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Resistive (or memristive) switching devices based on metal oxides find applications
in memory, logic and neuromorphic computing systems. Their small area, low power
operation, and high functionality meet the challenges of brain-inspired computing aiming
at achieving a huge density of active connections (synapses) with low operation power.
This work presents a new artificial synapse scheme, consisting of a memristive switch
connected to 2 transistors responsible for gating the communication and learning
operations. Spike timing dependent plasticity (STDP) is achieved through appropriate
shaping of the pre-synaptic and the post synaptic spikes. Experiments with integrated
artificial synapses demonstrate STDP with stochastic behavior due to (i) the natural
variability of set/reset processes in the nanoscale switch, and (ii) the different response
of the switch to a given stimulus depending on the initial state. Experimental results are
confirmed by model-based simulations of the memristive switching. Finally, system-level
simulations of a 2-layer neural network and a simplified STDP model show random learning
and recognition of patterns.

Keywords: neuromorphic circuits, spike timing dependent plasticity, neural network, memristor, pattern

recognition, cognitive computing

INTRODUCTION
Brain-inspired computing is among the top challenges of the
today’s information and communication technology. The brain
is capable of formidable tasks, such as learning, recognition of
visual/auditory patterns, and adaptation in response to new infor-
mation. To meet this grand challenge, a neuromorphic system
should include a number of neurons and synapses similar to
a biological human brain, featuring around 1012 neurons and
1015 synapses (Rajendran et al., 2013). Clearly, such a complex
system can be realized only through advanced manufacturing
techniques (e.g., 3D integration), and small circuit blocks for neu-
rons and synapses. The latter, in particular, represents by far the
largest area of the neuromorphic circuit due to the huge number
of inter-neural connections, therefore scaling down the size and
complexity of the artificial synapse is a key task in the design of a
neuromorphic circuit.

To this purpose, nanoscale resistive switches, or memristors,
have been proposed as novel artificial synapses in neuromorphic
systems (Likharev et al., 2003; Snider, 2008; Jo et al., 2010).
Memristors have the capability of an inherent analog tuning,
combined with a 2-terminal structure and a scalable device
area and power, therefore they display strong advantage with
respect to silicon-based synapses, such as floating gate memo-
ries (Diorio et al., 1996) and static RAM (Indiveri et al., 2006).
Different switch technologies have been proposed for artificial
synapses, including phase change memories (Wright et al., 2011;
Bichler et al., 2012; Kuzum et al., 2012), organic-based switches
(Bichler et al., 2010), chalcogenide-based switches (Ohno et al.,

2011; Suri et al., 2013) and oxide-based resistive switching mem-
ories (Seo et al., 2011; Yu et al., 2011, 2013; Park et al., 2012;
Ambrogio et al., 2013). The latter approach provides analog
switching, nonvolatile behavior, CMOS compatible materials,
back-end process and scalable power consumption thanks to fila-
mentary switching (Wong et al., 2012). A memristor naturally sat-
isfies the requisites for electrically-tunable conductance, serving
as a connection for communication between a pre-synaptic neu-
ron (PRE) and a post-synaptic neuron (POST), and responsive to
the individual spikes fed from both neurons. To achieve this mul-
titask operation, a time-division multiplexing (TDM) approach
was previously proposed, where neuron spikes obey a precise syn-
chronous sequence for communication, long-term potentiation
(LTP) and long-term depression (LTD) (Snider, 2008; Jo et al.,
2010). The synchronous approach, however, may be too idealized
with respect to the biological brain, where synapses are poten-
tiated/depressed through asynchronous spike timing dependent
plasticity (STDP) (Bi and Poo, 1998). Also, synchronous clocking
may be practically difficult in the case of large neuromorphic sys-
tems (Zamarreño-Ramos et al., 2011). More recently, a fully asyn-
chronous approach for communication/learning of neuromor-
phic synapses with leaky-integrate-and-fire (LIF) neurons was
proposed (Zamarreño-Ramos et al., 2011; Serrano-Gotarredona
et al., 2013). However, a conceptual demonstration of realistic
memristor synapses for communication and learning has not
been achieved so far.

This work addresses the integration of memristors in neuro-
morphic systems by introducing a 2-transistor/1-resistor (2T1R)
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synapse for large scale neuromorphic systems. The transistors
in the synapse block allow for (i) multiple-input control of the
synapse, which must receive signals from both the PRE and the
POST, and (ii) accurate control of the filament growth for analog
switching and STDP behavior (Yu et al., 2011; Ambrogio et al.,
2013; Subramaniam et al., 2013). STDP in the 2T1R synapse is
experimentally demonstrated on bipolar resistive switching mem-
ories based on HfO2 acting as memristive switches. We show that
the memristive synapse is capable of communication of spik-
ing signals between neurons and stochastic STDP due to both
the natural switching variability in the switch, and to the varia-
tions of memristive response depending on the initial state. We
finally show a conceptual demonstration of a simulated 2-layer
neuromorphic network displaying stochastic pattern learning and
recognition, thus further supporting memristive synapse as a
scalable, high-functionality building blocks for large scale neuro-
morphic systems.

MATERIALS AND METHODS
Figure 1A shows the conceptual scheme of the 2T1R structure
for the memristive synapse. Both MOS transistors in the synapse
control the current flowing through the memristor, thus enabling
communication and plasticity. The PRE controls 2 of the 4 termi-
nals of the 2T1R structure, namely the top electrode (TE) and the
communication gate (CG). The bottom electrode (BE) is instead
connected to the virtual-ground input of the POST, which also
controls the fire-gate (FG) terminal.

COMMUNICATION MODE
The usual operation of the synapse consists of the communi-
cation mode, where the synapse is a simple resistor with fixed
conductance allowing for the weighted transmission of spikes

FIGURE 1 | Illustrative scheme for the 2T1R synapse and its operation.

The synapse consists of a memristor with 2 series transistors, connected to
both the PRE and POST (A). During communication, the PRE delivers pulses
to both the CG and the TE terminals of the synapse (B). The resulting current
is a function of the memristor conductance and is fed into the input node of
the integrate-and-fire POST neuron (C). The maximum and minimum
voltages of TE pulse are VTE,max = 2.4 V and VTE,min = −1.65 V, respectively.

from the PRE to the POST (Zamarreño-Ramos et al., 2011;
Indiveri et al., 2013). Figure 1B shows the waveforms of the
pulses applied to the TE and the CG. The TE pulse includes an
exponentially-increasing negative pulse and a short positive pulse,
while the CG pulse is a short positive pulse enabling the transmis-
sion of a negative current pulse to the POST input through the BE
connection. Although the CG voltage is high, it always overlaps
with the low-voltage region of the VTE pulse, which rules out any
possible switching in the memristor. The negative current spike is
integrated by the input stage of the POST as shown in Figure 1C,
illustrating a single PRE/synapse/POST layer of the neuromor-
phic network. The integrate-and-fire structure of the POST in
Figure 1C is largely simplified, in that it does not include, e.g.,
the leakage path for the stored charge, the refractory period to
deactivate integration during fire, and the reset switch to initial-
ize integration after fire (Zamarreño-Ramos et al., 2011). As the
PRE spikes collected at the neuron input are integrated, the inter-
nal voltage Vint increases, eventually hitting the threshold of the
comparator stage. This event triggers the fire circuit, namely a
monostable circuit delivering spikes in the forward direction, i.e.,
to the TE and CG terminals of the output synapse, and in the
reverse direction, i.e., to the FG terminal of the input synapses.

STDP
The temporal coincidence of the PRE spike at the TE of a synapse
and of the POST spike (or fire) at the FG of a synapse leads to a
change of the memristor conductance according to Figure 2. Two
cases can be distinguished by the relative delay �t defined as the
time between the end of the negative TE pulse and the end of the
FG pulse. For �t > 0 in Figure 2A, there is an overlap between the
positive 1-ms TE pulse and the FG pulse, thus inducing set tran-
sition in the memristor. The increase of conductance, due to the
growth of a conductive filament (CF) across the HfO2 switching
layer (Nardi et al., 2012), is dictated by the compliance current IC

flowing in the transistor, hence by the gate voltage VFG. Since the
FG voltage VFG decreases at increasing �t, LTP decreases as �t
increases, thus realizing a timing-dependent LTP. Figure 2B also
includes triangular read pulses at VTE before and after the PRE
and POST spikes, both having 1 ms width and a small amplitude
of 0.5 V to avoid any disturb to the memristor device. A rectangu-
lar pulse of width 1 ms and amplitude 5 V was applied to VFG to
enable the pulse operation. The response current during the read
pulse before and after the PRE/POST spikes allows to evaluate the
increase of conductance induced by LTP.

Similarly, for �t < 0 (Figure 2B), the negative TE pulse and
the positive FG pulse overlap each other, thus inducing reset
transition due to the disconnection of the CF. The increase of
resistance during reset is controlled by the maximum voltage
across the memristor (Nardi et al., 2012), hence by the value of
VTE. Since VTE decreases in absolute value at increasing �t, LTD
decreases with �t, thus carrying out time-dependent LTD. The
combination of time-dependent LTP and LTD results in STDP
functionality.

CIRCUIT IMPLEMENTATION
To verify the conceptual scheme of STDP in Figure 2, we applied
the waveform in the figure to a 1T1R structure including an HfO2

memristor in series with a MOS transistor. The MOS transistor
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FIGURE 2 | Signal waveforms during LTP and LTD. LTP takes place when
the delay �t between VTE and VFG is positive (A). In this case, there is
overlap between the positive 1-ms TE pulse and the FG pulse (maximum
voltage 2.9 V), thus inducing set controlled by the VFG-value. VFG increases
at decreasing �t, thus the maximum LTP is obtained for �t approaching 0.

LTD takes place when the delay �t between VTE and VFG is negative (B).
In this case, the negative TE pulse and the positive FG pulse overlap each
other, thus inducing reset controlled by the VTE-value. VTE increases in
absolute value at decreasing �t, thus the maximum LTD is obtained for �t
approaching 0.

has threshold voltage VT = 1.4 V, while the channel width and
length were 3 μm and 1.425 μm. In the memristor, a Si-doped
HfO2 layer was sandwiched between two TiN electrodes. A Ti
cap was deposited between the top TiN electrode and the HfO2

layer to allow for oxygen extraction aimed at the formation of a
local sub-stoichiometric HfOx (x < 2) layer close to the top elec-
trode. This oxygen-exchange layer (OEL) is believed to act as a
defect reservoir for the injection during the set transition, when
the positive applied voltage induces migration of defects, such as
oxygen vacancies and metallic impurities (Hf, Ti) responsible for
the formation of a conductive channel, thus resulting in a rela-
tively low resistance. The application of a negative voltage instead
results in the retraction of the conductive channel back toward
the OEL, thus leading to a relatively high resistance. The HfO2

layer had an amorphous structure after deposition. The HfO2

thickness was 10 nm, while the Ti cap thickness was 15 nm. More
details about the experimental samples are reported elsewhere
(Ambrogio et al., 2014a; Calderoni et al., 2014). The CG tran-
sistor was not connected in the experiment, due to our focus on
demonstrating STDP. Figure 1C shows the conceptual scheme of
the 2T1R structure for the memristive synapse. The FG pulse had
extreme voltages of 2.9 and 1.0 V, with time constant τ = 140 ms.
The same time constant was used for the exponential region of the
TE pulse, where the extreme voltages were −1.65 and −0.55 V.
The 1-ms half-triangle positive pulse had an extreme amplitude
of 2.4 V.

RESULTS
EXPERIMENTAL STDP CHARACTERISTICS
Figure 3A shows the cumulative distributions of measured resis-
tance R in the memristor after application of TE and FG pulses
at increasing �t. The same STDP experiment with a given �t
was repeated 100 times to allow for a sufficient statistical accuracy.
The device was always prepared in a full reset state, corresponding

to a resistance of about 100 k�, and the delay �t was changed
between 1 and 100 ms. The distributions show a decreasing value
of R at decreasing delay, in agreement with the expected time-
dependent LTP in Figure 2A. Figure 3B summarizes the conduc-
tance enhancement R0/R, where R0 is the initial resistance and R
is the median value of the distribution. The figure shows time-
dependent increase of conductance (LTP) for �t > 0, while no
change of resistance is obtained for �t < 0. Figure 3C shows the
cumulative distribution of measured R for negative �t in the
range between −1 and −100 ms. To demonstrate LTD, the mem-
ristor was initialized in a low resistance state with R0 around 5 k�,
obtained with a pulse of 1 ms at IC = 170 μA. Figure 3D shows
the conductance change R0/R indicating time-dependent LTD for
�t < 0. LTD can also be seen at positive delays, which is due to
a sequence of reset and set events in the memristor during the
negative and positive regions of the TE pulse, respectively. First,
a reset transition takes place due to the negative VTE, then the 1-
ms VTE pulse induces a set transition with relatively low IC. As
a result, the device is in a set state finally, although with smaller
conductance than the initial state, due to the relatively small IC.
Since IC decreases at increasing positive �t < 0, LTD increases
with �t.

Distributions in Figures 3A,C show a significant variability,
although they were obtained by repeating the same experiments
several times on a single device. The distribution variance can
be attributed to the switching variability in memristive devices,
which was shown to result from the discrete number of defects
in the CF (Ambrogio et al., 2014a). The natural switching vari-
ability ensures stochastic plasticity in the artificial synapse, where
the final state is not deterministically dictated by �t, rather it is
affected by an inherent standard deviation. Note that the relative
spread increases with R in Figure 3, due to the decreasing num-
ber of defects and the correspondingly large statistical spread
(Ambrogio et al., 2014a).
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FIGURE 3 | Cumulative distributions of R for variable �t and

corresponding STDP characteristics. Cumulative distributions for
�t > 0 show an increasing R for increasing �t, starting from a
high-resistance state (R0 = 100 k�) of the memristor (A).
Correspondingly, the conductance change R0/R decreases at increasing

�t in the STDP characteristic (B). Similarly, for LTD starting from a
low-resistance state (R0 = 5 k�) of the memristor, the cumulative
distributions show that R decreases at increasing negative delay (C),
while the conductance change R0/R decreases for large delays in the
STDP characteristic (D).

Figure 4 shows STDP characteristics for variable time con-
stant τ in the range between 40 ms and 180 ms, for the memristor
initially prepared in a high resistance state (a) or a low resis-
tance state (b). LTP (a) and LTD (b) characteristics show the
same behavior as in Figure 3, except for a stretching along the
�t axis for increasing τ as a result of the change of the slope of
the exponential TE and FG pulses. These results demonstrate the
tunability of the STDP characteristics on the timescale through a
proper choice of the time constant.

Dependence on the initial state
While results in Figures 3, 4 were obtained for the memristor
initialized in either the high resistance (for LTP) or the low
resistance state (for LTD), it is important to demonstrate the
functionality of the STDP scheme for any arbitrary initial
state. We first considered variable reset states, obtained by first
setting the device to a reference initial low resistance state with a
compliance current IC = 170 μA, then resetting the device with a
variable maximum negative voltage Vstop, as shown in Figure 5A.
Here, the set and reset transitions in the HfO2 memristor can
be seen at positive and negative voltage, respectively. As the
reset voltage increases, the resistance increases, as a result of
the increasing growth of the depleted gap along the CF (Nardi
et al., 2012). The memristor resistance values were 25, 45, and
100 k� for Vstop equal to −1.2, −1.4, and −1.65 V, respectively.

Also shown are simulation results according to our physics-based
analytical model for resistive switching devices (Ambrogio et al.,
2014b). In this model, the Fourier equation for heat generation
and conduction is analytically solved, then the local temperature
at the injecting point along the CF is used to estimate the
migration rate and the corresponding change of CF diameter
(during set transition) and depleted gap (during reset transition).
The energy barrier controlling ion migration in the analytical
model was EA = 1.2 eV. Simulation results in Figure 5A support
the model as an accurate tool for predicting real memristive
switching in metal oxide systems.

Figure 5B shows the measured and calculated STDP char-
acteristics for variable high resistance states in Figure 5A. As
the initial resistance R0 increases, the LTP conductance change
increases, while the LTD conductance change decreases. However,
the shapes of LTP and LTD characteristics are qualitatively the
same irrespective of the R0.

Similarly, we studied variable set state, namely state obtained
with variable compliance current during set. Figure 6A shows the
measured and calculated I–V curves for IC = 25, 50, 100, and
170 μA. Both set transition at positive voltage and reset transi-
tion at negative voltage are shown in the figure. Simulations by
the analytical model again accounts closely for the experimental
behavior. As IC increases, the set state resistance decreases, as a
result of the larger diameter of the CF (Nardi et al., 2012). Note
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FIGURE 4 | STDP characteristics at increasing time constant τ. The STDP characteristics stretch to longer �t as the time constant describing the VTE pulse
increases, for both LTP on high-resistance states (A) and LTD on low-resistance states (B).

FIGURE 5 | STDP response at variable high-resistance states. Variable
high-resistance states are obtained by resetting the memristor device at
increasing negative voltage Vstop as shown in the I–V curve (A). The STDP

characteristics show increasing LTP and decreasing LTD at increasing initial R
(B). Analytical calculations well account for the experimental data as a
function of Vstop.

that the reset current Ireset is approximately equal to IC (Kinoshita
et al., 2008; Lee et al., 2008), while the reset voltage Vreset is
approximately constant around 1 V, marking the voltage needed
to initiate defect ionization and migration within the CF (Ielmini,
2011). Figure 6B shows the measured and calculated STDP char-
acteristics for variable initial low-resistance state as in Figure 6A.
Calculations again provide a satisfactory agreement with data and
can predict the state-dependent learning in the synapse.

The STDP characteristics in Figures 5, 6 show LTD at both
positive and negative �t, which disagrees with the standard
timing-dependence of biological learning (Bi and Poo, 1998).
However, it was shown that biological synapses might have diver-
sified response based on their function and typologies (Abbott
and Nelson, 2000). For instance, a similar STDP response with
LTD at positive �t was observed in hippocampal CA1 neu-
rons (Nishiyama et al., 2000; Wittenberg and Wang, 2006) and
explained as due to the Ca+ dynamics (Caporale and Dan, 2008).
This demonstrates that the memristive STDP response in 2T1R
synapse is compatible with learning functions in biological neural
networks.

Stochastic learning
Results in Figures 5, 6 suggests that, for any given �t, the poten-
tiation/depression of the synapse also depends on the initial state,
which introduces a certain degree of stochastic response in the
STDP characteristics. To study the stochastic behavior of STDP,
we performed experiments with a sequence of coupled TE and FG
pulses as in Figure 2, applied to the same synapse initially pre-
pared in a high resistance state. A total number of 55 different
sequences were applied, each including 10 spikes with randomly
chosen �t. Each random sequence was repeated 50 times to
achieve sufficient statistical significance. The time constant was
140 ms in all experiments and simulations.

Figure 7 shows (from top to bottom) the VTE waveform, the
VFG waveform and the corresponding resistance R for a random
sequence of 10 spikes. Read pulses similar to the waveform in
Figure 2 (not shown in Figure 7A) were applied after each spike
to measured R. Figure 7B shows the color map of the occurrence
of any value of conductance change R0/R as a function of �t
for all 27,500 random spikes. The ratio R0/R was defined as the
ratio between resistances before and after the STDP event. The
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FIGURE 6 | STDP response at variable low-resistance states. Variable
low-resistance states are obtained by setting the memristor device at
increasing compliance current IC as shown in the I–V curve (A). The STDP

characteristics show increasing LTP at increasing initial R, while LTD
characteristics change only slightly (B). Analytical calculations well account
for the experimental data as a function of IC.

FIGURE 7 | STDP over a random sequence of spikes. A sequence of
partially-overlapping PRE/POST spikes with random �t are applied to the
synapse, resulting in LTP or LTD depending on the relative delay (A). The
conductance change R0/R has been collected over 50 repeated
experiments with 55 different sequences, each containing 10 random
spikes. For any �t and R0/R, the probability has been reported in colour
scale (B). Calculated results show similar stochastic STDP characteristic (C).

maximum probability (red) indicates LTD for negative �t and
for relatively large positive �t, while LTP occurs for relatively
small positive �t. Figure 7C shows the color map of R0/R as a
function of �t for 104 simulated sequences assuming random �t
and using the same analytical switching model for the memristor
as in Figures 5, 6. The calculated color map shows a qualitative
agreement with the experimental STDP, indicating potentiation
at small �t > 0, and depression at negative �t and large pos-
itive �t. The STDP statistics, where different LTP and/or LTD
are obtained for any given �t, is mainly due to the dependence
on the initial state as discussed in Section Experimental STDP
Characteristics Experimental data in Figure 7B indicate a larger

spread of R0/R, which we attribute to the additional source vari-
ability due to the naturally stochastic switching, i.e., the physical
origin of the distribution spread in Figures 3A,C.

The impact of switching variability is also highlighted in
Figure 8, showing the values of R measured after each spike in a
sequence of 10 events with random timing �t. Figure 8A com-
pares 5 typical sequences always starting from the same initial
high resistance state (about 105 �), to study the effect of switch-
ing variability. The measured R displays random walk depending
on �t, which is shown in Figure 8B. Note the significant random
change among all trajectories due to the stochastic switching
during each set/reset operations. The largest variability is seen
for LTD, due to the large variability in the high resistance state
(see, e.g., Figures 3A,C). On the other hand, LTP leads to a certain
decrease of variability, since the set operation is mainly controlled
by IC and negligibly depends on the initial high-resistance state
(Ambrogio et al., 2014a).

PATTERNING LEARNING AND RECOGNITION THROUGH STDP
To verify that STDP in the 2T1R synapse is capable of pattern
learning and recognition, we adopted a 2 layer neuromorphic net-
work schematically shown in Figure 9. Here, N pre-synaptic neu-
rons provide spiking input to M post-synaptic neurons through
an array of NxM synapses (Zamarreño-Ramos et al., 2011).
Connections to PRE and POST in Figure 9 are organized accord-
ing to rows and columns, respectively, each requiring 2 lines for
connecting the 2T1R synapse, namely the TE and CG line from
PRE to the synapse and the BE and the FG between the synapse
and the POST.

To simulate pattern learning, we assumed that the N PRE
neurons belong to an artificial retina providing visual stimuli
corresponding to the 8 × 8 square pattern at the extreme left in
Figure 10A (N = 64). The pattern was fed synchronously from
PRE to POST through the synapse array, by applying a spike for
every white pixel while black pixel did not yield any spike. The
pattern was randomly alternated with random noise, consisting
of 95% probability for black and 5% for white signals in each
of the N pixels. The duty cycle of true pattern occurrence was
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FIGURE 8 | Stochastic LTP and LTD. The resistance (A) was plotted as a
function of the number of the spike within a sequence with determined
delay �t (B). The sequence was repeated 5 times to highlight the variability
of resistance change during LTP and LTD. natural switching variability leads
to random walk of R during each set/reset operation, with reset (LTD)
process showing generally larger stochastic variation compared to set (LTP)
process.

50%. All signals received at a POST were integrated according
to the scheme in Figure 1C, then a fire signal was triggered as
the internal potential Vint reached a given threshold. The fire sig-
nals were delivered from the POST to all connected synapses, and
dictated a conductance change according to the simplified STDP
characteristic in Figure 10B. This includes LTP for small �t > 0
and LTD for �t < 0 and for large �t > 0, according to the most
general response of the 2T1R synapse in Figures 5, 6. As a mini-
mum resistance R = 5 k� was reached, further potentiation was
inhibited in the synapse, while depression was inhibited above a
resistance R = 100 k�.

Figure 10C shows the calculated conductance 1/R for 64
synapses in a single column, which connected all PRE to a single
POST. Starting from a uniformly distributed random initial state,
the synapse conductance, or weight, generally follows 2 trends,
either increasing or decreasing with time due to repeated LTP
and LTD. The evolution of the synapse weights is also shown in
Figure 10A for 4 states, namely initial state and after 100, 500,
and 1000 epochs of pattern presentation. The pattern is seen to
rapidly potentiate the corresponding synapses, with potentiation

FIGURE 9 | Schematic illustration of the 2-layer neuromorphic network.

The first layer consists of N PRE, while the second layer consists of M
POST, thus resulting in a network of NxM synapses with 2T1R structure.

and depression occurring in white and black pixel positions,
respectively. On the other hand, a longer time is needed for
depression of unstimulated synapses, since depression relies on
uncorrelated random noise patterns. While potentiation of pat-
tern synapses takes about 30 epochs, the depression of other
synapses is completed in about 500 epochs. These results fully
support the capability for pattern learning and recognition by the
scheme in Figure 2, combined with the STDP response of our
2T1R synapse which was simplified in Figure 10B.

A 2-layer network similar to Figure 9 was previously shown to
lead to random specialization of POST neurons to distinct pat-
terns, such as the cars appearing in specific lanes on the highway
(Bichler et al., 2012). We verified the random specialization in
our system by considering a NxM network as in Figure 9 with
N = 64 (number of pixels in the pattern and number of PRE neu-
rons) and M = 10,000 (number of POST neurons). We presented
the 2 patterns in Figure 11A and b in a random sequence of pat-
terns (70% probability equally distributed between pattern 1 and
2) and random noise (30% probability). The initial values of the
synapses were randomly distributed as in Figure 10. Figure 11C
shows the percentage distributions of patterns recognized after
a total number of 103 epochs: Patterns 1 and 2 were recognized
with equal probability of about 48%, while no recognition was
possible in 4% of the cases. Most of these recognition failure are
due to incorrect recognition of the two patterns, converging to a
mixture of patterns 1 and 2, while some errors are due to very
slow learning, leading to incomplete learning at the final calcu-
lated epoch. Figure 11D shows the probability distributions for
potentiating, hence learning, pattern 1 and 2, identified as the
first epoch with all synapses completely potentiated. Both distri-
butions peak at about 20 epochs, with no preference for any of the
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2 patterns. Note that the patterns 1 and 2 were selected to have the
same number of black/white pixels, to ensure a constant average
firing rate of the POST. This accounts for the equal learning times
in Figure 11C. Figure 11D also shows the distribution of times
corresponding to the depression of all the synapses not belong-
ing to pattern 1 or 2. The distributions show a similar behavior
and peak at 500 epochs. The different timescale is caused by the
fact that depression is due to uncorrelated spikes originated by
random noise, while pattern learning is linked to the density of
patterns 1 or 2 and their related input frequency.

DISCUSSION
The proposed synapse circuit allows for asynchronous trans-
mission and plasticity controlled by the spiking delay between
the pre- and post-synaptic neurons. The synapse circuit adheres
to the conventional organization of the neural network, where
integrate-and-fire neurons serve as both input and output of
the communication and plasticity. In particular, the BE termi-
nal, being connected to the virtual ground input of the neuron,
serves as reference ground for the synapse circuit, while pulses of
arbitrary voltage are applied to the other 3 terminals, namely TE,

FIGURE 10 | Pattern learning and recognition through 2T1R synapses.

The input pattern was fed by the first layer of 8 PRE neurons toward
a second layer of 8 POST neurons, resulting in learning as
demonstrated by the evolution of the synapse weights (A). Each

synapse was changed according to a simplified STDP characteristic with
discrete delay (B). The conductance of pattern synapses increases due
to the learning process, while other synapses experience increasing
depression (C).

FIGURE 11 | Pattern competition during learning. Random submission of
pattern 1 (A) and pattern 2 (B) in a 8 × 8 synapse array results in learning of
either pattern with equal probability approaching 50%, including a minority of

error due to transition from one pattern to the other (C). Potentiation of
pattern synapses takes place in about 20 epochs, while depression of
out-of-pattern synapses requires around 500 epochs (D).
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CG and FG. This is different from previous approaches, where
the pre-synaptic pulse (spike) and the post-synaptic pulse (fire)
where applied to the TE and BE, respectively, of the resistive
synapse (Yu et al., 2011; Indiveri et al., 2013). It is also differ-
ent from other approaches employing 1T1R structures, where
STDP relied on a dynamic VT behavior of the transistor, achieved
through nanoparticle-containing gate dielectric (Subramaniam
et al., 2013). In fact, only standard transistor CMOS transistor
are needed in the 2T1R synapse in this work.

The transistors in the 2T1R structure are functional in achiev-
ing 2 necessary behaviors of the synapse array, namely STDP and
communication. On the one hand, the FG transistor allows for
a spike timing comparison between two pulses, namely the TE
pulse from the pre-synaptic neuron and the FG pulse from the
post-synaptic neuron (Ambrogio et al., 2013). Therefore, the FG
transistor is functional to plasticity. On the other hand, the CG
transistor allows for enabling communication from pre-synaptic
neuron to post-synaptic neuron in the neural network. If there
was no CG transistor, the TE pulse might affect the weight of
the synapse even without any fire from the post-synaptic neu-
ron. Note in fact that the CG voltage is high only during the
initial part of the TE pulse, at relatively low voltage. Therefore,
this transistor is functional to communication, while protect-
ing the memristor from the rather large TE voltage used for
plasticity.

In addition, transistors allow to limit the current flowing in
the memristive switch during the set transition, thus prevent-
ing uncontrolled switching and even irreversible breakdown of
the device. These latter events may result in excessive power con-
sumption due to low resistance value in the synapse, and/or in the
impossibility to reset the memristor because of excessive growth
of the conductive channel. Current limitation can be achieved
by biasing the transistor in the saturated regime at relatively low
gate voltage, which ensures that the maximum current after set
transition is limited. Finally, the transistor serves as selector in
the synapse array of Figure 9, which otherwise would be plagued
by significant sneak-path currents (Baek et al., 2005). Note that
other types of selectors would allow better scalability of the array,
e.g., p-n diodes (Baek et al., 2005), or threshold switch devices
(Cha et al., 2013), thanks to the 2-terminal structure. However,

2 terminals would not be sufficient for the local comparison of
spike timing which is needed for synapse plasticity control.

It has been pointed out that the necessity to generate ded-
icated waveforms within the neuron circuit might lead to an
excessive circuit overhead, thus conflicting with the need for very
large scale arrays with high synaptic densities (Kornijcuk et al.,
2014). Note however that the generator of the spike belongs
to the neuron circuit, thus a complex waveform should not
affect the density of synapses. Also, note that the waveforms in
Figures 1, 2 have been designed to achieve a bio-realistic STDP
as shown in Figure 4. Other waveforms and STDP character-
istics can be used with no impact on the pattern recognition
capability, while strongly alleviating the burden on the neuron
circuit. This is demonstrated in Figure 12, showing the square
waveforms for VTE and VFG (a) and the corresponding statis-
tical STDP characteristic (b) obtained from 7.5 × 104 random
spikes. Note that the STDP characteristics reflects the simple
shape of the spike and fire pulses, while we demonstrated that
the pattern learning behavior is not affected. This further demon-
strates the strength of the STDP process and the flexibility of
our 2T1R circuit in realizing LTP and LTD with a variety of
spike shapes. Note that pulse widths of the neuron spikes in
the range of 100 ms, which are needed to achieve real-time bio-
compatible neuromorphic behavior (Indiveri et al., 2011), do not
necessarily require large capacitors. In fact, time responses in
the 100 ms range are straightforwardly achieved in neuromor-
phic circuits through relatively small capacitances (e.g., 1 pF)
charged/discharged by extremely low current in MOS transistors
biased in the subthreshold regime (Mitra et al., 2009).

Low-power operation is a fundamental property of neuro-
morphic circuits. The energy consumption of our 2T1R synapse
for communication can be estimated to about 150 nJ from the
voltage waveform in Figure 1B assuming I = 50 μA. Assuming
an average spike frequency of 1 Hz, the power consumption for
communication should be around 150 nW. This value can be
reduced by decreasing the pulse-width of the VCG pulse and the
current during communication. On the other hand, the energy
consumption is slightly larger due to the larger voltage and cur-
rent needed for resistive switching. For instance, the LTP energy
is around 400 nJ for a current of 170 μA and a VTE of 2.4 V in

FIGURE 12 | Square-pulse STDP. The use of square pulses for VTE and VFG (A) allows to achieve STDP with square characteristics suitable to learning and
recognition (B), while requiring a simple circuit for pulse generation.
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correspondence of the positive peak. However, since the LTP fre-
quency is expected to be smaller than the spiking frequency, the
power consumption for LTP might be in the same range as the
communication power. Similar to the communication case, LTP
power can be reduced by properly decreasing the current (e.g., by
up to a factor 10) and the pulse width (up to a factor 103). This
allows for memristive-based synapses with relatively low power
consumption.

Other switching concepts might be used in alternative to oxide
memristors, e.g., spin-transfer-torque (STT) elements (Locatelli
et al., 2014) or phase change memory (PCM) elements (Kuzum
et al., 2012; Eryilmaz et al., 2014). However, oxide memristors
allows for a smaller power consumption since the switching chan-
nel area can be controlled through the transistor current during
the set transition, whereas the switching current is controlled by
the lithography-defined area of the device in both STT and PCM
devices, which thus can hardly be reduced below 50 μA (Ielmini
and Lacaita, 2011; Kim et al., 2011).

The use of a HfO2 memristor allows for CMOS compatible
process in the back-end, however other metal oxides can be used
in principle for the active switching layer, such as TaOx (Lee et al.,
2011). A careful material engineering is needed to identify the
best material properties for synaptic functionality, including, e.g.,
controllability of the synapse weight, stochastic switching and low
power operation.
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