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Alcohol and drug dependence are serious public health problems worldwide. The
prevalence of alcohol and drug dependence in the United States and other parts of the
world is significant. Given the limitations in the efficacy of current pharmacotherapies
to treat these disorders, research in developing alternative pharmacotherapies continues.
Preclinical and clinical evidence thus far has indicated that brain nicotinic acetylcholine
receptors (nAChRs) are important pharmacological targets for the development of
medications to treat alcohol and drug dependence. The nAChRs are a super family of ligand
gated ion channels, and are expressed throughout the brain with twelve neuronal nAChR
subunits (α2–α10 and β2–β4) identified. Here, we review preclinical and clinical evidence
involving a number of nAChR ligands that target different nAChR subtypes in alcohol
and nicotine addiction. The important ligands include cytisine, lobeline, mecamylamine,
varenicline, sazetidine A and others that target α4β2∗ nAChR subtypes as small molecule
modulators of the brain nicotinic cholinergic system are also discussed. Taken together,
both preclinical and clinical data exist that support nAChR–based ligands as promising
therapeutic agents for the treatment of alcohol and drug dependence.
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OVERVIEW-ALCOHOL AND DRUG DEPENDENCE: NICOTINIC
RECEPTORS
Alcohol and drug dependence are chronic neuropsychiatric and
relapsing disorders and represent a significant public health prob-
lem worldwide (Koob and Volkow, 2010; Volkow and Baler,
2014; Wise and Koob, 2014). Furthermore, fetal alcohol syn-
drome caused by alcohol exposure in utero is the number one
preventable cause of cognitive and attentional deficits (Niccols,
2007; Leibson et al., 2014). The prevalence of alcohol abuse and
dependence in the United States is about 8.5% with an estimated
annual cost of 185 billion dollars (Litten et al., 2012; Davies et al.,
2013). In addition, due to limited efficacy with existing US Food
and Drug Administration (FDA)-approved medications for alco-
hol dependence, such as naltrexone and acamprosate, and high
relapse rates, there is a need for alternative brain targets (Volkow
and Skolnick, 2012). These brain targets will open new avenues
for better treatment strategies targeting alcohol or drug depen-
dence by interrupting the dependence and relapse cycle. The
current review aims to cover the currently available pharmacolog-
ical and therapeutic approaches involving nicotinic acetylcholine
receptors (nAChRs) relevant to alcohol and drug dependence.
In addition, this review will discuss the current status, putative
mechanisms of action, and future directions for research into
cholinergic treatments targeting alcohol and drug dependence.
We believe molecular targets within the nAChR system offer
great potential for developing pharmacotherapies to treat alco-
hol dependence and other addictive disorders. Moreover, neural
circuits regulating cognitive activities such as decision-making

and associated behaviors are negatively impacted by chronic
alcohol or nicotine exposure (Clark and Robbins, 2002; Noël
et al., 2013). Therefore, potential use of nAChR-based ligands
and their ability to reverse some of these negative effects could
improve impaired cognitive function of alcoholics and addicts
and enhance the effectiveness of cognitive and behavioral ther-
apies (Chatterjee and Bartlett, 2010).

A role for brain, ligand-gated, membrane bound ion channel-
associated nAChRs in alcohol and drug dependence has been
well-documented (see Feduccia et al., 2012; Rahman and
Prendergast, 2012; Rahman, 2013; Hendrickson et al., 2013).
The nAChRs are ionotropic or ligand-gated ion channels which
belong to a superfamily of homologous receptors including
glycine, serotonin type 3 (5-HT3), and γ-amino butyric acid
(GABA) receptors (Dani and Bertrand, 2007; Hurst et al., 2013).
The nAChRs in the mammalian central nervous system regu-
late processes such as neurotransmitter release, cell excitability,
and neuronal integration and influence physiological functions,
including arousal, sleep, mood, pain, and cognition (Klink et al.,
2001; Hogg et al., 2003; Albuquerque et al., 2009; Gotti et al.,
2009). The nAChR ion channel is formed by five membrane-
spanning subunits which allow passage of cations like Na+ and
Ca++. Each subunit has a long extracellular hydrophilic N-
terminus containing the ligand binding domain, four hydropho-
bic transmembrane domains (TM1–TM4), and a short carboxy
terminus facing the extracellular surface (Champtiaux et al., 2003;
Albuquerque et al., 2009). The TM2 domain forms the inner lin-
ing of the cation channel and the anionic amino acids in this
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domain regulate ion conductance through the pore. The brain
nAChR subunits are classified as alpha (α2–α10) or beta (β2–β4),
according to the protein sequence and presence in the N-terminal
domain of the α-subunits of two adjacent cysteines at positions
192 and 193, which are thought to participate in the ligand bind-
ing site. While the residues in the α-subunit form the primary
face of the agonist binding site and determine the affinity for the
ligand, the β-subunit forms the complementary face of the bind-
ing site and contributes to ligand selectivity (Gotti et al., 2009).
Heteromeric receptors are assembled from both alpha (α2–α6)
and beta subunits, while homomeric receptors are formed by
alpha subunits only. Thus, heteromeric nAChRs contain two lig-
and binding sites (at the interface of α and β subunits), whereas
homomeric nAChRs contain five ligand binding sites.

The nAChRs with identical subunit composition may dif-
fer in the stoichiometry of subunits, thus contributing to the
variable channel kinetics, agonist binding, and pharmacological
heterogeneity of nAChRs (Champtiaux et al., 2003; Moroni and
Bermudez, 2006; Millar and Gotti, 2009). For example, (α4)2(β)3

nAChR subtypes are more sensitive (show higher affinity) to ago-
nists in comparison to low affinity (α4)3(β)2 subtypes, indicating
that changes in nAChR stoichiometry can elicit different physio-
logical and pharmacological responses (Nelson et al., 2003). More
than 90% of the receptor subtypes in the rodent brain are α4β2
nAChRs (Flores et al., 1992; Gotti et al., 2007; Albuquerque et al.,
2009). However, the β2 subunit is less ubiquitous in the human
brain (Paterson and Nordberg, 2000). The α4β2 nAChRs are
widely distributed in various neuroanatomical regions, includ-
ing the mesocorticolimbic dopamine system (Perry et al., 2002;
Zoli et al., 2002; Gotti et al., 2007, 2009, see Table 1). The α7
nAChRs are also highly expressed in the brain and predomi-
nantly located in the hippocampus, cortex, and subcortical limbic
regions (Gotti et al., 2007, 2009, see Table 1). Previous studies
suggest that nAChRs are expressed at the synapse, cell body, and

Table 1 | Localization of brain nAChR subtypes (heteromeric1 and

homomeric2).

Prefrontal cortex α4β2*a,b, α7c,d

Ventral tegmental area α4β2*a,b, α6β2* α3β4*, α7c,d

Nucleus accumbens α4β2*a,b, α6β2* α3β4*, α6α4β2*

Hippocampus α7c,d, α4α5β2, α4β2a,b

Amygdala α4β2*a,b, α7c,d

*Indicates other α or β subunits such as α3, α5 or α6 and β3 or β4.
a ACh and nicotine are agonists of α4β2* subtype3.
b Dihydro-β-erythroidine and mecamylamine are antagonist of α4β2* subtype4.
c ACh, nicotine and choline are agonists of α7 subtype5.
d α-bungarotoxin, mecamylamine, methylylcoconitine and conotoxin are antago-

nist of α7 subtype6.
1Flores et al., 1992; Zoli et al., 1998; Paterson and Nordberg, 2000; Perry et al.,

2002; Gotti et al., 2007, 2009; Albuquerque et al., 2009.
2Gotti et al., 2007, 2009.
3Quick and Lester, 2002; Champtiaux et al., 2003; Nelson et al., 2003; Moroni

and Bermudez, 2006; Gotti et al., 2007, 2009.
4Larsson and Engel, 2004; Gotti et al., 2007, 2009.
5Wooltorton et al., 2003; Gotti et al., 2007, 2009.
6Gotti et al., 2007, 2009; Kamens et al., 2010; Crooks et al., 2014.

axons (Livingstone and Wonnacott, 2009). Presynaptic nAChRs
are involved in regulating the release of ACh (Wilkie et al., 1993),
NE (Clarke and Reuben, 1996), dopamine (Grady et al., 1992),
glutamate (Alkondon et al., 1997), and GABA (Yang et al., 1996).
Evidence indicates that dopamine release is modulated by α4β2∗,
α3β2∗, and α6∗ nAChRs (∗indicates possible involvement of other
receptor subunits) in nigrostriatal terminals (Le Novere et al.,
1996; Luo et al., 1998; Wonnacott et al., 2000; Salminen et al.,
2004). Glutamate release is regulated by presynaptic α7 nAChRs
(Mansvelder et al., 2002). Similar to other ligand-gated ion chan-
nels, nAChRs modulate the flow of ions across the cell membrane
under the influence of an extracellular signaling molecule. A net
influx of cations (Na+, Ca++) through the ion channel depolar-
izes the cell membrane and increases neuronal excitability. The
Ca++ entry through some nAChRs exerts additional effects on
intracellular signaling cascades. ACh, the endogenous ligand of
nAChRs, is released from the presynaptic cholinergic axon termi-
nals and binds to the extracellular ligand binding domain of the
receptor. Binding of ACh or exogenous ligands to the orthosteric
site influences transition rates between three distinct functional
states of nAChRs: the resting, open, and desensitized states. The
rate constants between the functional states are dependent on
the specific combination of subunits and the chemical character-
istics of the ligand that is bound. Prolonged exposure to small
doses of nicotine rapidly activates nAChRs initially, which is fol-
lowed by desensitization of various nAChR subtypes (Quick and
Lester, 2002). Heteromeric subtypes such as α4β2∗ or α6β2∗
slowly desensitize in an activity-dependent manner when exposed
to low concentrations of nicotine, whereas homomeric subtypes
such as α7∗ nAChRs are much less susceptible to desensitiza-
tion (Wooltorton et al., 2003) to low concentration of nicotine.
The nAChR subtypes are stimulated or blocked by a number
of agonists or antagonists (Gotti et al., 2007, 2009, see Table 1).
Furthermore, brain nAChRs can be desensitized by continuous or
repeated exposure to an agonist (e.g., nicotine) that results in pro-
gressive decreases in response to the drug. However, antagonism
produced by specific ligand binding to the nAChR is some-
what different pharmacologically from these desensitized states
(Buccafusco et al., 2009).

Recent work with nAChR subtype knockout (KO) mice have
provided important information on both brain nAChR func-
tion and their mediation of addiction related behavior (Fowler
et al., 2008; Mineur and Picciotto, 2008; Changeux, 2010). For
example, early research showed that mice lacking the β2 subunit
do not display several nicotine-associated responses, including
nicotine-induced DA release in the dorsal and ventral striatum
as well as, nicotine-elicited increases in the firing rate of asso-
ciated DA neurons (Picciotto et al., 1995, 1998). The lack of
nicotine’s effect on the mesolimbic DA systems in β2 subtype
nAChR KO mice is consistent with the absence of nicotine self-
administration by these animals (Picciotto et al., 1998). The α4
subunit requires the β2 subunit for assembly in the majority
of heteromeric nAChRs in the brain, these and other studies
using genetically modified mice suggest that α4/β2∗ nAChRs are
critical for nicotine-related reward behaviors (Ross et al., 2000;
Tapper et al., 2004). Despite the distribution of the α7 subunit
in the brain, in particular its presence in the mesocorticolimbic
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system, studies in α7 KO mice are not definitive about a role
for the α7 subunit in nicotine reward and conditioning (Mineur
and Picciotto, 2008). However, α7∗ nAChRs are important for
long-term potentiation, neuroplasticity associated with learning
and memory, in the mesolimbic reward pathway (Mineur and
Picciotto, 2008). KO mouse studies targeting the α6 subunit indi-
cate that α6 partners with β2 nAChRs and may play an important
role in nicotine addiction related behavior (Champtiaux et al.,
2002). Recently, studies with transgenic over expression of the α5,
α3, and β4 receptor subunit genes indicate these subunits have a
potential, but complex, role in the modulation of nicotine related
behaviors (Gallego et al., 2012).

Similar to research on the involvement of AChR subunits in
nicotine-induced behaviors, a number of genetic studies have
been conducted to identify the role of nAChR subtypes in alcohol
drinking behavior. For example, acute alcohol drinking behav-
ior is reduced in α4 KO mice compared to wild type (WT)
indicating a role for the nAChR α4*subunit in alcohol abuse
(Hendrickson et al., 2010, 2013). Similarly, alcohol-related behav-
iors and alcohol-induced midbrain dopaminergic function is
decreased in α4 KO mice (Liu et al., 2013). On the other hand,
β2 KO mice behave similarly to WT type mice in alcohol drink-
ing behaviors (Kamens et al., 2010). In addition, α6 KO and β3
KO mice also display alcohol drinking behavior that is similar
to WT mice in a two-bottle alcohol drinking paradigm (Kamens
et al., 2010). Moreover, α7 KO and WT mice consume similar
amounts of alcohol, although there was a potential gender effect
regarding α7 nAChRs effects on ethanol consumption (Kamens
et al., 2010). And, again, α5 KO mice do not differ in acute
ethanol consumption compared to WT mice (Santos et al., 2012).
Like nicotine-related behavior (see above), studies with trans-
genic over expression of the α5, α3, and β4 receptor subunit
genes indicate these subunits have a complex role in the modula-
tion of alcohol related behaviors (Gallego et al., 2012). Together,
these data indicate that nAChRs containing α5, α6, β2, or β3 sub-
units may not be critical in alcohol drinking behaviors. Overall,
the evidence indicates that α4 receptors in the midbrain may be
associated with alcohol related behavior. Taken together, brain
nAChRs represent a diverse class of receptor subtypes which
are involved in a number of neurobiological functions and are
associated with neurological and psychiatric disorders, including
nicotine and alcohol dependence.

NICOTINIC RECEPTORS: TARGETS TO TREAT ALCOHOL
DEPENDENCE
As with the treatment of alcohol dependence, the existing FDA-
approved medications for nicotine dependence such as bupro-
pion and varenicline, have had limited efficacy with continued
significant relapse rates (Volkow and Skolnick, 2012). These brain
targets will open new avenues for better treatment strategies
targeting alcohol or drug dependence by interrupting the depen-
dence and relapse cycle. Research indicates that brain nAChR
subtypes are important mediators of the rewarding effects of alco-
hol (ethanol) and drugs of abuse (Blomqvist et al., 1993; Ericson
et al., 1998; Lê et al., 2000; Soderpalm et al., 2000; Chi and de Wit,
2003; Young et al., 2005; Reus et al., 2007; Steensland et al., 2007;
Bell et al., 2009; Liu et al., 2013). It is widely known that systemic

or local administration of mecamylamine, a non-selective nAChR
antagonist reduces ethanol drinking in a number of animal mod-
els (Ericson et al., 1998; Lê et al., 2000; Soderpalm et al., 2000;
Steensland et al., 2007). Also, it has been proposed that nAChRs
in the VTA regulate ethanol consumption and associated meso-
corticolimbic neurochemical effects (e.g., dopamine release) in
various animal models (Ericson et al., 1998; Chi and de Wit,
2003). However, mecamylamine either reduces or fails to decrease
ethanol drinking behavior in humans (Blomqvist et al., 1996,
2002; Young et al., 2005), indicating mixed efficacy for treating
ethanol dependence through nAChR blockade. Understandably,
these mixed results have limited mecamylamine’s clinical util-
ity for ethanol drinking cessation. On the other hand, a selec-
tive α4β2 antagonist, dihydro-β-erythroidine failed to suppress
ethanol consumption, thus suggesting a role for α6β2∗ but not
the α4β2∗ subtypes in alcohol reinforcement (Larsson et al., 2002;
Larsson and Engel, 2004). Similarly, the α7 nAChR antagonist
methyllycaconitine was ineffective in reducing ethanol intake in
an animal model of excessive ethanol drinking (Kamens et al.,
2010). Varenicline, a partial α4β2∗ nAChR agonist and FDA-
approved medication for smoking cessation (Reus et al., 2007),
was found to reduce alcohol drinking in both animal models
and humans (Steensland et al., 2007; McKee et al., 2009, 2013;
Hendrickson et al., 2010; Kamens et al., 2010; Bito-Onon et al.,
2011; Chatterjee et al., 2011; Sajja and Rahman, 2011, 2013a;
Mitchell et al., 2012; Litten et al., 2013; Sotomayor-Zarate et al.,
2013; Kaminski and Weerts, 2014). The drug was developed as a
potent high-affinity partial agonist at α4β2∗ nAChRs (Reus et al.,
2007), but also targets other nAChR subtypes as well. Therefore,
the role of specific nAChR subtypes needs further investigation.
Additional nAChR ligands such as cytisine, a partial agonist at
α4β2∗ and lobeline, a non-selective antagonist were found to
reduce alcohol consumption and nicotine-induced alcohol drink-
ing (Bell et al., 2009; Hendrickson et al., 2009; Chatterjee et al.,
2011; Sajja and Rahman, 2011, 2012, 2013a).

These nAChR ligands also altered alcohol-induced increases
in mesolimbic tissue DA levels (Sajja et al., 2010) in mice,
confirming the important role of nAChRs in alcohol drink-
ing and suggesting their involvement in alcohol dependence.
Moreover, cytisine and lobeline were found to decrease alco-
hol self-administration in high alcohol drinking rats (Bell et al.,
2009), a genetic animal model for alcohol abuse and dependence
(Bell et al., 2012), and mice (Sajja and Rahman, 2011), suggest-
ing that lobeline and cytisine are strong candidates for treating
alcohol dependence. Sazetidine-A, a novel compound that selec-
tively desensitizes α4β2 nAChRs, with partial agonistic activity
(Xiao et al., 2006; Rezvani et al., 2013), was shown to reduce alco-
hol drinking in alcohol-preferring rats (Xiao et al., 2006; Rezvani
et al., 2010). The evidence suggests that the desensitizing effects
of sazetidine on α4β2 nAChR subtypes may account for these
reductions in alcohol self-administration. Overall, sazetidine-A
may have potential for the management of alcohol dependence
by targeting brain nAChR-associated mechansims.

The existing animal and human studies suggest that alcohol-
induced activation of the mesolimbic DA system involves
brain nAChR stimulation. The rewarding effects of alcohol are
dependent on the activation of the nAChRs in the mesolimbic
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DA system (Rollema et al., 2007). Overall, it is clear that brain
nAChRs have emerged as critical targets for the reinforcing
actions and DA activating effects of alcohol. Thus, ligands or
compounds targeting nAChRs, other than those selective for
α4β2 nAChRs have potential for treating alcohol dependence in
humans. For example, CP-601932 and PF-4575180, partial ago-
nists at α3β4∗ nAChR were found to reduce alcohol consumption
and preference in rats, confirming a role for additional nAChR
subtypes in alcohol dependence (Chatterjee et al., 2011). Overall,
nAChR partial agonists, antagonists or other ligands (see Table 2)
target several nAChRs, such as α4β2∗ and/or α3β4∗ in order to
modulate alcohol self-administration, underscoring the need to
conduct more subunit-specific nAChR research regarding alcohol
abuse and dependence. While nAChR ligands or partial ago-
nists show great promise in reducing alcohol self-administration,
evidence indicates that these ligands also decrease the alcohol
deprivation effect, a validated animal model of relapse behav-
ior (McKinzie et al., 1998; Spanagel and Hölter, 1999; Rodd
et al., 2004; Melendez et al., 2006; Sparta et al., 2009; Bell et al.,
2012). Emerging preclinical studies suggest that nicotine expo-
sure re-instates alcohol seeking behaviors in rodents following
extinction of alcohol reinforcement (Lê et al., 2003; Hauser et al.,
2012). Furthermore, nAChRs were found to regulate deprivation-
induced re-exposure of alcohol seeking in long-term alcohol
exposed animals (Kuzmin et al., 2009; Rezvani et al., 2010). The
nAChR partial agonist varenicline or cytisine that targets α4β2∗
were found to reduce cue-induced alcohol relapse (Wouda et al.,
2011) and the ADE (Sajja and Rahman, 2013a) in animal mod-
els. Thus, neurobiological mechanisms associated with relapse
are important for new drug developments for alcohol abuse and
dependence (McBride et al., 2002; Weiss and Porrino, 2002; Koob
and Volkow, 2010).

NICOTINIC RECEPTORS: TARGETS TO TREAT NICOTINE OR
OTHER DRUG DEPENDENCE
Evidence utilizing a wide variety of pharmacological and molecu-
lar approaches indicates the important role of nAChRs in modu-
lating nicotine self-administration and associated neurochemical
effects (Corrigall et al., 1992; Tuesta et al., 2011). As with alco-
hol abuse and its treatment, nicotinic ligands that target α4β2∗
subtypes, particularly those expressed in the mesolimbic DA sys-
tem, show promise for the management of nicotine addiction
(Damaj et al., 1997; Coe et al., 2005; Rollema et al., 2007, 2010;
Benowitz, 2009). Several therapeutic drug candidates which are
either partial agonists or antagonists at nAChRs have been inves-
tigated for nicotine taking behavior in preclinical and clinical
studies. Varenicline, an FDA approved medication for smok-
ing cessation and an analog of cytisine, is a partial agonist at
α4β2-containing nAChRs with higher affinity for this subtype
compared to other nAChRs (Coe et al., 2005; Mihalak et al.,
2006). Cytisine, a plant alkaloid and a partial agonist at α4β2
nAChRs (Tutka and Zatoñski, 2006), has been tested in vari-
ous preclinical models associated with nicotine addiction and
is approved for smoking cessation in Europe. Sazetidine-A, a
novel nAChR desensitizing agent and partial agonist with high
selectivity for α4β2 receptors, has been shown to reduce nico-
tine self-administration in preclinical models (Levin et al., 2010;

Table 2 | Brain nAChR subtypes and pharmacological agents involved

in alcohol/nicotine or substance use disorder.

nAChR subtype/addiction

disorder

nAChR ligand Primary mode

of action

α4β2*
AUD or NUDa

Cytisine Partial agonist

α4β2*
AUD, NUD, or SUDb

Varenicline Partial agonist

α4β2* AUD, or NUDc Sazetidine A Desensitizer/
partial agonist

α3β4*
AUDd

CP-601932 Partial agonist

α3β4*
AUDe

PF-4575180 Partial agonist

α4β2* or other β2 containing
subtypes
AUD, NUD, or SUDf

Mecamylamine Antagonist

α4β2* or other β2 containing
subtypes
AUD or SUDg

Lobeline Antagonist

α3β4*
NUDh

AT-1001 Antagonist

α4β2*
NUDi

2-fluro-3-(4-nitrophenyl)
deschlroepibatidine

Antagonist

α6β2*
NUDj

α–conotoxin MII Antagonist

*Indicates other α or β subunits such as α3, α5, or α6 and β3 or β4.

AUD, Alcohol use disorder; NUD, Nicotine use disorder; SUD, Substance use

disorder.
aBell et al., 2009; Hendrickson et al., 2009; Chatterjee et al., 2011; Sajja and

Rahman, 2011, 2012, 2013a.
bSteensland et al., 2007; McKee et al., 2009; Guillem and Peoples, 2010;

Hendrickson et al., 2010; Kamens et al., 2010; Bito-Onon et al., 2011; Chatterjee

et al., 2011; Wouda et al., 2011; Mitchell et al., 2012; Plebani et al., 2012; Volkow

and Skolnick, 2012; Liu et al., 2013; Litten et al., 2013; McKee et al., 2013; Sajja

and Rahman, 2013a; Sotomayor-Zarate et al., 2013; Kaminski and Weerts, 2014.
cXiao et al., 2006; Levin et al., 2010; Rezvani et al., 2010.
d Chatterjee et al., 2011.
eChatterjee et al., 2011.
f Ericson et al., 1998, 2009; Lê et al., 2000; Soderpalm et al., 2000; Blomqvist

et al., 2002; Young et al., 2005; Liu et al., 2007; Steensland et al., 2007.
gBell et al., 2009; Hendrickson et al., 2009; Chatterjee et al., 2011; Sajja and

Rahman, 2011, 2012, 2013a,b; Roni and Rahman, 2014.
hToll et al., 2012.
i Tobey et al., 2012.
j Crooks et al., 2014.

Rezvani et al., 2010). Bupropion, an FDA approved smoking ces-
sation agent was believed to target α3β2 and/or α4β2 nAChR
subtypes in addition to its primary inhibitory mechanisms on
the dopamine and norepinephrine transporters (see Crooks et al.,
2014). Mecamylamine, a non-selective antagonist at nAChRs, has
been investigated and appears to have some efficacy for smoking
cessation in a number of clinical studies (Lundahl et al., 2000;
Schnoll and Lerman, 2006). Mecamylamine was also reported
to decrease cue-induced reinstatement of nicotine-taking behav-
ior (Liu et al., 2007) likely by targeting β2–containing nAChR
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subtypes. Nevertheless, the clinical efficacy of mecamylamine is
tempered by its peripheral side effects (Rose, 2009). Recently,
lobeline, a non-selective antagonist at nAChRs, was found to
reduce nicotine withdrawal-induced depression-like behavior;
again, likely by targeting β2–containing brain nAChRs (Roni and
Rahman, 2014). Thus, lobeline may also have potential in pre-
venting smoking relapse by counteracting nicotine withdrawal-
induced depression in humans. Similarly, emerging preclinical
studies suggest that selective antagonists at α–conotoxin MII
(α–CtxMII) sensitive nAChR subtypes have great promise in
reducing nicotine self-administration (Crooks et al., 2014).

Early work showed that the novel nAChR antagonist N,N′-
dodecane-1,12-diyl-bis-3-picolinium dibromide reduced nico-
tine self-administration and nicotine-induced DA function and
release in reward-relevant brain regions in preclinical models
(Neugebauer et al., 2006; Rahman et al., 2007; Dwoskin et al.,
2009), suggesting a possible drug candidate for treating nicotine
addiction. Recently, 2-fluro-3-(4-nitrophenyl) deschlroepibati-
dine, a potent α4β2 nAChR antagonist was found to decrease
nicotine self-administration in rats (Tobey et al., 2012). In addi-
tion, AT-1001, a high-affinity and selective antagonist at α3β4
nAChRs reduced nicotine self-administration in rats (Toll et al.,
2012), suggesting an important role for this α3β4 subtype in nico-
tine addiction. Taken together, these data indicate that nAChRs,
specifically, α4β2∗ α3β2∗ are important therapeutic targets for
all three phases of nicotine addiction, including acquisition and
maintenance of nicotine- taking behavior, withdrawal symptoms
associated with cessation of nicotine-intake and vulnerability to
relapse behavior. Thus, emerging partial agonists and/or antag-
onists (see Table 2) at nAChRs have therapeutic potential that
needs to be further investigated and developed for clinical man-
agement of nicotine addiction.

Additional drugs such as galantamine, an acetylcholinesterase
(AChE) inhibitor and positive allosteric modulator of α7 and
α4β2 nAChRs (Harvey, 1995) has been shown to reduce
both nicotine self-administration and reinstatement of nicotine-
seeking behavior in animal models (Hopkins et al., 2012).
Similarly, rivastigmine, another AChE inhibitor attenuates
tobacco craving and smoking in alcohol- and methamphetamine-
dependent smokers (Diehl et al., 2009; De La Garza and Yoon,
2011) and desire to use methamphetamine in the latter (De La
Garza et al., 2012). Recently, varenicline was found to reduce
the positive subjective effects of methamphetamine in human
volunteers suggesting a treatment option for methamphetamine
dependence (Verrico et al., 2014). This highlights the important
role of the nAChR system in poly-drug abuse and dependence.
Taken together, these preclinical and clinical studies suggest that
AChE inhibitors likely affect nicotine taking behavior by target-
ing nAChRs and ACh levels along with their modulation of other
neurotransmitter systems (Hopkins et al., 2012).

With regard to other psychostimulants, a number of nACR
antagonists were found to decrease cocaine self-administration,
prevent cue-induced craving for cocaine, and to decrease cocaine
effects in a place preference paradigm or reduce cocaine-induced
behavioral sensitization (Levin et al., 2000; Zachariou et al., 2001;
Champtiaux et al., 2006; Hansen and Mark, 2007) suggesting
a direct involvement of nAChRs in cocaine-taking and -seeking

behavior. In addition, recent studies indicate that varenicline
reduces cocaine-induced reward in rodents and humans (Guillem
and Peoples, 2010; Plebani et al., 2012). In contrast, varenicline
was found ineffective in reducing cocaine self-administration
in a primate model (Gould et al., 2011), indicating mixed
effects across models which may be due to species’ differ-
ences. Consistent with behavioral studies, systemic applica-
tion of nAChR antagonists significantly reduces cocaine-induced
increases in mesolimbic DA-release (Zanetti et al., 2006). Thus,
again, both behavioral and neurochemical evidence support
an important role for nAChRs in cocaine-taking and -seeking
behavior. Similar to its effects on cocaine, nAChRs appear to
mediate cannabinoid addiction as well. For example, methyl-
lycaconitine, a α7∗ nAChR antagonist was found to reduce 9-
tetrahydrocannabinol or cannabinoid-1 receptor agonist-induced
behavioral and neurochemical effects in animal models, suggest-
ing a critical role in regulating the rewarding effects of cannabi-
noids (Solinas et al., 2007). Similarly, other animal studies suggest
that nAChRs are also important therapeutic targets for treating
opiate addiction (Glick et al., 2002; Biala and Staniak, 2010; Hart
et al., 2010; Feng et al., 2011). Overall, emerging data indicates
that nAChRs are important targets for psychostimulant abuse and
addiction, which will probably involve targeting specific nAChR
subtypes and their neuromodulatory mechanisms.

NICOTINIC RECEPTOR GENE VARIATIONS AND ADDICTION
Finally, given the increasingly recognized role of pharmacoge-
netics/pharmacogenomics in the treatment of addiction (e.g.,
King et al., 2012; Uhl et al., 2014), it is important to pro-
vide a general statement on some of the polymorphisms with
a significant association to the initiation, maintenance, relapse,
craving and/or treatment outcomes related to addiction. Given
the primary addictive component of ingested tobacco is nico-
tine, it stands to reason that by far the addictive behavior
most commonly examined, regarding its association with the
nAChR, is nicotine/tobacco addiction. In Indian subjects, vari-
ations in the CHRNA5 risk polymorphism (rs16969968) are
associated with increased probability of nicotine dependence
(Anantharaman et al., 2014). The CHRNA5 risk polymorphism
(rs16969968) also has a significant association with nicotine
addiction strength (level of physical addiction) with different
allelic expression conferring either increased or decreased levels
of nicotine dependence (Wojas-Krawczyk et al., 2012). In addi-
tion, the CHRNA5 risk polymorphism (rs16969968) is associated
with significant increases in fMRI activity of women shown smok-
ing images (Janes et al., 2012). Similarly, in female Canadian
citizens of Ontario, the presence of the CHRNA5 risk poly-
morphism (rs16969968) significantly increased the probability of
heavy smoking, whereas the presence of the CHRNA3 polymor-
phism (rs578775) significantly decreased the probability of heavy
smoking (Conlon and Bewick, 2011).

Other work has shown that the normal nicotine metaboliz-
ing CYP2A6 genotype can increase the positive association of the
CHRNA3 risk polymorphism (rs1051730) with nicotine depen-
dence (Wassenaar et al., 2011). The CHRNA3 risk polymorphism
(rs1051730) has been shown to have a significant association
with level of nicotine in two heavy smoking regional Italian
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populations (Sorice et al., 2011). The CHRNA3 risk polymor-
phism (rs1051730) also has a significant association with short-
term (4 week) nicotine abstinence-rates in treatment-seeking
smokers (Munafo et al., 2011); although, another study did not
find a significant association between this polymorphism and
willingness to quit smoking (Marques-Vidal et al., 2011). Two
other polymorphisms that have significant predictive value for
smoking cessation following treatment with a transdermal nico-
tine patch and/or bupropion are the CHRNA5 (rs680244) and
CHRNB4 (rs12914008) polymorphisms (Sarginson et al., 2011).
In an early Finnish study, it was found that variations in the
CHRNG-CHRND gene cluster on chromosome 2 were signifi-
cantly associated with cotinine levels but not number of cigarettes
smoked per day suggesting a possible gene-gene interaction with
nicotine metabolizing genes (Keskitalo-Vuokko et al., 2011).

Variants in the CHRNA2 and CHRNA6 on chromosome 8
are also associated with increased risk for nicotine dependence
in Americans, with the latter being significant in both those of
European and African descent and the former being significant
in only those of African descent (Wang et al., 2014). A previous
study found that the CHRNB3 risk polymorphism (rs1451240)
significantly increased the probability of having nicotine depen-
dence in Americans of both European and African descent (Rice
et al., 2012). A parallel study found that missense variants in
CHRNB4 actually decreased the risk for nicotine dependence in
Americans of both European and African descent (Haller et al.,
2012). Moreover, these authors reported that an in vitro analy-
sis revealed that the minor (protective) allele was associated with
increased cellular response to nicotine. In male Japanese subjects,
the CHRNB2 polymorphism (rs4845652) may confer protection
against nicotine dependence, whereas a combination of this poly-
morphism with the CHRNA4 risk polymorphism (rs1044397)
leads to higher nicotine dependence scores (Chen et al., 2013).

Similar to the study in Japan (Chen et al., 2013), an early
study with male Chinese smokers revealed that the CHRNA4
risk polymorphism (rs1044396) was significantly associated with
age at smoking initiation and the CHRNA4 risk polymorphisms
(rs1044396 and rs1044397) were associated with nicotine depen-
dence (Chu et al., 2011). In subjects from the Center on Antisocial
Drug Dependence (CADD), the minor alleles of CHRNA4 risk
polymorphisms (rs1044396 and rs1044394) are associated with a
significantly greater propensity to develop nicotine dependence
than otherwise (Kamens et al., 2013). In Alaska Natives, the
nicotine dependence risk polymorphism (rs578776) in the 30 kb
CHRNA5-A3-B4 region was significantly associated with level of
nicotine intake (Zhu et al., 2013). In European treatment-seeking
smokers, the CHRNA4 risk polymorphism (rs3787138) is asso-
ciated with an increased risk for both nicotine withdrawal and
depression (Lazary et al., 2014).

Evaluation of nicotinic receptor gene variations and other
addictions include the observation that, in a case-control study
on internet addiction in Germany, the CHRNA4 polymorphism
rs1044396 occurred significantly more often in those presenting
with internet addiction than their controls (Montag et al., 2012).
Using a nationally representative sample, significant associations
between CHRNA6 polymorphisms (rs1072003, rs2304297, and
rs892413) as well as CHRNB3 polymorphism (rs13280604) and

excessive alcohol-drinking behavior have been reported (Hoft
et al., 2009). In other work, a study from the Nicotine Addiction
Genetics consortium in Finland reported a significant association
between the CHRNB4 polymorphism rs11636753 and regular
alcohol drinking with comorbidity for depression (Broms et al.,
2012). Moreover, these authors reported that the effect appeared
to be driven primarily by the females in the sample suggesting
a sex-dependent effect. In earlier studies than those discussed
above it was reported that the CHRNA5 risk polymorphism
(rs16969968) is not only associated with nicotine dependence
but it is also associated with opioid (Erlich et al., 2010) and
cocaine (Sherva et al., 2010) dependence as well. Other CHRNA5
polymorphisms (rs615470 and rs684513) have significant associ-
ations with alcohol and cocaine dependence, respectively (Sherva
et al., 2010). Another study examining polymorphisms within
the CHRNA5-A3-B4 gene cluster found a significant association
with the age at initiating drug use across multiple types of drugs
of abuse (Lubke et al., 2012). Combined, these findings indi-
cate that multiple polymorphisms associated with nAChR gene
have been identified that predict dependence to a number of
abuse substances or associated behaviors across national, ethnic
and psychiatric groups. The fact that these results span several
populations supports the reliability of these findings.

SUMMARY AND CONCLUSIONS
Due to the limited efficacy of existing FDA approved medica-
tions as indicated by continued significant relapse rates, there is a
great impetus for determining alternative neuronal brain targets
and strategies in the treatment of addiction. As outlined above,
significant progress has been made in determining the role that
the nicotinic cholinergic system plays in alcohol and drug depen-
dence through both preclinical and clinical studies. Therefore,
modulation of brain nAChRs represents a potential therapeutic
strategy for treating alcohol and drug dependence. In general, the
variety of nAChR subtypes, the respective stoichiometry profile
of their respective subunits, their specific localization within the
brain, and downstream effects from nAChR activation have been
shown to mediate, at least in part, the complex behavioral and
neurobiological effects of alcohol and drugs of abuse. Recent stud-
ies support the clinical management of alcohol dependence with
varenicline and other nAChR partial agonists and/or antagonists,
such as mecamylamine, especially among heavy smokers. Further,
both chronic alcohol drinking and chronic nicotine exposure
affect neural circuits (e.g., hippocampus and prefrontal cortex)
mediating cognitive activities such as attention and decision-
making. Hence, the use of nAChR-based ligands could improve
impaired cognitive function associated with chronic alcohol or
nicotine exposure facilitating cognitive and behavioral treat-
ments targeting addiction. Regarding reward and reinforcement,
chronic alcohol and drug use enhances cholinergic activity within
the mesocorticolimbic dopamine system (e.g., ventral tegmen-
tal area) that causes desensitization of nAChR-mediated activity.
Therefore, the level and role of neuroplastic changes within this
reward system requires further investigation. While the devel-
opment of nAChR subtype-specific ligands holds great potential
for future pharmacotherapies targeting alcohol and drug depen-
dence, possible adverse side-effects associated with these ligands

Frontiers in Neuroscience | Neuropharmacology January 2015 | Volume 8 | Article 426 | 6

http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology
http://www.frontiersin.org/Neuropharmacology/archive


Rahman et al. nAChR modulation in alcohol and drug dependence

reiterates the need to study these effects before committing them
to clinical use. Nevertheless, the substantial health burden that
alcohol and drug addiction place on society mandates the recog-
nition that clinical efficacy may outweigh the possible side-effects
of a particular nicotinergic system modulator.

In addition, while a global role for the cholinergic system
in addiction has been established, the unique role for specific
nAChR subtypes has yet to be determined. As these issues are
studied, the field will have a better understanding of the neuro-
circuitry as well as cellular and molecular processes involved in
alcohol and drug dependence. With this knowledge, we will be
able to develop small molecules that can disrupt, and possibly
reverse, the addictive process associated with the cholinergic sys-
tem’s, as well as its control of other neuromodulatory systems,
mediation of alcohol and drug dependence. Despite some mixed
results, or limited outcomes, of clinical or human laboratory trials
using some of these nAChR ligands, there remains considerable
potential for additional translational research on the choliner-
gic system in developing therapeutic management strategies for
alcohol and drug dependence. The breadth of these findings
in combination with a substantial literature on Genome Wide
Association Studies, argue persuasively that future drug develop-
ment will include small molecules targeting central cholinergic
activity resulting in more effective treatments for alcohol, nicotine
and other drug addictions.
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