(Borghi et al., 2007; Maccione et al., 2009) and template-matching
(Kim and McNames, 2007). The threshold is usually set as a mul-
tiple (5 times) of the baseline noise level, calculated as the root
mean square (RMS) of the signals with a mean value of zero. In
the presence of many spikes, the threshold can be estimated using
a measure based on the median, which is less sensitive to outliers
and therefore more robust with regard to spike frequency (Quian
Quiroga et al., 2004).

After spike detection, spike shapes are grouped according
to their spike shape, which is referred to as spike sorting.
Several feature extraction techniques have been used, e.g., prin-
cipal component analysis or PCA (Quian Quiroga, 2007) and
wavelet transform (Mallat, 1989). In the ideal case, distinct neu-
rons will have spikes whose features belong to well-separated
clusters, and each neuron will only be part of one cluster. In
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practice, spike sorting often requires user supervision in order
to manually evaluate the performance of the procedure and cor-
rect for errors, e.g., to merge nearby clusters or remove outliers.
For a detailed explanation of the spike sorting steps, the reader
is referred to other review articles (Lewicki, 1998; Einevoll et al.,
2012a). Available spike sorting packages and frameworks include
Wave_Clus (Quian Quiroga et al., 2004), NeuroQuest (Kwon
et al., 2012), SigMate (Mahmud et al., 2012), UltraMegaSort
(Hill et al., 2011), EToS (Takekawa et al., 2010, 2012), and
QSpike tools (Mahmud et al., 2014), among others. HDMEAs can
improve spike sorting performance since with high-resolution
spatial information, one can more efficiently separate individual
neurons (Gray et al., 1995; Jäckel et al., 2011; Franke et al., 2012).

A number of concerns have been raised regarding the effec-
tiveness of spike sorting. In fact, it is difficult to validate spike
sorting algorithms and it is important to test them based on
realistic simulated data (Einevoll et al., 2012b). For in vivo experi-
ments, or in acute recordings where the electrodes can move with
respect to the neurons, drift may occur and alter the recorded
signal. Another issue is the amplitude variability of APs from a
single neuron that can lead to clustering errors, either intrinsi-
cally or due to bursts (McCormick et al., 1985; Henze et al., 2000;
Delescluse and Pouzat, 2006; Stratton et al., 2012), such that one
cluster may contain the large amplitude spikes and the second one
the smaller amplitude ones (Van Dijck et al., 2012).

USING MEAs FOR NEUROSCIENCE STUDIES
MEA recordings have been employed to understand neuronal
communication, information encoding, propagation, and pro-
cessing in neuronal cultures as well as in brain slices and retina
explants (Taketani and Baudry, 2006). Recent works start to take
full advantage of the unique abilities of HDMEAs.

Bursts
Bursts and burst rates of APs in a neuron or across a network
of neurons is a common feature extracted from data in MEA
applications. Bursts have several meanings and functions in neu-
roscience, e.g., synchronization, information carrier, and motor
pattern generation. Single neurons can exhibit bursting, or burst
firing, when APs fire at a high frequency for a period of time, fol-
lowed by a quiet period. Bursts can be triggered by the network
activity (environment) or can be intrinsic to the neuron (pheno-
type of the cell). There are many algorithms to detect the presence
of bursts from single neurons (see Samengo et al., 2013; Bakkum
et al., 2014 for some methods).

Besides single neuron bursting, population-wide synchronous
activities are also of interest. For example, repetition of activa-
tion patterns (Abeles and Gerstein, 1988; Sun et al., 2010) can
be considered as memory traces, replayed by the appearance of
a similar stimulus or due to internal processes that occur, e.g.,
during sleep (O’Neill et al., 2008; Abel et al., 2013). Bakkum
et al. (2014) investigated parameters for and compared the per-
formance of various burst detectors on population-wide bursts.
An inter-spike interval (ISI) based network burst detector was
able to identify small and large bursts better than other tech-
niques in cultured networks. Rate-based detectors detected larger
bursts only, while prematurely identifying the end of bursts. See

Kreuz (2013) for further details and methods on quantifying
synchronization.

MEAs and neuronal cultures
Since Pine reported the first MEA recordings from dissociated
neuronal cultures in 1980 (Pine, 1980), the method has been
expanded for pharmacological tests, diagnostics, and investi-
gation of neuronal growth and connectivity. Combination of
immunostaining, fluorescence microscopy, and MEA recording
allows the identification of neuronal types and synapses, e.g.,
GABAergic and glutamatergic, and the analysis of neuronal elec-
trical activity in long-term cultures. Using this technique, Ito et al.
(2013) observed a correlation between synapse densities and elec-
trical activity of cultured rat cortical networks (Figures 8A,B).
The initial increase in glutamatergic and also GABAergic synapses
was accompanied with increasing electric activity, which reached
a plateau after 28 days in culture when the synapses reached their
final density.

More complex neuronal culture analyses can be done using
HDMEAs such as burst pattern tracking (Gandolfo et al., 2010)
and functional connectivity estimation (Maccione et al., 2012).
By plating low-density cultures, it is feasible to not only optically
visualize the network of stained neurons, but also to estimate the
functional connections and to obtain detailed functional maps
at cellular resolution (Maccione et al., 2012), see Figures 8C,D.
Maccione et al. processed and analyzed the HDMEA signals by
ad hoc developed spatio-temporal filtering and by applying a
cross-correlation based method.

MEAs and brain slices
A brain slice is a 3D environment of neurons that can be placed
on MEAs to monitor electrical activity. Cutting the brain into
very thin slices has allowed access to neurons deep in the brain
for imaging, i.e., mapping the anatomy. The same method can
be used for recording the activity of neurons that are otherwise
difficult to reach and identify in vivo. This requires a setup to
keep the neurons viable, i.e., by perfusion with artificial cere-
brospinal fluid (ACSF) with continuous carbogen (95% oxygen
and 5% carbon dioxide) gassing. The neurons and network
structure in slices are physiologically and biochemically more
similar to the in vivo situation. It is possible to observe LFPs
and oscillations inherent in different states of the brain. Such
recordings have been done for different brain areas, e.g., hip-
pocampus, suprachiasmatic nucleus, etc. For instance, MEAs have
been employed to investigate the disruption of normal network
waves and oscillations in the brain caused by the absence of cer-
tain ion channels in neurons. In one particular case, Simeone
et al. studied the effect of the delayed rectifier potassium chan-
nel α-subunit Kv1.1 to the oscillations in the hippocampus shown
in Figures 9A–C (Simeone et al., 2013). By reducing or elimi-
nating the expression of Kv1.1 in the axons of the hippocam-
pal tri-synaptic pathway, the authors were able to observe an
increase in occurrence of fast ripples (80–200 Hz bandwidth, 50%
longer duration) and high frequency oscillations associated with
epilepsy, as shown in Figure 9C. Similar applications have been
done using HDMEAs. Medrihan et al. (2014) showed that the
absence of synapsin II (Syn II), a protein related to epilepsy,
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FIGURE 8 | Neuronal culture studies using MEAs. (A,B) Combination of
MEAs with immunostaining and microscopy to analyze the relationship
between the development of synapses and electrical activity of neurons,
adapted with permission from Ito et al. (2013). (A) Plot showing the number
of synapses along the neuronal dendrites in a long-term primary culture.
The glutamatergic (red) and GABAergic (green) synapses along the
dendrites of neurons were obtained by immunostaining from cultures at
7–35 days in vitro (DIV). The number of synapses at the dendrites
continuously increased for 3 weeks and saturated afterwards. The same is
true for synapses at the soma (not shown), which saturated after 30 DIV.
(B) Plotted data from MEA recordings of a long-term culture. A similar
pattern is observed from the firing rate and synchronized burst rate
measured by a MED64 MEA device from 7 to 35 DIV. Both the firing and
burst rates increased until 30 DIV, which eventually saturated afterwards.
(C,D) Application of HDMEAs to analyze the functional connectivity of
neurons in vitro, adapted with permission from Maccione et al. (2012).
Fluorescent images of stained neurons on an HDMEA are shown with
arrows indicating the functional connectivity (from white—weak to
red—strong) obtained by analyzing spike trains using cross-correlation.

decreases tonic inhibition in mouse hippocampal slices, thus
increasing synchronized bursts (see Figures 9D,E). THIP (4,5,6,7-
tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective
agonist of δ subunit-containing GABAA receptors, restores tonic
inhibition.

Depth recording of EAPs from neurons up to 100 μm dis-
tance from the MEA surface was also shown (Egert et al., 2002;
Frey et al., 2009b). Subcellular resolution recording from single

Purkinje cells (PCs) in acute cerebellar slices was demonstrated
using HDMEAs (Frey et al., 2009a). One important factor is to
ensure tissue adhesion on the MEA surface. Adhesion can be
achieved by cellulose nitrate coating (Egert et al., 2002), but also
by a slice anchor typically used for patch-clamp recordings. EAPs
were observed along the PC layer and, after spike sorting, the EAP
footprint of a single PC was analyzed. The negative spikes were
recorded around the perisomatic area of the neuron, while posi-
tive spikes were obtained along the molecular layer corresponding
to the dendrites of the PC. A comparison of the high spatiotempo-
ral resolution recording with simulations of a full-compartmental
model based on the stereotypical morphology of a PC was done.
Figure 10 shows both measured and simulated EAP data from
PCs at high resolution. Although the planar geometry of PC is
advantageous, similar results might be obtained from neurons in
other brain areas.

Aside from acute preparations, MEAs have been used to ana-
lyze the brain function using organotypic slice cultures. For
example, Ito et al. studied the functional connectivity in hip-
pocampal and cortical organotypic cultures (Ito et al., 2014).
They analyzed the network activity at different frequency ranges
using the wavelet transform of the cross-correlogram.

MEAs and retina
The planar arrangement of retinal ganglion cell (RGC) bodies
and axons is highly compatible with MEA recordings from retina
explants. Responses of RGCs can be recorded using different types
of light stimulations (Segev et al., 2004; Wässle, 2004; Jones et al.,
2011). This allowed the identification of cell types of popula-
tions of RGCs and the mapping of their receptive fields (Meister
et al., 1994; Chichilnisky, 2001), in different regions of the retina.
Fiscella et al. (2012) established a methodology applied to mice
retina that uses light stimulation and HDMEAs to identify, select,
and record from defined populations of RGCs. After spike sort-
ing the HDMEA recordings, the EAP footprints of detected RGCs
were obtained, as shown in Figures 11A,B. Each detected RGC is
assigned to one of the four types of ON–OFF direction-selective
RGCs, depending on the occurrence of the response to different
light stimulation patterns (see Figures 11C–E).

Another study on retina (macaque) using HDMEAs revealed
the identification of the type, location, and strength of the func-
tional input of each cone photoreceptor to each RGC (Field
et al., 2010). Populations of midget, parasol, and small bistratified
RGCs were recorded simultaneously in the presence of white noise
“visual” stimulation. The spatial receptive field and response time
of RGCs were detected by computing the spike-triggered average
of the stimuli. Afterwards, the detected clusters of cells obtained
by PCA were further stimulated with 10-fold smaller pixels (5 ×
5 μm2) to reveal finer details of the receptive fields. The method
was able to map putative cones accumulated across the receptive
field of RGCs, which were verified by overlaying a microscopy
image of cones labeled with peanut agglutinin (see Figure 11F).
The authors were able to quantify the strength of connectiv-
ity between different RGC types and different types of cones
(sensitive to red, green, or blue). These exhibit the capability
of HDMEAs, combined with advanced stimulation and analy-
sis techniques, to resolve the functional connectivity of neurons
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FIGURE 9 | Waves in acute hippocampal slices revealed by MEAs. (A–C)

Studying the effect of the delayed rectifier potassium channel α-subunit Kv1.1
to sharp waves in in vitro hippocampal slices using MEAs, modified with
permission from Simeone et al. (2013). (A) Image of a Kcna1-null (knock-out
of the gene encoding Kv1.1) hippocampal slice on an MEA. Black squares
correspond to the electrodes. The regions of the hippocampus are also
indicated. (B) The sharp waves in wild-type (WT) and Kcna1-null hippocampi
are initiated in CA3 that spread with similar time-courses. (C) Representative
sharp waves from WT and Kcna1-null hippocampi recorded at the location of
red boxes in (A). The sharp waves are longer (with ripples) in Kcna1-null
compared to WT. Scale bars: horizontal, 50 ms; vertical, 50 μV except for WT

CA3sp (100 μV), WT CA3sr (200 μV), KO CA1sp (20 μV), and WT CA1sr
(200 μV). CA, cornus ammonis; DG, dentate gyrus. (D,E) Studying the effect
of deleting synapsin II (Syn II) to the tonic inhibition in mouse hippocampal
slices using HDMEAs, adapted with permission from Medrihan et al. (2014).
(D) Mean firing rate computed from each electrode from WT and Syn II
knock-out hippocampal slices before and after THIP treatment. THIP:
(4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; gaboxadol), a selective agonist
of δ subunit-containing GABAA receptors. (E) Raster plots showing highly
synchronized bursts, x-axis corresponds to time, y-axis corresponds to pixels
(electrode). THIP reduced the high frequency bursts in Syn II knock-out
hippocampus. Scale bar: 1 min.

in the retina at single-cell resolution. There are also other recent
works on population coding in the retina using MEA recordings
(Marre et al., 2012; Tkačik et al., 2014).

MEAs and axonal signal tracking
Taking advantage of the spatiotemporal resolution and high sig-
nal quality of HDMEAs, tracking the propagation of APs between
cells can be performed. Bakkum et al. (2013) achieved this in
dissociated neuronal cultures (see Figures 12A–C). Axonal sig-
nals are difficult to identify using conventional methods: thin
axons are difficult to patch and extracellular signal amplitudes are
rather low compared to those from the soma. A major accom-
plishment of this work is the capability to electrically image
the propagation of APs along axons, across the topology of the
whole neuronal network. By using HDMEAs that can record and
dynamically stimulate at defined locations, with little artifact to
the signals, it was possible to quantify the direction, velocity, and
extent of axonal AP propagation. The stimulation and record-
ing techniques are shown in Figures 12B,C. This is a suitable
platform to study the role of axons in neuronal computation in
the future.

Axonal conduction was also measured by Zeck et al. (2011)
from rabbit retina using HDMEAs. The authors were able to mea-
sure the velocity of axonal AP caused by stimuli and discovered
that similar RGC types respond with the same latency and con-
duct with similar velocity (see Figure 12D). Except for the area
where axons are myelinated, axonal signals were detected from
all stimulated RGCs. This work also shows that when axons are
very near or flat on the electrode array surface, it is possible

to map the flow of APs. The axons do not necessarily need a
tight contact on the electrodes, since the potential due to the APs
was also detected from other surrounding electrodes, with lower
amplitude compared to the electrode nearest the axon.

NEURONAL MODELING AND HDMEA RECORDINGS
Computational modeling is useful to interpret the dynamics
and processing of neurons and networks. MEA recordings are
commonly analyzed to model neuronal networks (Taketani and
Baudry, 2006; Kreuz, 2013; Samengo et al., 2013). Here, we
focus on the use of HDMEA data to analyze and model single
neurons.

Localization of neurons
Neuronal circuits are arranged with high spatial precision and
specificity and therefore, spatial information is an important
factor in deciphering neuronal activity. Microscopy, fluores-
cent markers, and transgenic animals have enabled researchers
to localize and classify neurons in a high-throughput man-
ner. Together with dynamic multineuron Ca-imaging using
spinning-disk confocal microscopy with two-photon excitation,
spatial and functional information can be obtained simulta-
neously. However, the temporal resolution of MEA recordings
can capture neuronal responses better than these imaging tech-
nologies (Delgado Ruz and Schultz, 2014) and the optical tools
described above may not be applicable to all experiments, e.g.,
due to the unavailability of the transgenic animals, the duration of
the experiment, optical access such as in in vivo experiments with
freely moving animals, etc. Therefore, localization of neurons in
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FIGURE 10 | High-resolution mapping of spontaneous Purkinje cell

activity using HDMEAs. (A–E) HDMEA recordings from an acute slice
preparation of the caudal half of the cerebellar vermis. (A) Activity map of the
detectable spike activity in the recording area. Small dots correspond to the
electrodes used for recording (∼30% of the available electrodes). Events
exceeding a threshold of ±36 μV were used to calculate the color-coded
event rate. Scale bar: 0.3 mm. (B) Close-up of a region with high activity
delimited in (A). All units identified by spike sorting are marked, i.e., the
somatic region is blue and the dendritic region is red. Scale bar: 0.1 mm. (C)

Schematic of the basic cellular structures in the cerebellar slice (Gray, 1918).
Scale bar: 0.1 mm. ML, molecular layer; PCL, Purkinje cell layer; GL, granular
layer; CF, climbing fiber; MF, mossy fiber; PF, parallel fiber; PC, Purkinje cell;
GgC, Golgi cell; SC, stellate cell; BC, basket cell. (D) Footprint of a PC
selected from the region shown in (B). Scale bar: vertical is 200 μV, horizontal
is 1.9 ms. (E) Current source density (CSD) analysis for the cell shown in (D)

at several points in time (green: sink; yellow: source). The sink moves from

the soma at 0.4 ms to the proximal dendrites at 0.6 ms and covers the
dendritic area, while the soma repolarizes. Frequency band: 180 Hz–3.5 kHz.
(F–H) Matching simulated and measured EAP footprints. (F) Comparison of
the recorded average single-unit spikes (black traces) and the spikes
calculated from a compartment-model simulation of a PC (green traces).
Scale bar: vertical is 100 μV, horizontal is 1.9 ms. (G) Illustration of the
position and orientation of the simulated PC, with the center of the soma
located [blue diamond in (F)] 40 μm above the chip surface. (H) Simulated
potential on the chip surface along a line parallel to the soma-dendrite axis
[dashed blue line in (F,G)] during the spike evolution at 0.1 ms intervals. The
black and white dots on the potential line of maximal amplitude (bold blue
line) represent the HDMEA spatial resolution (18 μm pitch). Significant spatial
undersampling of the potential distribution curve can be observed by
reducing the lateral spatial resolution by 50% (black dots only, pitch 36 μm),
especially for the largest negative peak. All panels and descriptions adapted
with permission from Frey et al. (2009a).

MEA recordings has been of interest for in vivo and acute slice
in vitro experiments too.

Based on the volume conductor theory several current source
density (CSD) methods have been proposed to solve for the cur-
rent sources and sinks from LFP and EAP data (Nicholson and
Freeman, 1975; Mitzdorf, 1985; Plenz and Aertsen, 1993; Okada
et al., 1994; Pettersen et al., 2010; Łȩski et al., 2011). A volume
CSD approach for measurements using a 3D MEA has also been
done (Riera et al., 2014). These methods approximate the location
of the sources prior to solving the CSD and may not be suitable
for localizing single neurons. Different methods to localize sin-
gle neurons depend on the source models used, e.g., monopole
source type models such as exponential decay and inverse power
law models (Blanche et al., 2005; Chelaru and Jog, 2005; Kubo
et al., 2008), dipole models (Blanche et al., 2005; Mechler and
Victor, 2012), line source models (Somogyvári et al., 2005, 2012),
and simplified line model fitted to the perisomatic area of a
full-compartmental neuron model (Delgado Ruz and Schultz,
2014).

Somogyvári et al. (2012) proposed spike CSD (sCSD) to esti-
mate the CSD after optimizing for the best locations of the sources
from the recording electrodes that recreates the spike data (see
Figure 13A). The method has been used to analyze recordings
from a 16-electrode probe in vivo. Although sCSD has been used
to solve for the CSD at the optimized locations of the sources,
it assumes that the number of electrodes is equal to the number
of sources to solve for. The over-simplification of the number of
current sources in sCSD results in errors, especially when the ori-
entation of the neuron being analyzed is at an angle with respect
to the measuring electrodes.

On the other hand, Delgado Ruz and Schultz (2014) intro-
duced a neuronal-based model for localization, utilizing known
current distributions and morphological traits. The method was
tested in simulations and in vivo recordings using high-density
probes. The authors showed that different morphologies and
ion channel distributions of neurons elicit different localiza-
tion accuracies (see Figures 13B–D). This method, however,
assumes that the experimenter knows the type (morphology and
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FIGURE 11 | Identification of retinal ganglion cell receptive fields using

HDMEAs. (A–E) Characterization and analysis of HDMEA recordings from
defined populations of mouse retinal ganglion cells (RGCs), adapted with
permission from Fiscella et al. (2012). (A) Each trace shows the average (thick
black lines) of the 959 superimposed EAPs (gray lines). The electrode
locations are indicated in (B). The propagation speed of the spike was
calculated to be 0.7 m/s. (B) Footprint of an RGC over an area of 0.025 mm2.
The highest peak-to-peak amplitude is shown by the thick dark waveform.
(C–E) Physiological response of RGCs. Left panel: RGC footprint on a

recording block of the HDMEA. The yellow square indicates the location of
the light stimulus, with the gray squares indicating the center of the stimulus
at four positions. Middle panel: Raster plots corresponding to four stimulation
locations indicated in the left panel. Each dot corresponds to a single EAP.
Each raster plot shows the response to five repetitions of the same stimulus.
The firing rate of the RGC (averaged from five responses) is indicated below.
Right panel top: Polar plot showing the responses of the RGC to motion of a
bar in 8 directions at 45◦ radial intervals. Right panel bottom: Inter-spike

(Continued)
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FIGURE 11 | Continued

interval distribution showing the time intervals between consecutive
spikes. (C) Blue = ON RGC. (D) Red = OFF RGC. (E) Green =
ON-OFF RGC. (F) Classification of RGC types and receptive fields at
single cone resolution, adapted with permission from Field et al. (2010).
The RGCs were recorded simultaneously and classified using the

responses to white noise stimuli. Top middle panel: Receptive field
radius vs. the first principal component of the response time course.
The clusters reveal different RGC types. Surrounding panels: Identified
RGC types highlighted at the top middle panel. The RGCs are
stimulated with fine-grained white noise to reveal single cone receptive
fields. Scale bars: 50 μm.

FIGURE 12 | Imaging axonal signal propagation using HDMEAs. (A–C)

Axonal propagation of a cultured neuron on an HDMEA, adapted with
permission from Bakkum et al. (2013). (A) Live image of a neuron at 21 DIV
transfected with red fluorescent protein (RFP). The axon is highlighted.
(B) Illustration of the distributed stimulation method. The crosshair
represents the location of the “somatic” AP observed while stimulating
different electrodes represented by colored dots (color represent the median
latency until AP detection, where light gray corresponds to electrodes that
did not evoke an AP). The small dots represent the location of the HDMEA
electrodes. Scale bar, 40 μm. (C) Illustration of the single-site stimulation

method. The red crosshair represents the stimulated electrode. The colored
dots represent the latencies of detected APs with respect to the largest
voltage signal indicated by the arrow. Scale bar, 40 μm. (D) Axonal
propagation of an RGC from rabbit retina, adapted with permission from Zeck
et al. (2011). Consecutive electrical images of the EAP propagation allow for
the calculation of axonal conduction velocity. (a) Image of a somatic AP (blue
spot in the first window) propagating along the proximal axon. (b) Image of a
biphasic spike recorded from an axon. (c) Plot indicating the distance traveled
of the AP in time. Open symbols represent data calculated from recordings at
16.4 kHz; closed symbols are recordings at 8.2 kHz.

current distributions) of neurons being measured for localiza-
tion and that the dynamics of neurons of the same type are
stereotypical.

Constraining compartmental models
Aside from localization of neurons, it has also been demon-
strated that with known morphology, it is possible to estimate
the ion channel density from extracellular recordings. Gold et al.
(2006, 2007) simulated realistic extracellular signals based on
adjusting the ion channel distributions in full-compartmental
models (see Figure 14). With such a method, the EAP waveforms

across the neuron’s morphology, measured by multielectrodes,
can then be used to constrain compartmental models (Gold et al.,
2007). Frey et al. (2009a) used this approach to model a full-
compartmental Purkinje neuron using HDMEA recordings, see
Figure 10. This shows that using high-density EAP recordings, it
is possible to model the ion channel dynamics during neuronal
function.

OUTLOOK
We have shown the current status of MEA research in terms of
technology, the understanding of signal transduction, and the
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FIGURE 13 | Localization of single neurons. (A) Spike current source
density (sCSD) method by Somogyvári et al. (2012), figure modified with
permission. The experimental setup is shown on the left, where the neuron
is oriented at a distance d parallel to the in vivo MEA. The highest amplitude
comes from the current sources at the soma of the neuron (sink) and is
detected by multiple electrodes. The forward solution at d is given by the T(d )
matrix, which transforms the CSD on the neuron to the EAP detected by the
MEA. The EAPs are shown in the voltage traces per electrode, where one
spike is plotted as a color map, indicating the spatial EAP pattern in time. The
sCSD obtained from the EAP signals by inverse solution T−1(dopt ) is shown
on the right. The EAP spatio-temporal map is transformed into a series of

normalized CSD distributions [I(d )] with different d -values. Localization is
done by solving for dopt . The optimum d (dopt ) is chosen as the value where
I(d ) is the most spike-like, i.e., similar to the normalized amplitude of the EAP
during the whole duration of the spike. Thus, the EAP and sCSD color maps
are similar. (B–D) Localization of simulated neurons using simplified line
model by Delgado Ruz and Schultz (2014), figures adapted with permission.
(B) The simulated neurons are CA1 pyramidal, L2/3 pyramidal, double
bouquet or DB (not shown), NPY interneurons, and PV interneuron.
Localization depends on the location of the sodium trough, which
corresponds to the moment when currents are concentrated near the soma.

(Continued)
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FIGURE 13 | Continued

As shown by the color map embedded on the neuron morphologies,
the sodium trough (red) is displaced from the soma for NPY due to
the contribution of the dendritic arbor and axon, leading to higher
localization error along the Y axis shown in (D). (C) Localization
results for CA1, where the errors along X–Z axes remained low for

neuron-electrode distances under 35 μm and increased thereafter,
especially along the Z axis. (D) The localization errors were not
similar for all simulated neurons. The differences in morphology and
electrophysiology cause the errors, although the maximum EAP
(location of sodium trough) is more or less confined to the
perisomatic area.

FIGURE 14 | Ion channel density estimation. Adapted from Gold et al.
(2006). (A) The extracellular action potentials (EAPs) solved in a grid
from the multicompartmental model of a CA1 pyramidal neuron. The
dotted black line indicates the tip of the electrode used to measure the
EAPs. (B) Enlarged image of the EAP at the electrode tip. Location is
indicated by the white dotted line in (A). Solid line in the plot
corresponds to the simulated EAP, which is superimposed with the
recorded EAP shown as dotted line. (C) Comparison of the simulated
intracellular signal (solid line) at the proximal apical trunk to the

intracellular recording (dotted line). (D) First column: The details of the
intracellular signal simulation for each compartment. White solid lines in
(A) indicate the locations of the compartments. Second column: The
simulated membrane currents in the same compartments as the first
column. The net membrane current across the soma and proximal
dendrites best estimates the EAP waveform. Third column: Membrane
current components in terms of Na+, K+, and mixed-ion capacitive
current. Last column: Conductivity densities of the A, C, D, K, and M
type K+ currents. For further details, see Gold et al. (2006).

application to neuroscience studies. After years of MEA devel-
opment, what is next? One path is to continuously improve the
devices, i.e., better SNR, higher spatial resolution, more paral-
lel readouts, scalability, portability, and increased ease-of-use.
Additionally, device flexibility and biocompatibility are targets
for long-term in vivo recording and stimulation. Another
approach is to enhance MEA signal pre-processing for experi-
menters to easily extract meaningful information from record-
ings in real time. This is crucial for applications where fast,
online analysis is required, e.g., closed-loop experiments and
brain machine interfaces (BMIs) combined with stimulation
therapies.

A promising route is the combination of MEAs with other
modalities. Aside from electrical recording and stimulation,
brain activity mapping and manipulation at cellular resolution
have also been done using optical methods, e.g., fluorescent
calcium indicators, genetic markers, optogenetics, two-photon
microscopy, etc. Similar to extracellular recordings, the pres-
ence of many molecules and compartments in the brain with
different optical properties render optical recording and analysis
challenging. It is of interest to pinpoint the advantages and
constraints of both electrophysiological and optical methods
to determine how they can complement each other. Another
example is the use of optogenetics to manipulate the activity of
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specific cellular subpopulations. By using MEAs to measure the
response of the cortical circuit at multiple locations during opto-
genetic manipulation, it is possible to study the functional roles of
different classes of neurons (El Hady et al., 2013). Simultaneous
multi-scale recording of neuronal electrical activity is also of
interest, e.g., concurrent ECoG, in vivo MEA, and multiple
patch-clamp recordings allow for investigating the relationship
between oscillations, LFPs, EAPs, IAPs, and subthreshold activity
during different brain states. Additionally, other technologies that
can enhance MEA experiments are microfluidics for controlled
delivery of drugs, chemical sensing to study the biochemistry
involved in neuronal function, and measurement of metabolic
processes.

The complexity of the data obtained from all the above men-
tioned advanced measurement schemes necessitates the appli-
cation of systems biology techniques for analysis (Ghosh et al.,
2011). Computational methods such as multi-scale modeling can
combine recordings from different modalities at different time
and/or spatial scales into a topological model of a system, e.g.,
cortical circuit. Through multi-scale modeling, the overall neu-
ronal network activity can be understood, while also having the
ability to zoom in to single neurons and even in a specific part
of a neuron to study the details of the biochemical and electrical
reactions involved. Some works have already started in this direc-
tion (Mattioni and Le Novère, 2013). There are already available
platforms and packages to develop full compartment models of
neurons and neuronal networks based on electrical activity, e.g.,
NEURON (Hines and Carnevale, 1997) and GENESIS (Bower
and Beeman, 1998). There are also tools for modeling biochemi-
cal processes, e.g., E-CELL3 (Takahashi et al., 2004), STEPS (Wils
and De Schutter, 2009; Hepburn et al., 2012), COPASI (Hoops
et al., 2006), SBMLOdeSolver (Machné et al., 2006). The main
challenge is to efficiently combine the modules by synchroniz-
ing the events properly at different time scales, by matching the
spatial information into a topology or morphology, and by using
optimization methods to computationally handle such massive
amounts of data.
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