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Purpose: To evaluate a potential approach for improved attenuation correction (AC) of PET
in simultaneous PET and MRI brain imaging, a straightforward approach that adds bone
information missing on Dixon AC was explored.

Methods: Bone information derived from individual T1-weighted MRI data using
segmentation tools in SPM8, were added to the standard Dixon AC map. Percent relative
difference between PET reconstructed with Dixon+bone and with Dixon AC maps were
compared across brain regions of 13 oncology patients. The clinical potential of the
improved Dixon AC was investigated by comparing relative perfusion (rCBF) measured
with arterial spin labeling to relative glucose uptake (rPETdxbone) measured simultaneously
with 18F-flurodexoyglucose in several regions across the brain.

Results: A gradual increase in PET signal from center to the edge of the brain
was observed in PET reconstructed with Dixon+bone. A 5–20% reduction in regional
PET signals were observed in data corrected with standard Dixon AC maps. These
regional underestimations of PET were either reduced or removed when Dixon+bone
AC was applied. The mean relative correlation coefficient between rCBF and rPETdxbone
was r = 0.53 (p < 0.001). Marked regional variations in rCBF-to-rPET correlation were
observed, with the highest associations in the caudate and cingulate and the lowest in
limbic structures. All findings were well matched to observations from previous studies
conducted with PET data reconstructed with computed tomography derived AC maps.

Conclusion: Adding bone information derived from T1-weighted MRI to Dixon AC maps
can improve underestimation of PET activity in hybrid PET-MRI neuroimaging.

Keywords: PET-MRI, attenuation correction, arterial spin labeling, ASL, 18F-fluorodexoyglucose, FDG, cerebral

blood flow, glucose uptake

INTRODUCTION
The development of positron emission tomography (PET) and
magnetic resonance imaging (MRI) hybrid systems that provide
the combined advantages of high molecular sensitivity of PET
and high spatial resolution of MRI, among other benefits, has
led to ∼400% increase in PET-MRI imaging publications in the
last 4 years (Pubmed search “PET/MRI, PET-MRI, PET/MR, or
PET-MR”). The clinical potential of this hybrid approach in neu-
roimaging extends beyond image fusion considering the ability
of MRI to collect data associated with not only anatomy but also
function, diffusion and metabolite concentrations (Pichler et al.,
2010). In dementia, for instance, accuracy of early and differ-
ential diagnosis is improved with combined information from
volumetric MRI and PET-specific tracers (Morbelli et al., 2010;

Dukart et al., 2011), where MRI is not only used for anatomical
localization of PET tracer but also to correct misclassification of
gray matter voxels (Gutierrez et al., 2012) and to aid in retro-
spective motion correction of PET data (Catana et al., 2011). In
neuro-oncology, metabolically active tumors can be more clearly
delineated and better characterized with PET-MRI (Catana et al.,
2012). In neuroscience, PET-MRI provides the ability to explore
neurophysiologic processes such as neurovascular coupling or
neuromodulation within one integrated dynamic model (Catana
et al., 2012). These neurological applications are achieved with
scanners that offer simultaneous hybrid imaging where diagnos-
tic accuracy is maximized as image registration errors and total
image acquisition times are minimized, and physiological and
metabolic states are identical.
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Accurate correction of PET signal attenuation in PET-
MRI hybrid systems using information derived from MRI is
challenging. Inherent limitation(s) of various proposed methods
can lead to PET quantification errors of up to 20% (Keereman
et al., 2013; Andersen et al., 2014; Dickson et al., 2014; Hitz
et al., 2014), which limits adoption of PET-MRI in neuroimag-
ing. Commercial PET-MRI hybrid systems rely on MRI-derived
attenuation correction (MRAC) using a 2-point Dixon method
(Dixon, 1984) based on segmentation of MR signals from water
and fat into air, lung, fat and soft tissue (Coombs et al., 1997) but
ignores bone, rendering this method less ideal for brain imaging.
Various methods have been explored to produce optimal MRAC
maps for neuroimaging that are as accurate as clinically accepted
AC maps produced by computed tomography (CT). Ultra-short
echo (UTE) MRI (Catana et al., 2010) where bone is imaged
and incorporated into AC maps, can suffer from long imaging
time (∼5 times longer than Dixon - too long for whole-body
imaging but still feasible for brain imaging), low spatial resolu-
tion and inaccurate signal segmentation (Dickson et al., 2014).
Methods that employ CT templates/atlases mapped to individual
MRI (Beyer et al., 2008; Marshall et al., 2013) or to guide MRI
segmentation (Hofmann et al., 2008; Kops et al., 2009; Poynton
et al., 2014), require complex algorithms that have limited repro-
ducibility and at best still retain some level of inter-modality
misregistration (Pappas et al., 2005), especially where large sig-
nal intensity differences exist between MRI and CT (e.g., cortical
bone).

In this study, we explored the feasibility of simultaneous
measurements of brain function with PET and MRI using an
enhanced Dixon-based MRAC for PET signal attenuation correc-
tion in an integrated whole-body PET-MRI system. We combined
bone segmentation from high-resolution three-dimensional (3D)
T1-weighted anatomical images, routinely acquired in brain
imaging, with the standard Dixon MRAC method imple-
mented by the manufacturer. Bone segmentation was achieved
with segmentation tools available from SPM8 (http://www.fil.
ion.ucl.ac.uk). Comparison between the Dixon and enhanced
Dixon method was made across a number of brain regions
to assess regional differences and performance. In addition,
PET 18F-fluoro-deoxyglucose (18F-FDG) data corrected with the
enhanced method were compared to cerebral blood flow (CBF),
measured simultaneously with 3D pseudo-continuous arterial
spin labeling (pCASL), to investigate the potential clinical appli-
cation of this MRAC method, for instance, in future neurode-
generative studies where hybrid PET-MRI is highly recommended
(Drzezga et al., 2014).

MATERIALS AND METHODS
PARTICIPANTS
This study was approved by the University Research Ethics Board,
and written informed consent was obtained from all subjects.
PET-MRI images were acquired from oncology patients recruited
following the completion of a clinical PET-CT exam as part of
their healthcare management. A total of 13 oncology patients
were recruited 7 males and 6 females (58 ± 8 years old). All sub-
jects had no history of neurological disorder and no radiation
therapy or chemotherapy prior to imaging and were referred for

whole-body PET-CT exam for staging of oncology. To minimize
errors in MRI image quality from potential image artifacts pro-
duced by metal implants such as MR signal loss, only patients free
of metallic implants and fixtures including dental implants were
included in this study.

PET-MRI IMAGE ACQUISITION
Whole-brain PET and MRI data were acquired simultaneously
on a Siemens Biograph® mMR system. The PET subsystem con-
sists of 8 rings of 56 detector blocks, each housing 8 × 8 lutetium
oxyorthosilicate (LSO) crystals (size = 4 × 4 × 20 mm3) cou-
pled to a 3 × 3 array of avalanche photodiodes (APDs) producing
a transaxial field of view (FOV) of 59.4 cm and an axial FOV
of 25.8 cm. The 3T MRI subsystem is similar to a Siemens 3T
Verio with a maximum gradient strength of 45 mT/m and slew
rate of 200 T/m/s, but a reduced bore size of 60 cm. For detailed
description of the Biograph® mMR specifications cf. Delso et al.
(2011). All MR images were acquired using a PET-compatible 16-
channel phased array head (12-channel) and neck (4-channel)
radiofrequency (RF) coil.

PET-MRI data were acquired immediately following the com-
pletion of a 20-min whole-body PET-CT scan and following
60-min uptake of a single intravenous injection of 18F-FDG
(5 MBq/kg) administered in a dimly lit room. All subjects fasted
for a minimum of 6 h and had blood glucose levels between 4.8
and 5.8 mmol/L. Clinical whole-body PET-CT were acquired fol-
lowing standard oncology imaging protocol from the level of the
eyes to the mid-thigh. A series of MR images were acquired dur-
ing a 15 min PET list-mode acquisition with subjects in supine
position. The MRI data included:

(a) Coronal T1-weighted dual-echo 3D VIBE-Dixon for MRI
Dixon-based attenuation correction of PET data [repetition
time (TR) = 3.60 ms, echo times (TE) = 1.23 and 2.46 ms, flip
angle = 10◦, FOV = 500 × 328 mm2, 128 slices, voxel size =
4.1 × 2.6 × 3.1 mm3, bandwidth = 965 Hz/Px, acceleration
factor of 2, and total acquisition (TA) = 0.19 s] (Martinez-
Möller et al., 2009).

(b) Sagittal T1-weighted 3D magnetization-prepared rapid
gradient-echo (MPRAGE) sequence (TR/TE: 2000/2.98 ms,
inversion time (TI) = 900 ms, flip angle = 9◦, FOV =
256 × 256 mm2, 176 slices, isotropic voxel size = 1.0 mm3,
bandwidth = 240 Hz/Px, an acceleration factor of 2 and TA =
4.48 min).

(c) Transverse 3D single shot gradient-and-spin-echo (GRASE)
pCASL sequence (Günther et al., 2005) (TR/TE =
3500/22.76 ms, FOV = 240 × 240 mm2, 24 slices, voxel
size = 3.8 × 3.8 × 5 mm3, bandwidth = 2298 Hz/Px, and
acceleration factor of 2). The pCASL label consisted of 1.5 s
train of RF pulses applied 9 cm below the center of the imaging
volume with a mean gradient of 0.6 mT/m. Sixty-four label
and control pairs were acquired after a post-label delay of
1.2 s for TA = 7 min. Two nonselective inversion pulses were
applied for background suppression during the post-labeling
delay. Proton density images (M0) were acquired with the
pCASL sequences for CBF quantification using a TR of 5 s,
with no labeling or background suppression pulses.
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MR ATTENUATION MAP (µ-MAP) GENERATION AND PET IMAGE
RECONSTRUCTION
Two MRAC segmentation methods were used for attenuation
correction of the PET data: the standard 2-point Dixon method
(Martinez-Möller et al., 2009) and 2-point Dixon method plus
bone segmentation (Dixon+bone), which is described below. The
Dixon MRAC μmaps were generated online from segmentation
of fat and water signals in the in- and out-of-phase Dixon images
into fat, soft tissue and air/background, as implemented by the
manufacturer. Linear attenuation coefficients of 0, 0.086, and
0.10 cm−1 were assigned to air, fat and soft tissue, respectively
(Martinez-Möller et al., 2009). Attenuation correction factors for
hardware including the RF coil and scanning bed were included
in the Dixon μ-map. The Dixon+bone MRAC μ-maps were gen-
erated offline using SPM8 and in-house MATLAB (2012a, The
MathWorks, Natick, MA) scripts. This method overlays a bone
mask created from bone segmentation of the MPRAGE image to
a Dixon μ-map and applies a linear attenuation coefficient (μa) of
0.143 cm−1 (Catana et al., 2010), the μa value of bone at 511 kev,
to the bone mask.

The bone mask for each subject was created as follows.
(1) The T1-weighted MRPAGE dataset was coregistered to the
Dixon in-phase image in SPM8 using rigid-body transforma-
tion with a normalized mutual information cost function to
place the MPRAGE in the same voxel space as the Dixon μ-
map. (2) The coregistered MPRAGE image set was segmented
into gray matter, white matter, cerebrospinal fluid, bone, soft
tissue and air/background probability tissue maps in native
space using the new segment function in SPM8 and ICBM
Tissue Probabilistic Atlases (http://www.loni.usc.edu/ICBM/).
The new segment toolbox employs the unified segmentation
method (Ashburner and Friston, 2005) that combines affine
registration to ICBM atlas, bias field correction and segmen-
tation within one integrated model. (3) The bone probabil-
ity map was down-sampled to the Dixon images matrix size,
smoothed with a 4 mm Gaussian filter (Wagenknecht et al.,
2011) and thresholded for probabilities above 80% to mini-
mize inclusion of non-bone signals. (4) The resulting binary
image was eroded with morphological filtering and connected
component analysis using a 3 × 3 × 3 voxel size of ones
before assigning μa of 0.143 cm−1. Erosion was performed to
minimize inclusion of non-bone voxels and the size of the
structure elements were determined after empirical evaluation
of bone voxels within a region known to have true bone
content.

Each subject’s PET list-mode data were reconstructed using the
Siemens e7 tools to one image volume 344 × 344 × 127 matrix
with an iterative algorithm (ordered-subsets expectation maxi-
mization: 3 iterations, 21 subsets; 3D Gaussian filter with a full
width half maximum (FWHM) = 2.0 mm and 2.5 zoom fac-
tor) and corrected for decay, dead time, scatter and attenuation.
The reconstruction was performed twice using either the Dixon
(PETdx) or the Dixon+bone (PETdxbone)MRAC μ-map.

IMAGE ANALYSIS
To allow for group comparison between PETdx and PETdxbone,
the PET images were spatially normalized to the Montreal

Neurological Institute (MNI) PET template in SPM8 (http://
www.fil.ion.ucl.ac.uk) using an affine transformation and non-
linear warps, and smoothed with a 6-mm FWHM Gaussian filter.
The gray matter (GM) probability map for each subject was
spatially normalized to the T1 MNI template using the unified
segment approach in SPM, also smoothed with a 6-mm Gaussian
filter, transformed to a binary mask at a threshold of 80% and
applied to the PETdx and PETdxbone images.

The difference between the Dixon+bone and the Dixon
MRAC method across the brain was computed as the per-
cent relative difference (% RD) in mean activity concentration
(Bq/ml) in thirteen a priori regions of interest (ROIs). %RD =[

(PETdxbone − PETdx)
PETdx

]
× 100. ROI brain masks were created using

the automated anatomical library (Tzourio-Mazoyer et al.,
2002) incorporated within WFU PickAtlas toolbox version 3.0
(Maldjian et al., 2003). The ROIs were frontal lobe, cingu-
late gyrus, insula, parietal lobe, temporal lobe, hippocampus,
amygdala, thalamus, caudate, globus pallidus, putamen, and
cerebellum. The PETdx and PETdxbone images were scaled by
their respective global gray matter mean value to allow for
voxel-by-voxel comparison between glucose uptake and blood
flow, and since absolute quantification of PET-FDG with tracer
kinetic modeling was not feasible in this study and gener-
ally not feasible in clinical practice. Regional %RD in rel-
ative mean activity was also calculated in the scaled PET
data (rPET). To investigate potential regional differences, the
mean values extracted from individual ROIs were compared
between the two PET data sets using paired t-tests with
SPSS 20.0 statistical software (IBM Corp. Armonk, NY, USA).
Statistical significant differences were set at threshold p < 0.05.
Evaluation of the regional differences between PETdx/PETdxbone

and a ground truth method such as PET-CT were not made
(Supplementary Material illustrates the comparison in one
subject).

pCASL preprocessing was performed with SPM8 and scripts
written in MATLAB. The pCASL time series were motion cor-
rected, pair-wise subtracted, and time-averaged. The mean signal
was registered to the MPRAGE images using a rigid-body trans-
formation and converted to CBF using a single-compartment
flow model (Wang et al., 2003). The CBF images were spatially
normalized to the MNI template and smoothed using a Gaussian
filter with a FWHM of 6 mm. A GM mask was applied to the
CBF images that were normalized by the global mean. To deter-
mine the temporal signal-to-noise ratio (tSNR) of the perfusion-
weighted time series when acquired with a PET-compatible head
coil, tSNR was calculated for each subject as defined by the mean
pixel signal in the whole brain relative to the mean pixel standard
deviation.

Whole brain voxel-by-voxel independent samples t-tests
restricted within a GM mask were performed on the individ-
ual relative images in SPM8 to investigate differences between
rCBF and rPET images. Statistical significant differences were
identified for clusters greater than 50 voxels at p < 0.05 after cor-
recting for multiple comparisons using the False Discovery Rate
(FDR). Voxel-by-voxel Pearson correlation was conducted on rel-
ative images averaged across subjects within the thirteen ROIs to
correlate rCBF to rPETdx and to rPETdxbone.
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RESULTS
STUDY PARTICIPANTS
A full description of the study demographics is listed in Table 1,
including age, gender and diagnosis. No neurological lesions or
gross neuropathological abnormalities were observed on PET-
MRI brain images. Images were reviewed by a Board Certified
Radiologist and Nuclear Medicine physician. Mean and stan-
dard deviation of the time from 18F-FDG injection to PET-MR
examinations were 103 ± 11.18 min.

EVALUATION OF MRAC METHODS
An example of Dixon+bone μ-map created by adding bone to
a Dixon μ-map from a representative subject is displayed in
Figure 1. A gradual radial increase in relative difference between
PET images reconstructed with Dixon+bone μ-map compared
to Dixon μ-map were observed in all subjects. Figure 2A, illus-
trates the typical line profile (Figure 2B) through the center slice
of the brain of one subject when the PETdx and PETdxbone images
are compared. An increase of 5% in the center to nearly 20%
in the areas around the cortex was seen. Group mean values
and standard deviation of absolute and relative activity in PETdx

and PETdxbone for whole brain and regions of interest are listed
in Table 2. Paired student t-test showed that the absolute mean
activity in PET data reconstructed with Dixon+bone μ-map was
statistically higher than PET reconstruction with Dixon μ-map
in all thirteen ROIs. Conversely, lower relative activity was found
in rPETdxbone when compared to rPETdx in all ROIs except,
occipital and cerebellum. These regional differences are depicted
in Figure 3A as the percent relative difference in mean activity
between PETdx and PETdxbone, and in Figure 3B as the percent
relative difference in rPETdx and rPETdxbone for all thirteen ROIs.

CORRELATIONS OF PERFUSION TO GLUCOSE UPTAKE
Images of relative CBF, PETdx, and PETdxbone averaged across all
subjects are displayed in Figure 4. In general, these group-wise

Table 1 | Study demographics.

Number Age Gender Primary oncology Net injected

(years) disease dose (MBq)

1 62 F SPN 368

2 55 M SPN 390

3 39 M Germ cell (Testicular) 500

4 64 M SPN 422

5 62 F SPN 288

6 62 F SPN 229

7 54 M SPN 437

8 51 F SPN 200

9 56 M SPN 418

10 65 F Colorectal 337

11 61 F NSCLC 411

12 71 M SPN 388

13 53 M NSCLC 396

SPN, Solitary Pulmonary Nodule; NSCLC, non-Small cell lung cancer; M, Male;

F, Female.

images are similar in appearance. On visual inspection, the group-
averaged PET data reconstructed with Dixon+bone μ-map had
an apparent higher intensity compared to PET data reconstructed
with Dixon μ-map, particularly around the cortex. An additional
difference between the data sets was the aliasing artifact observed
in the CBF images, which are most visible in distal images. The
mean group gray matter CBF was 43.82 ± 4.46 ml/100 g/min. The
mean tSNR of whole brain pCASL signal in gray matter across all
subjects was 2.83 ± 1.18.

The average voxel-by-voxel correlation coefficient across
whole-brain gray matter was r = 0.63 (p < 0.001) between
rCBF and rPETdx, and r = 0.53 (p < 0.001) between rCBF and
rPETdxbone. The correlation coefficient for each ROI, derived
from voxel-wise comparison between rCBF and rPETdx and
between rCBF and rPETdxbone, are presented in Table 3 along
with corresponding total number of voxels. For the comparison
between rCBF and rPETdx, moderate-to-high correlations were
observed in all ROIs with the highest in the caudate and the lowest
in the deep-lying structures of the limbic system such as the hip-
pocampus and amygdala. Similar trends were observed between
rCBF and rPETdxbone. Results of voxel-by-voxel independent sam-
ples t-test listed on Table 4, showed areas of significant increase or
decrease in relative perfusion compared to relative 18F-FDG-PET
signals reconstructed with Dixon and with Dixon+bone μ-maps
for clusters that met the set statistical threshold. Maps of statis-
tical differences between rCBF and either rPETdx or PETdxbone

overlaid on axial slices of a single subject T1-weighted image are
displayed in Figure 5. Regions with higher relative perfusion are
marked in red while regions with higher relative glucose uptake
are marked in blue.

DISCUSSION
The feasibility of an integrated whole-body PET-MRI system in
simultaneous acquisition of perfusion MRI and metabolic PET
neuroimaging with an enhanced attenuation correction method
was investigated in this study. Following efforts by other groups
to minimize errors in PET signal attenuation corrected with MRI
(Kops et al., 2009; Catana et al., 2010; Izquierdo-Garcia et al.,
2014; Poynton et al., 2014), and given the lack of consensus on
acceptable MRAC methods for bone attenuation (Bailey et al.,
2013), we explored a practical workaround for MRAC prior to
the start of a neurodegenerative study with PET-MRI.

Direct segmentation of high resolution T1-weighted MR data
into various tissue classes for MR attenuation correction of PET
have been proposed by Zaidi et al. (2003) and Wagenknecht
et al. (2009). Segmentation of voxel intensities were performed
with sophisticated algorithms that use fuzzy clustering or a pri-
ori knowledge of tissue location and shape to derive MRAC
μ-maps with ∼6% maximum absolute relative difference com-
pared to ground truth (Zaidi et al., 2003; Wagenknecht et al.,
2011). However, these methods are time consuming, require post-
processing algorithms that are not readily available, and in Zaidi
et al.’s (2003) method; require user intervention to improve bone
segmentation. In addition, these proposed approaches are sen-
sitive to MR intensity inhomogeneity errors which, when left
unaccounted for can exacerbate inherent MR signal issues such as
partial volume effects and motion artifacts, potentially inflating
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FIGURE 1 | Illustration of a Dixon+bone μ-map generated in a representative subject. Images (A) T1-weighted MPRAGE, (B) bone probability map, (C)

Dixon μ-map, and (D) Dixon+bone μ-map are shown in axial, coronal and sagittal views of a single slice.

bias in MRAC μ-maps. In this study, bone segmentation of
T1-weighted data was easily derived with SPM, an automated
pipeline routinely used for brain segmentation in neuroimag-
ing. For each voxel, the unified segmentation method in SPM
determines intensity distributions of tissue types using a mixed
model cluster analysis and spatial priors from a T1-weighted atlas
derived from large number of subjects (Ashburner and Friston,
2005). Unlike aforementioned direct segmentation methods, the
unified method accounts for non-uniformities in intensity distri-
butions, improving segmentation accuracy (Tsang et al., 2008).

In general, a ∼10% increase in whole brain mean 18F-FDG
activity corrected with Dixon+bone compared to standard Dixon
MRAC was observed. A gradual increase in mean 18F-FDG activ-
ity from ∼5% in the center to ∼20% in the cortex was observed in
PET data corrected with Dixon+bone compared to the same PET

data corrected with just Dixon alone, as illustrated in Figure 2
for one individual. This finding was consistent with a recent
study comparing PET images corrected with the standard Dixon
method to images corrected with Dixon plus bone information
derived from individual CT (Andersen et al., 2014). In this study,
Andersen et al. (2014) reported a 15% difference in mean activity
from the center to the edge of the brain in PET signal recon-
structed with Dixon compared to Dixon plus CT bone. Errors
caused by not including bone information are more pronounced
at the edge than the center of the brain as photons from the edge
of the brain travel longer average path lengths through skull than
photons from the center (Andersen et al., 2014).

Regional variability in mean activity between PETdx and
PETdxbone was also observed in the ROI analysis. Cortical struc-
tures such as frontal and temporal lobe had significantly higher
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FIGURE 2 | Line profile (A) across the center slice of a map (B) of relative difference (% RD) between PET images reconstructed with Dixon and

Dixon+bone µ-maps. Images are presented from a representative subject.

Table 2 | Group mean and standard deviation (std) of absolute and relative PETdx and PETdxbone activity concentration (kBq/ml) in regions of

interest across the brain.

Region Absolute mean activity Relative mean activity

PETdx PETdxbone t PETdx PETdxbone t

Mean Std Mean Std Mean Std Mean Std

Frontal 12.70 2.60 14.12 2.86 15.21 0.96 0.04 0.97 0.03 2.95*

Cingulate 13.90 2.88 14.88 3.04 17.74 1.06 0.05 1.02 0.05 −22.66

Insula 13.47 2.35 14.39 2.50 17.08 1.03 0.04 0.99 0.04 −24.74

Parietal 13.49 2.71 14.91 2.97 16.99 1.03 0.03 1.02 0.03 −0.74*

Temporal 11.63 2.26 12.84 2.51 15.11 0.88 0.02 0.88 0.02 −2.01*

Hippocampus 10.35 1.85 10.93 1.97 14.21 0.79 0.05 0.75 0.05 −32.13

Amygdala 10.42 1.87 11.03 2.01 13.53 0.80 0.07 0.76 0.07 −26.43

Thalamus 14.11 2.77 14.87 2.92 13.91 1.07 0.06 1.02 0.06 −34.88

Caduate 11.33 3.10 11.90 3.24 12.47 0.85 0.09 0.81 0.09 −29.34

Pallidum 14.23 2.66 15.02 2.83 12.93 1.08 0.07 1.03 0.07 −36.10

Putamen 16.83 3.21 17.91 3.43 14.21 1.28 0.08 1.23 0.08 −31.08

Occipital 13.18 2.63 14.87 2.95 16.90 1.00 0.06 1.02 0.07 5.74

Cerebellum 10.68 1.78 11.97 2.03 16.46 0.82 0.08 0.83 0.08 5.36

Whole brain 13.16 2.56 14.56 2.81 17.82 1.04 0.10 1.07 0.10 3.05*

Results of paired differences between PETdx and PETdxbone are presented as value of the t-statistic (t), where all regional differences met the statistical threshold

of p < 0.05 except for * where p >0.05.

relative differences than central brain regions such as basal gan-
glia and limbic systems (Figure 3A). All thirteen brain regions
investigated had statistical significant lower mean activity when
reconstructed with the standard Dixon compared to the recon-
struction with the Dixon plus bone (Table 2). Similar regional
variability in PET-corrected with standard Dixon MRAC com-
pared to CT attenuation maps have recently been observed by
other groups (Dickson et al., 2014; Hitz et al., 2014). Scaling the
PET images by their global mean removed the overall underes-
timation but resulted in regional over- and under-estimations
(Figure 3B). These regional trends matched results from a pre-
vious study (Dickson et al., 2014) and indicate that irrespective of

the chosen reference region, cerebellum (Dickson et al., 2014) or
global mean as used in the current study, relative PET measure-
ments reconstructed with Dixon still possess MRAC-related bias,
albeit slightly reduced. Although signal normalization to a refer-
ence value can reduce systemic errors in PET reconstruction, it
can inflate regional values particularly in cases where group dif-
ferences actually exist between the reference values (Borghammer
et al., 2008). This might explain the apparent increase in rela-
tive PET activity with standard Dixon compared to Dixon+bone
(Table 2) or UTE (Dickson et al., 2014) in nearly all regions of
the brain. Altogether, the results are in line with previous stud-
ies showing that the addition of bone information, either from
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FIGURE 3 | Regions of interest group means percent relative

difference (% RD) in (A) mean activity concentration and (B) mean

relative activity between PET signals reconstructed with Dixon and

Dixon+bone µ-maps. Errors bars represent standard deviation on the

means. Regions abbreviations: Fro, Frontal; Cng, Cingulate; Ins, Insula;
Par, Parietal; Tem, Temporal; Hpp, Hippocampus; Amg, Amygdala; Tha,
Thalamus; Cad, Caudate; Pal, Globus Pallidus; Put, Putamen; Occ,
Occipital; Ceb, Cerebellum.

FIGURE 4 | Whole-brain group maps of relative perfusion and relative

glucose uptake from; left to right: pCASL-CBF, 18F-FDG-PET

reconstructed with Dixon+bone MRAC and 18F-FDG-PET reconstructed

with Dixon MRAC. Spatial blurring seen in the bottom row images of the
perfusion maps could be minimized with segmented multi-shot 3D GRASE
acquisitions.

MRI (UTE/MPRAGE) or CT, to the MRAC maps removes the
radial bias (Andersen et al., 2014) and reduces differences in PET
signals from ∼20 to 10% when compared to the gold standard,
CTAC (Kops et al., 2009; Catana et al., 2010; Marshall et al., 2013;
Dickson et al., 2014).

The clinical significance of incorporating bone attenuation
in PET reconstruction was highlighted by correlating relative
cerebral glucose uptake acquired with 18F-FDG-PET to relative
cerebral perfusion acquired with pCASL across regions in the
brain. Recent evidence suggest that a pattern of regional distri-
bution of perfusion to glucose metabolism exist in healthy brains
(Newberg et al., 2005; Vaishnavi et al., 2010; Cha et al., 2013)
and disruptions to regional blood flow-glucose metabolism cou-
pling are potential markers of brain dysfunction (Vlassenko et al.,

2010). In general, a good correlation between perfusion and glu-
cose uptake was observed in this study over the entire brain.
Regional variability in relative correlations was found, with the
highest correlations in the occipital and caudate, and the low-
est in the limbic structures regardless of the MRAC method used
(Table 3). However, associations between perfusion and PET sig-
nals reconstructed with Dixon+bone closely resemble patterns of
regional relative perfusion to glucose metabolism reported else-
where, with 18F-FDG-PET and PET perfusion tracers (Bentourkia
et al., 2000; Gur et al., 2009; Musiek et al., 2012), and with
18F-FDG-PET and ASL using standalone PET and MRI scanners
(Newberg et al., 2005; Chen et al., 2011; Cha et al., 2013).

When compared to Cha et al. (2013), where similar regions
were explored with a similar pCASL labeling scheme, higher
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Table 3 | Results of voxel-by-voxel Pearson product moment

correlation within thirteen regions of interest (p < 0.001).

ROI ke rCBF vs. rCBF vs. rCBF vs. PET-CT

rPETdx rPETdxbone (Cha et al., 2013)

Frontal 70169 0.61 0.52 0.41

Cingulate 7598 0.77 0.76 0.61

Insula 3541 0.54 0.53 0.63

Parietal 26845 0.63 0.58 0.5

Temporal 32962 0.72 0.63 0.67

Hippocampus 1797 0.43 0.41 −0.26

Amygdala 414 0.42 0.40 0.087

Thalamus 2149 0.68 0.68 0.45

Caudate 1895 0.85 0.85 0.78

Pallidum 573 0.41 0.41 Not applicable

Putamen 2009 0.48 0.46 0.81

Occipital 21333 0.82 0.73 0.12

Cerebellum 21838 0.54 0.46 0.33

Correlation coefficients (r) are listed for comparisons between relative ASL-CBF

and relative PET-FDG measurements corrected with Dixon and Dixon+bone

µ-maps, and comparisons from a previous study using 2D-pCASL sequence and

PET-CT. Total number of voxels (ke) within each ROI for the MRAC comparisons

are included.

regional correlations of rCBF to rPETdxbone were observed in the
current study, except in the insula and putamen (Table 3). This
apparent increase (∼30%) in regional coupling of perfusion to
glucose metabolism is likely a result of the improved registration
accuracy provided by simultaneous imaging and the improved
tSNR provided by using a 3D pCASL method (Günther et al.,
2005; Vidorreta et al., 2013). The temporal SNR of 3D-GRASE
pCASL was not compromised by the use of a PET-compatible
head coil, and the mean tSNR reported here was in line with
values reported elsewhere (Günther et al., 2005; Vidorreta et al.,
2013).

Results from voxel-by-voxel t-tests between rCBF and rPET
demonstrated regions of hyper- or hypo-perfusion not matched
to glucose metabolism (Figure 5 and Table 4). These findings,
specifically from PET data corrected with Dixon+bone MRAC,
are in line with previous findings of increased resting perfu-
sion to resting metabolism in areas of the brain associated
with the default mode network (Gur et al., 2009; Cha et al.,
2013), suggesting that these brain regions require increased
blood flow due to the sustained state of arousal (Vaishnavi
et al., 2010). Apparent bias in bone attenuation from standard
Dixon MRAC was evident in the comparison between rela-
tive perfusion and glucose uptake as demonstrated in Figure 5
and in comparison to previous studies (Newberg et al., 2005;
Chen et al., 2011; Cha et al., 2013). In particular, unexpected
increases in rCBF were observed in the left paracentral, left
inferior parietal and right superior temporal gyrus when com-
pared to PETdx. The spatial pattern of these differences, notably
their occurrence closer to the edge of brain, is suggestive of
attenuation errors. Indeed, these regions of elevated rCBF were
either removed or significantly reduced when compared to
PETdxbone.

Table 4 | Results of independent samples t-test in gray matter

comparing rCBF to rPETdx and comparing rCBF to rPETdxbone for

clusters >50 voxels (p < 0.05, FDR). MNI coordinates (x–z) and

corresponding anatomical location are included.

Cluster Cluster x y z t-value Anatomical

number size label

rPETdx > rCBF

1 431 −22 12 −8 8.67 Left putamen

2 435 28 8 −6 7.84 Right putamen

3 1591 16 34 −28 5.38 Right orbital frontal

4 457 66 −52 −18 4.88 Right inferior temporal

5 569 26 −14 68 4.26 Right precentral

6 685 −20 −54 68 4.25 Left post-central

7 126 −44 −24 −32 4.23 Left inferior temporal

8 61 22 −90 −16 4.16 Right occipital

9 126 20 −54 70 3.71 Right post−central

rPETdx < rCBF

1 1773 0 −22 42 6.91 Left paracentral

2 7935 62 −34 10 6.90 Right superior temporal

3 6368 −56 −28 24 6.24 Left inferior parietal

4 947 −4 42 −4 5.73 Left anterior cingulate

5 268 4 −74 0 4.92 Right lingual

6 59 −2 −86 14 4.55 Left cuneus

7 77 14 −28 6 3.59 Right thalamus

rPETdxbone > rCBF

1 650 26 8 −6 7.9 Right putamen

−24 6 −6 7.8 Left putamen

2 1591 16 34 −28 6.10 Right orbital frontal

3 1332 66 −52 −18 5.71 Right inferior temporal

66 −58 6 5.63 Right middle temporal

4 4373 26 −14 68 5.25 Right precentral

5 2848 −20 −36 58 5.05 Left post−central

6 65 −18 −38 38 4.21 Left cingulate

7 79 26 −16 −32 4.09 Right parahippocampal

8 83 4 −34 −12 3.77 Right anterior cingulate

9 70 20 −6 20 3.61 Right caudate

10 76 −20 −72 16 3.58 Left precuneus

rPETdxbone < rCBF

1 1318 62 −34 12 6.14 Right superior temporal

62 −28 2 5.52 Right middle temporal

2 630 0 −22 44 5.91 Left paracentral

3 668 −62 −38 48 5.16 Left middle temporal

4 238 48 10 18 4.88 Right inferior frontal

5 210 −48 −60 34 4.79 Left angular

6 72 4 −72 18 4.57 Right cuneus

7 73 −46 30 4 4.25 Left inferior frontal

8 82 −44 10 18 4.15 Left insula

9 186 6 42 −8 3.87 Right medial frontal

It is possible that segmentation errors such as voxel mis-
classifications in Dixon+bone μ-maps could account for some
differences in correlations between the current study and obser-
vations reported elsewhere. Differences in μa for bone assigned
to MR or CT derived μ-maps, and differences in PET scanner
geometry and reconstruction parameters including number of
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FIGURE 5 | Whole brain voxel-by-voxel comparison between relative

cerebral blood flow and relative 18F-FDG-PET activity reconstructed with

Dixon (A) and Dixon+bone (B) µ-maps. Areas with greater relative

perfusion are shown in red while areas with greater relative glucose uptake
are shown in blue. Statistical differences are set at threshold for cluster >50
voxels, p < 0.05 corrected for multiple comparisons with FDR.

iterations, subsets and smoothing kernels could also influence
final observations. In addition, limitations inherent to pCASL and
to PET-FDG imaging such as partial voluming, differences in cel-
lular localization of blood water and FDG tracers, and optimal
selection of post-labeling delay in ASL with minimal compro-
mise to SNR could affect accuracy of regional comparisons (cf.
Cha et al., 2013 for detailed description). The evaluation of
Dixon+bone μ-maps would have benefited from comparison to
ground truth using CT data, which was not feasible in this study.
The PET-CT whole body survey acquired on all subjects prior
to PET-MRI imaging, permitted coverage solely from the level
of the eyes to the thighs as per clinical protocol, limiting whole
brain comparisons. As such, absolute and regional performance
of the enhanced Dixon μ-maps was not evaluated. Over estima-
tion of bone information was observed in the inferior regions of
the brain and can be seen in the Dixon+bone μ-maps (Figure 1
and Supplementary Figures) and in the comparisons of PETdxbone

to pCASL CBF (Figure 5). Regions close to the base of the skull
where bone anatomy is thin can yield low MR bone signals with
MPRAGE (Wagenknecht et al., 2011) or UTE (Dickson et al.,
2014) sequences, and these regions are prone to signal misclassifi-
cation errors in soft tissue/bone/air interfaces in areas around the
sinuses- an issue that affects most atlas-based MR-derived atten-
uation correction methods. Efforts were made to minimize bone
misclassification by morphological filtering of non-bone voxels. A

recent study demonstrated that SPM8-based method for generat-
ing MRAC is robust with a reported accuracy of under 4% when
compared to CTAC (Izquierdo-Garcia et al., 2014). The results
presented here were in good agreement with previous studies,
suggesting that these issues had little or no effect on the study out-
come. The regional correlation of pCASL CBF to 18F-FDG-PET
demonstrated here for the first time with simultaneous imaging
can be further improved with imaging of concurrent uptake of
the pCASL and FDG tracer.

In general, the agreement between this study and previous
studies using CT attenuation maps indicate that Dixon attenua-
tion maps enhanced with bone information from high resolution
T1-weighted images can provide a feasible method for correction
of PET signal attenuation in PET-MRI neuroimaging. Errors in
MRI-derived attenuation correction maps including tissue mis-
classification can be further minimized by methods that employ
tissue classifiers from CT atlas to better guide segmentation of
UTE or MPRAGE data (Poynton et al., 2014).
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