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The prevalence of methamphetamine (METH) use is estimated at ∼35 million people
worldwide, with over 10 million users in the United States. METH use elicits a myriad of
social consequences and the behavioral impact of the drug is well understood. However,
new information has recently emerged detailing the devastating effects of METH on host
immunity, increasing the acquisition of diverse pathogens and exacerbating the severity
of disease. These outcomes manifest as modifications in protective physical and chemical
defenses, pro-inflammatory responses, and the induction of oxidative stress pathways.
Through these processes, significant neurotoxicities arise, and, as such, chronic abusers
with these conditions are at a higher risk for heightened consequences. METH use also
influences the adaptive immune response, permitting the unrestrained development of
opportunistic diseases. In this review, we discuss recent literature addressing the impact
of METH on infection and immunity, and identify areas ripe for future investigation.
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METHAMPHETAMINE (METH), A MAJOR PUBLIC HEALTH
PROBLEM
The growing popularity of Methamphetamine (METH), a street
drug associated with the severe neurological and physical con-
sequences afflicting its users, has created an increasingly serious
public health problem worldwide. In a 2011 United Nations sur-
vey, approximately 2.5% of Australians over the age of 14 have
tried METH, a prevalence rate three to five times higher than
those seen in the United States (USA), Canada, and the United
Kingdom (United Nations, 2011). In the USA, over one mil-
lion individuals aged 12 years and older—roughly 0.5% of the
American population—were reported to have sampled METH
(Colfax and Shoptaw, 2005; United Nations, 2011). According
to the USA Department of Justice, after alcohol and marijuana,
METH is the most commonly used recreational drug in many
states (Drug Enforcement Administration, 2007).

METH is a potent central nervous system (CNS) stimulant
that mimics the pharmacological effects of cocaine. The “rush”
that follows METH use is associated with the release of neu-
rotransmitters, including adrenaline, dopamine, and serotonin
(Downes and Whyte, 2005; Collins et al., 2014). Whereas the half-
life of cocaine is measured in minutes, however, that of METH
is measured in hours (∼8 to 24 h). Thus, the pharmacological
effects of METH are thus longer lasting than cocaine. In spite
of the potentially dangerous consequences of METH use, the
drug retains its popularity as a low-cost alternative to cocaine
and heroin. The relative ease of METH production has ensured
that prices remain low, particularly in Australia, where METH
use is more prevalent and widespread than in most other coun-
tries (Marwick, 2000; United Nations, 2011; Gong et al., 2012).
In recent years, however, the upsurge of drug enforcement and

control policies has significantly limited the availability of precur-
sor chemicals essential for METH production, raising purchase
prices and reducing the overall demand for the product (Drug
Enforcement Administration, 2007; Gong et al., 2012). General
METH use is seen as minimal exposure to the drug, primar-
ily involving first time users; whereas, chronic METH abuse and
dependence expose the user to a diverse range of adverse physical
and cognitive health consequences (Panenka et al., 2013). The rate
of treatment admissions for primary METH abuse has increased
over 3-fold in recent years (Colfax and Shoptaw, 2005).

Diverse routes for METH use exist, including oral ingestion,
smoking, snorting, intravenous injection, and anal insertion. The
intravenous administration of METH has become a popular
usage mechanism due to its ability to deliver almost immedi-
ate effects of euphoria (Hart et al., 2008). The sharing of drug
paraphernalia combined with METH’s perceived enhancement of
sexual pleasure and the association of its use with unsafe sex-
ual practices greatly increases the likelihood of the acquisition
of human immunodeficiency virus (HIV) and other infectious
diseases (Ellis et al., 2003; Urbina et al., 2004; Mansergh et al.,
2006; Nakamura et al., 2011). In addition, animal studies demon-
strate that METH suppresses both innate and adaptive immunity
(In et al., 2005; Peerzada et al., 2013). This review explores
recent research developments related to the effects of METH on
infection and immunity.

PHARMACOLOGICAL METH LEVELS IN HUMANS
The S-(+) enantiomer of METH ((S)-N-Methyl-1-phenyl-
propan-2-amine), dextromethamphetamine, is popularly used
among METH users for its potent effect on the cardiovascular
system and CNS (Li et al., 2010; Volkow et al., 2010). Patterns
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of METH intake are variable depending on the user; a self-
reporting study indicated that a majority of chronic METH
users consume the drug more than 20 days per month, at a
frequency of 1–3 doses per day (Saito et al., 2008). Typically,
people take 5–15 mg (low stimulation), 10–30 (common dose),
and 20–60 mg (strong) with both per-oral and intravenous
(i.v.) administration (Hart et al., 2008; Cruickshank and Dyer,
2009). Following ingestion, the metabolism of METH takes
place in the liver, where the cytochrome P4502D6 causes N-
demethylation and aromatic hydroxylation, forming the pri-
mary metabolites para-hydroxymethamphetamine (pOH-MA)
and amphetamine (AMP). Afterwards, the primary and other
minor metabolites (norephedrine, 4-hydroxyamphetamine, 4-
hydroxynorephenedrine, benzyl methyl ketoxime and benzoic
acid) are absorbed across the gastrointestinal tract. The con-
centration peak of METH in plasma after oral ingestion can be
detected at 3.13–6.3 h post-consumption and its metabolites peak
at 10–24 h (Gartner and Liu, 2002). The metabolite pOH-MA is
therefore one of the most stable biomarkers of METH abuse (Li
et al., 2010).

METH is often used in binges, and as the drug exhibits a
half-life of 11.4–12 h (Cho et al., 2001; Harris et al., 2003).
Recently published studies modeling binge patterns show that
after the fourth administration of 260 mg during a single day,
subsequently, produces blood levels of 2.5 mg/L, reaching as high
as 3 mg/L on the second day (Melega et al., 2007). Thus, binge
doses of 260 mg–1 g produce 2.5–12 mg/L blood levels. A study
conducted in Australia between 2000 and 2005 found that 68%
of 371 deaths in which individuals tested positive for AMPs
could be attributed directly to METH toxicity. METH concentra-
tion ranged from 0.2 to 15 mg/L (median, 0.2 mg/L), with AMP
levels registering at 0.01–2.0 mg/L (median, 0.07 mg/L) (Kaye
et al., 2008). It is important to establish that these concentra-
tions and peak values vary greatly depending upon the routes of
administration and detection technique.

Although the brain receives around 15% of the cardiac output
(114 ± 24 mL/100 mL/min) the concentration of METH, its dis-
tribution and metabolism varied in all the organs (Ito et al., 2003).
Interestingly, the effect of METH in brain structure and activity is
extensive. A study determined the distribution and bioavailabil-
ity of METH in several human organs using Positron Emission
Tomography, revealing a low rate of drug uptake in the brain
(9 min) compared to the other organs examined. Nevertheless,
the prolonged clearing period (>75 min), suggests a neurotoxic
effect due to the extended exposure to the drug (Volkow et al.,
2010).

PHARMACOLOGICAL METH LEVELS IN ANIMALS
The use of animal models has been widely used to evaluate the
effect of METH in the immune and nervous system, among oth-
ers. One study employing a murine model estimated how METH
is distributed to tissues. Tissue-to-serum METH ratios in rats are:
brain, 9.7; kidney, 35.3; spleen, 14.3 (Rivière et al., 2000). Levels
of METH and AMP in both female and male murine spleens
measured within a 72 h period after treatment with 5 mg/Kg
demonstrated high concentrations of METH (Male, 870, Female,
1310 ng/g) in comparison to lower levels of AMP (Male, 130,

Female, 270 ng/g) within the first hours after the initial injec-
tion (Saito et al., 2008). However, a typical dose of METH that
is self-administered (i.v.) by rats is 0.1–0.2 mg/kg that is equiv-
alent to a human dose (7–14 mg/70 kg) (Cook et al., 1992; Hart
et al., 2008; Kuczenski et al., 2009; Krasnova et al., 2010; Kousik
et al., 2014). Also, pigeons injected i.v. and intramuscularly (i.m.)
with 0.8 mg/kg of METH showed 100% of bioavailability; how-
ever, i.v. absorption was three times higher than i.m. In this
regard, some studies support that injection of METH in ranges
of 3.6–10 mg/Kg are considered lethal in animals (Hendrickson
et al., 2008). Similarly, a recent study showed an 8-fold higher cat-
alytic activity of METH in rhesus macaques compared to humans
due to enzymatic differences (Earla et al., 2014).

MECHANISMS OF NEUROTOXICITY
Administration of METH can increase blood–brain barrier (BBB)
permeability in rodents. Moderate to high doses of METH disrupt
the BBB in several regions, including the cortex, hippocampus,
thalamus, hypothalamus, cerebellum, amygdala, and striatum
that, in turn, are further injured by hyperthermia and, poten-
tially, by seizures (Sharma and Kiyatkin, 2009; Yamamoto et al.,
2010). Although it is unclear whether there is a relationship
between BBB injury and the damage to neurotransmitter systems,
BBB injury appears to contribute to striatal neuron degenera-
tion rather than dopaminergic terminal damage (Bowyer et al.,
2008).METH stimulates astrocytes to produce high levels of IL-
6 and IL-8, resulting in an inflammatory response that inhibits
neurogenesis in the brain, affects sub-ventricular and hippocam-
pal cells, reduces hippocampal progenitor cells. Similarly, METH
alters gene expression on astrocytes, halting their cell cycle and
proliferation (Shah et al., 2012; Jackson et al., 2014).

Mechanisms underlying METH-induced BBB damage include
alterations of expression and structure in tight junctions,
microglial activation, remodeling of BBB cytoskeleton, induc-
tion of neuroinflammatory factors, and energy related disruption.
METH, especially at high doses combined with physical exer-
tion, can cause hyperthermia and enhance reactive oxygen species
(ROS) production, thus triggering BBB breakdown (Sharma
et al., 2007; Ramirez et al., 2009; Northrop and Yamamoto,
2012). METH can induce the polymerization of proteins nec-
essary for the stability of the BBB. Therefore, when alterations
in proteins occur, the permeability of the barrier is affected and
migration of inflammatory cells, such as monocytes, arises more
frequently (Park et al., 2013). In murine models, the administra-
tion of low and high doses of METH shows an increase in IgG
immunoreactivity in the striatum (Urrutia et al., 2013).

Notably, administration of antioxidants attenuates BBB injury
in acute METH toxicity models and further implicates oxidative
stress in pathological effects (Sharma et al., 2007). One study sug-
gests that METH induces the opening of the BBB by activating
the nitric oxide synthases (NOS) present in the endothelial cells of
the brain capillary network (Martins et al., 2013). Oxidative stress
represents an imbalance between the production of ROS and the
BBB’s ability to readily detoxify the reactive intermediates or to
repair the resulting damage.

METH also alters the expression of several tight junction pro-
teins and increases the permeability of brain-derived primary
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microvascular endothelial cells (Mahajan et al., 2008; Ramirez
et al., 2009). The use of acute high doses of METH increases
the permeability of the BBB principally in the hippocampus,
while downregulation of tight junction proteins such as ZO-1,
Claudin-5, and occludin cause failure in the BBB, thus increas-
ing the expression of matrix metalloproteinase (MMP)-9 in the
hippocampal neurons (Martins et al., 2011). The regulation of
occludin levels is important to maintain the stability of the
endothelial tissue; however, METH causes the polymerization of
actin thereby hindering rearrangements, ultimately leading to a
functional disruption of the BBB (Park et al., 2013). MMP activa-
tion is thought to occur through several mechanisms, including
oxidative stress and cytokine production (Haorah et al., 2007;
McColl et al., 2008).

Collectively, these findings suggest that AMP-driven oxidative
stress followed by the activation of MMPs and breakdown of
tight junctions mediate BBB disruption; both the activation of
MMPs and oxidative stress can induce inflammation which could
be accompanied by an increase in cytokine production within
microglia, perpetuating damage and increasing BBB permeability
(Kim et al., 2005; Amantea et al., 2007; Block and Hong, 2007).
The consequences of BBB disruption are widespread and may
enhance the vulnerability of the brain to microbial toxins and
infection (Eugenin et al., 2013).

EFFECTS OF METH ON HOST IMMUNITY
The effects of METH on host immune response have not yet been
extensively described. Limited studies about the effects of METH
on immune function have, however, revealed that METH use has
profound immunological implications. Findings in humans, with
slight variance across ethnic groups, reveal that the uptake of a
particular METH isotope targets specific organ types, in which
concentrations (per/mL of tissue) were highest in the kidneys and
lungs; intermediate in the stomach, pancreas, liver, and spleen;
and lower in the brain and heart (Volkow et al., 2010). METH
use leads to profound consequences in both, innate and adaptive
immunity. Hence, investigations have begun to further elucidate
the cellular and molecular basis for METH’s induced immune
suppression, examples of which are discussed subsequently.

METH ALTERATIONS OF NATURAL PHYSICAL AND CHEMICAL
BARRIERS
The skin acts as a primary physical barrier to prevent the entrance
of pathogens, thereby serving as one of the innate immune
response’s first lines of defense (Proksch et al., 2008). Sweat glands
in the skin release various bactericidal and regulatory peptides,
restricting the development of pathogenic microbiota (Rieg et al.,
2006). METH has been detected in sweat 2 h after ingestion, with
traces remaining for periods of more than a week in cases wherein
multiple doses were administered (Barnes et al., 2008). No pre-
vious studies exist, however, aiming to understand the effect of
METH on microbiota and metabolites present in the skin (e.g.,
lactate, glycerol, pyruvate, ammonium cation, urea) (Kutyshenko
et al., 2011). In this regard, the administration of drugs such
as METH via injection is associated with the development of
necrotizing fasciitis. Significantly, heavy daily users of METH
frequently develop neurological manifestation of formication, a

sensation akin to insects crawling on or under the skin. The
result of formication is that users engage in constant skin “pick-
ing,” often causing the formation of ulcers that frequently scar.
A marked lack of hygiene among users may also be correlated to
higher rates of skin infections, abscess, and cellulitis (Rusyniak,
2013).

Another common sign of METH abuse is extreme tooth decay,
a condition known in the media as “METH mouth.” Users
with “METH mouth” have blackened, stained, or rotting teeth,
even among young and/or short-term users. The exact causes of
“METH mouth” are not fully understood. A common miscon-
ception is that METH directly causes the caries (Shaner et al.,
2006). The leading hypothesis is that METH constricts blood ves-
sels, thereby, limiting blood supply resulting in “dry mouth” or
xerostomia (Saini et al., 2005; Goodchild and Donaldson, 2007;
Heng et al., 2008; Hamamoto and Rhodus, 2009). A reduction in
saliva impairs the mouth’s capacity to neutralize harsh acids pro-
duced by oral bacteria after metabolizing carbohydrates, resulting
in erosion of the teeth and gums and increasing the susceptibil-
ity of teeth to damage (Shaner et al., 2006; Evans et al., 2012).
A more recent pilot study, however, found no difference in saliva
flow rates between users and non-users despite increased saliva
acidity in users and decreased buffer capacity in saliva.

The extent of tooth decay varies widely among METH users.
Richards et al., found that users who snorted METH had sig-
nificantly worse tooth decay than users who smoked or injected
it, although all types of users suffered from dental problems
(Richards and Brofeldt, 2000); however, a newer study suggests
the oral route, in contrast to intravenous or intranasal, as a better
predictor of “METH mouth” severity (Brown et al., 2013).

ROLE OF METH ON INNATE IMMUNITY
METH administration induces modifications in cellular compo-
nents including natural killer cells (NK), dendritic cells (DCs),
monocytes, macrophages, and granulocytes, indicating complex
mechanisms of immunosuppression (Harms et al., 2012). METH
alkalizes normally acidic organelles within macrophages, lead-
ing to the inhibition of phagocytosis and antigen presentation
processes (Tallóczy et al., 2008). Similar to chloroquine, METH
is a weak base capable of inducing a collapse of the pH gradi-
ent across acidic organelles. The microbicidal capacity of DCs
and macrophages is significantly decreased after METH expo-
sures (Tallóczy et al., 2008; Martinez et al., 2009). Furthermore,
the drug reduces the number of DCs and NK cells (Saito
et al., 2006; Harms et al., 2012). The reduction of monocytes
(Harms et al., 2012) and macrophages in the peritoneal zone
after METH administration has also been reported (Saito et al.,
2008). Similarly, antigen presentation in professional phagocytes
are dysregulated, diminishing the processing capacity of these
cells (Harms et al., 2012). METH-treated macrophages in tissue
culture displayed increased levels of pro-inflammatory cytokine
TNF-α, whereas similar cells stimulated with lipopolysaccharide
(LPS) showed increased amounts of IL-1β and IL-8 in addi-
tion to TNF-α (Liu et al., 2012). These modifications of the
innate immune response can result in impaired inflammatory
responses and the degradation of physical and chemical protective
barriers.
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METH AND INFLAMMATION
Much of the existing literature related to METH’s impact on
inflammation derives from research focusing on CNS toxic-
ity. For instance, METH increases glutamate (GLU) levels (Ito
et al., 2006) and GLU receptor stimulation increases microglial
activation (Thomas and Kuhn, 2005). Activation of GLU recep-
tors increases the production of TNF-α, IL-1β, IL-6, and IL-
8 (Chaparro-Huerta et al., 2005; Liu et al., 2012), resulting
in increased extracellular GLU levels by either inhibiting GLU
uptake or increasing GLU release from activated microglia (Zou
and Crews, 2005). Additionally, astrocytes play a role in METH-
induced toxicity through the modulation of GLU-mediated exci-
totoxicity and inflammation. Astrocytes regulate extracellular
concentrations of GLU, mainly via neurotransmitter uptake. For
METH, the activation of cortical astrocytes appears to be caused
by GLU release and protein kinase C activation, and is inhibited
by GLU receptor antagonism (Miyatake et al., 2005). Moreover,
METH’s stimulation of excitatory neurotransmitters and subse-
quent mGluR5-mediated activation of Akt/PI3K signaling path-
ways leads to the release of NF-kB, which then translocates from
the cytoplasm to the nucleus for the enhanced expression of IL-6
and IL-8 in astrocytes (Shah et al., 2012). The release of NF-
kB into the cytoplasm occurs via the phosphorylation of IKK by
activated Akt/PI3K, which subsequently phosphorylates p-IkB, a
regulatory protein for NF-kB (Shah et al., 2012). Under normal
physiologic conditions, however, astrocytes suppress microglial
activation through the release of anti-inflammatory cytokines and
neurotrophic factors (Neumann, 2001). For instance, astrocytes
suppress microglial activation by releasing TGF-β or IL-10 (Loftis
et al., 2011).

Another mechanism by which METH facilitates inflamma-
tory response is through the induction of oxidative stress. METH
administration stimulates a substantial production of dopamine
and the release of serotonin, which can undergo autoxidation pro-
cesses and produce hydrogen peroxide and super-oxide radicals
(Flora et al., 2003). In addition, METH can intensify cellular oxi-
dation via the depolarization of mitochondria and, as mentioned
previously, enhanced production of extracellular GLU, both of
which are well known to boost levels of ROS (Shah et al., 2012).
These oxidative disturbances in cellular redox status can incite the
activation of various transcription factors, such as NF-kB, AP-1
or CREB, which, in turn, stimulate specific redox-regulated tran-
scription factors that regulate gene expression for inflammatory
cytokines and adhesion molecules (Shah et al., 2012).

METH AND ADAPTIVE IMMUNITY
T-cells play critical roles in orchestrating immune responses
(Anderton, 2006) because their activation and proliferation are
characteristic of adaptive immune responses. The mechanisms
underlying the interplay between cells of the adaptive immune
system and METH are currently unclear. However, the data firmly
establishes that METH adversely impacts adaptive responses that
render the host more susceptible to progressive diseases, particu-
larly HIV (In et al., 2005; Martinez et al., 2009).

Murine models show that METH modifies thymic and splenic
cellularity and alters peripheral T lymphocyte populations (In
et al., 2005). High dose METH intake induces apoptotic death

in rat thymic and splenic lymphocytes and produces severe
immunosuppression, which could contribute to the higher rate of
infections observed in chronic METH users (Harms et al., 2012;
Peerzada et al., 2013). For instance, rodent studies demonstrate
that METH alters cytokine response in retroviral-infections (Yu
et al., 2002; Liang et al., 2008), alters gene expression of immune
cells (Mahajan et al., 2006), and disturbs thymic CD4+/CD8+
T-cell ratios (Yu et al., 2002; In et al., 2005).

METH reduces T cell infiltrates in the lungs, inhibiting T cell
proliferation and reducing the capacity of these cells to main-
tain a protective immune response against respiratory pathogens
(Martinez et al., 2009). Similarly, METH-exposed mice demon-
strated elevated levels of early response IL-6 and IL-10 in tissue
homogenates, which could indicate the development of a non-
protective Th2 response against bacterial and fungal pathogens
in the respiratory tract, even when Th1 cytokines are present
(Peerzada et al., 2013).

An alternative mechanism for altered T-cell function is that
METH modifies oxidative stress responses. As discussed earlier,
the effects of oxidative stress on suppressed signal transduction,
transcription factor activities, and diminished cytokine produc-
tion in response to antigen stimulation in T cells has been docu-
mented in several model systems (Flora et al., 2003; Shah et al.,
2012). The ability of reactive oxidative free radicals to impair T
lymphocyte function has been documented in various human
pathologic conditions, specifically AIDS, in which oxidative stress
can hamper host control of retroviral replication (Potula et al.,
2010).

Interestingly, a recent finding suggests that METH alters intra-
cellular calcium mobilization in T cells, resulting in subsequent
production of oxidative free radicals, a phenomenon associated
with mitochondrial damage and weakened T cell function (Potula
et al., 2010). Mitochondria serve as a source of both intra-
cellular ROS and ATP production, a process regulated by the
second messenger, calcium. METH exposure elevates levels of
cytosolic calcium, however, and leads to the saturation of the
electron transport chain, which contributes to the acute produc-
tion of oxidative free radicals and ultimately results in oxidative
alteration of proteins, loss of intracellular ATP levels in T cells
and mitochondrial dysfunction (Potula et al., 2010). A compen-
satory down-regulation of mitochondrial proteins from chronic
METH treatment can incite a long-term cellular redox imbalance,
weakening T cells’ ability to effectively respond to opportunistic
pathogens (Potula et al., 2010; Chandramani Shivalingappa, 2012;
Martins et al., 2013).

METH FACILITATES THE ACQUISITION OF INFECTIOUS
DISEASES
In addition to psychosocial aberrations, infections are serious
complications of chronic METH use. Moreover, the intoxicating
effects of METH alter judgment and reduce inhibitions, leading
people to engage in unsafe activities, increasing risk for acquiring
transmissible microbes and other opportunistic infections; these
findings have been documented worldwide (Plankey et al., 2007;
Volkow et al., 2007; Ye et al., 2008; Sutcliffe et al., 2009; Parry
et al., 2011; Borders et al., 2013; Eugenin et al., 2013; Heninger
and Collins, 2013; Khan et al., 2013; Stahlman et al., 2013; Liao
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et al., 2014). Former and current drug users have higher risks to
acquired sexually transmitted diseases (STDs) (Barry et al., 2009;
Miller et al., 2009; Cranston et al., 2012; Javanbakht et al., 2012;
Wang et al., 2012; Chew Ng et al., 2013). These infections result
from the high association of METH use and inconsistent condom
use, unprotected sex incentivized by money, and high-risk sexual
partner types (Johnston et al., 2010; Borders et al., 2013; Stahlman
et al., 2013). Hence, there are increased risks for diverse infectious
diseases and these impaired individuals have a reduced capacity
to combat microbial challenges (Cohen et al., 2007; Patel et al.,
2013). In this regard, current clinical and empirical knowledge on
the impact of METH on the acquisition of infectious diseases is
discussed here.

METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA)
MRSA is the single most important bacterial pathogen in infec-
tions among injection drug users, with skin and soft-tissue infec-
tions (SSTI) being extremely common (Gordon and Lowy, 2005).
Their incidence is difficult to estimate because such infections are
often self-treated. In this regard, a study revealed that MRSA was
isolated from 61% of abscesses and 53% of purulent wounds eval-
uated in the US emergency departments in all type of patients
suggesting that it is likely that complicated cutaneous lesions in
drug users are caused by this bacterium A cross-sectional study of
IDUs in San Francisco found that 32% had an abscess, cellulitis,
or both (Binswanger et al., 2000). Nasal carriage of MRSA is sig-
nificantly increased in METH uses and MRSA disease occurs in
over half of colonized drug addicts (El-Sharif and Ashour, 2008).

In addition, skin-picking is also associated with MRSA SSTI.
As previously stated, METH use causes formication, which
can lead to skin-picking behavior and skin breakdown. METH
abusers often live in unhygienic circumstances. Moreover, unsafe
injection of METH and poor injection hygiene (e.g., lack of skin
cleaning before injecting), injecting with unsterile equipment and
contaminated drug solutions can introduce high bacterial loads
(Frontera and Gradon, 2000). Significantly, drug solutions may
contain particulate matter (e.g., talc) that damage cardiac valves
if injected intravenously (Frontera and Gradon, 2000). Chronic
METH use may increase the incidence of cardiovascular pathol-
ogy (Wijetunga et al., 2003; Yu et al., 2003) and, if injected,
infective staphylococcal endocarditis (Cooper et al., 2007).

STDs
The mind-altering effects of METH cause behavioral modifica-
tions, leading people to engage in sexual activities that put them
at risk for acquiring transmissible diseases (Ellis et al., 2003). In
addition to HIV and hepatitis, METH use is associated with an
increased risk for and incidence of other STDs, including gen-
ital warts, syphilis, gonorrhea, and chlamydia (Hirshfield et al.,
2004a,b; Mansergh et al., 2006; Rhodes et al., 2007; Mimiaga et al.,
2008; Barry et al., 2009; Cranston et al., 2012; Javanbakht et al.,
2012; Valencia et al., 2012). In a USA study, bacterial and viral
STDs were significantly more common in METH users (odds
ratio 3.8), and the risk to acquire STDs in METH users was
even greater than that associated with cocaine (Hirshfield et al.,
2004b). Furthermore, high levels of METH use are observed in a
poly-drug use lifestyle, raising sexual risky behaviors (Khan et al.,

2013). In particular, METH use is associated with increased risk
for syphilis and gonorrhea in gay and bisexual men (Shoptaw
et al., 2002; Wong et al., 2005; Taylor et al., 2007). In this regard,
METH use is associated with the syphilis cases reported in China,
including heterosexual and homosexual men and female sex
workers (Kang et al., 2011; Liao et al., 2013, 2014).Furthermore,
syphilis infection increases the transmission and acquisition of
HIV (Xiao et al., 2010). The minimal amount of studies aiming to
address the correlation between METH use and syphilis cases in
several countries may dampen what role this drug plays in disease
transmission and resistance to antibiotics.

HEPATITIS
METH abuse, hepatitis C virus (HCV) infection and HIV disease
are overlapping epidemics in the USA and worldwide (Soriano
et al., 2002; Letendre et al., 2005). Illicit drug-using individuals
are at especially high risk for acquisition of and disease from HCV
(Day et al., 2003; Hagan et al., 2005; Smyth et al., 2005). HCV
results in ∼20,000 infections and 8000–10,000 deaths annually
in the USA (Ye et al., 2008; Klevens et al., 2009). HCV infec-
tion is particularly associated with injection use (Gonzales et al.,
2006). Notably, HCV is prevalent in HIV patients (Ranger et al.,
1991). In fact, HIV-HCV co-infection is found in 50–90% of
HIV-infected drug users and chronic HCV infection increases the
morbidity and mortality rates (Letendre et al., 2005; Soriano et al.,
2002). Hence, a substantial proportion of METH users with or
without HIV infection has HCV (Hahn et al., 2001; Miller et al.,
2004; Lea et al., 2013), suggesting that METH abuse is a risk fac-
tor for HCV. Importantly, METH abuse significantly increases
HCV penetration into the brain of HIV-infected patients, exac-
erbating cognitive impairments (Letendre et al., 2007). Although
risky behavioral practices, such as sharing contaminated nee-
dles and sexual activity after using METH may play an impor-
tant role in HCV transmission, there is relatively little infor-
mation available about whether METH directly enhances HCV
replication.

METH inhibits immune responses in the liver, facilitating
HCV replication in human hepatocytes (Ye et al., 2008). METH
inhibits intracellular interferon alpha (IFN-α) expression in
human hepatocytes, which is associated with increased HCV
replication. In addition, METH compromises the anti-HCV effect
of IFN-α. In this regard, METH inhibits the expression of the sig-
nal transducer and activator of transcription 1, a key modulator
in IFN-mediated responses. METH down-regulates the expres-
sion of IFN regulatory factor-5, a crucial transcriptional factor
that activates the IFN pathway (Ye et al., 2008). The fact that
METH compromises IFN-α-mediated innate immunity against
HCV indicates that this drug may have a cofactor role in HCV
pathogenesis.

Although less well studied, METH also appears to increase
the risk for disease due to hepatitis A virus and hepatitis B virus
(HBV) (Gonzales et al., 2008). The factors associated with these
infections are similar to that of HCV acquisition. For instance,
an outbreak of HBV occurred in a group of METH-abusing indi-
viduals sharing injection drug paraphernalia (Vogt et al., 2006).
Furthermore, fulminant liver failure due to HBV may be more
common in the setting of METH injection (Garfein et al., 2004).
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HIV
There is compelling evidence, although limited in quantity, from
both animal and in vitro studies that illicit drugs and alcohol
directly affect intracellular HIV multiplication, progression to
AIDS, and death. Previous research indicated that METH might
influence viral entry and integration at the host genome level,
promoting HIV production and viremias (Liang et al., 2008;
Toussi et al., 2009; Marcondes et al., 2010; Nair and Saiyed,
2011). Specifically, findings suggest an indirect dysregulation of
chemokines and costimulatory molecules via DCs, macrophages,
and CD4+ T lymphocytes, enabling the pathogenesis of HIV.

HIV infection is highly regulated by the expression of the HIV
entry co-receptors CXCR4 and CCR5. METH-treated groups
demonstrated that both of these receptors exhibited up-regulated
expression after METH treatment on dendritic cells, signifying
increased susceptibility to HIV infection (Liang et al., 2008; Nair
et al., 2009; Nair and Saiyed, 2011). In addition, METH exposure
significantly reduced expression of ERK2 and up-regulated p32
MAPK genes. In general, the genes from these signaling pathways
govern the regulation of cytokines (IL-2, IL-10, and TNF-α) and
if altered, can enhance the production of new HIV virions and
deplete CD4+ T cells from the host’s immune system (Nair et al.,
2009; Nair and Saiyed, 2011). Similarly, METH has demonstrated
influence over dopaminergic receptors in previous findings, caus-
ing increases in dopamine concentration in extracellular spaces.
This excessive accumulation eventually leads to the degeneration
of the striatal dopamine terminals and the formation of reac-
tive oxidative stress molecules. In a recent study, D1 and D2
receptors were deleted and METH-treated cells were observed
for changes in genetic expression of CCR5 (Nair et al., 2009).
Results showed that both D1 and D2 deficient cells reversed the
up-regulatory effects of METH on DCs, indicating their involve-
ment in METH-induced HIV infectivity (Reynolds et al., 2007;
Nair et al., 2009).

Some factors associated with METH abuse include emotional
reasons, social stigmas, depression, heritability, patterns of child-
hood abuse, and low income (Semple et al., 2008). A growing
body of research supports the relationship between METH use
and an increase in behaviors (sexual and those related to IDU)
that increase risk for HIV infection. Chronic METH use is asso-
ciated with a 2-fold higher risk of HIV acquisition (Plankey et al.,
2007). Among gay and bisexual men, METH is associated with
high-risk sexual behavior, HIV infection, and predicts a high inci-
dence of AIDS (Marshall et al., 2011; Nakamura et al., 2011; Lea
et al., 2013). In addition to the above-mentioned factors, in a
multi-cohort analysis of the LGBT (Lesbian, Gay, Bisexual and
Transgender) community, other risk factors for HIV in METH
users strongly correlated with young age, IDU, and depression.
METH exacerbates HIV pathology, including cognitive deficits,
cardiovascular compromise, dental decay, and is strongly sus-
pected to inhibit normal immunological response to secondary
infections, such as HCV (Carey et al., 2006; Gonzales et al., 2006;
Cruickshank and Dyer, 2009).

HIV infection is associated with progressive CD4+ T-cell
depletion and immune dysregulation. Direct neurotoxic effects
of METH putatively aggravate HIV-associated neuronal injury
(Gartner and Liu, 2002; Williams and Hickey, 2002). In addition

to CD4+ T-lymphocytes, mononuclear phagocytes are primary
targets for HIV. HIV-infected macrophages survive for months,
actively producing and spreading the virus. METH enhances
HIV replication in human macrophages by up-regulation of
CCR5 expression, augmenting infectivity and reinforcing the
transport of infected leukocytes across the blood brain barrier
(Liang et al., 2008). METH administration significantly increases
HIV-1 production by both HIV-infected monocytes and CD4+
T-lymphocytes in vitro. METH increases HIV production and
viremia in mice transgenic for a replication-competent HIV
provirus and human cyclin T1 (Toussi et al., 2009). Interestingly,
METH’s interaction with macrophages has illustrated the down-
regulation of TLR9 expression, aiding in the HIV infection of
these innate cells by mitigating the receptor’s antiviral effects (Cen
et al., 2013).

METH and HIV-1 appear to cause more neurocognitive
deficits than either alone, but their interaction is poorly under-
stood (Rippeth et al., 2004; Cadet and Krasnova, 2007). A trans-
genic mouse expressing the viral envelope protein gp120 in
the CNS has significantly more pronounced stereotypic behav-
ioral responses to METH relative to parental mice, providing
in vivo evidence that HIV affects the brain’s response to the drug
(Roberts et al., 2010). Additionally, METH serves as an agonist
for the NMDA (N-Methyl-D-aspartate) receptor, activating IDO
and COX-2 expression as well as facilitating the eventual produc-
tion of QUIN, a neurotoxin also induced during HIV infection
and can expedite neuronal apoptosis when these mechanisms are
combined (Nair and Samikkannu, 2012). Lastly, an evaluation
of the impact of METH and Tat on the Wnt/β-catenin signaling
pathway, a neuroprotective pathway vital in various CNS func-
tions and negatively regulates HIV-1 replication in astrocytes,
revealed that they amplified the inhibitory effect, yet employed
individual cascades in an astrocytoma cell line (U87MG) to
suppress β-catenin-mediated signaling (Sharma et al., 2011).

HIV pathogenesis can also be enhanced through METH abuse
via regulation of members from the signaling lymphocytic acti-
vation family (SLAM), which potentially indicates a mechanism
by which the drug exacerbates HIV infection (Harms et al.,
2012). CD150, a SLAM molecule, was up-regulated on CD4+
T cells after METH treatment making these cells susceptible to
HIV infection (Harms et al., 2012). METH use enhances HIV
neuropathogenesis magnifying the effect of dopamine on HIV
infection of macrophages (Gaskill et al., 2009). Although we are
just beginning to understand the multifaceted, complex effects of
METH in the context of HIV infection, the limited information
available suggests that METH facilitates HIV spread, increasing
immune cell dysfunction, and exacerbating neuroAIDS.

OPPORTUNISTIC FUNGI
Fungal pathogens have been recently used as empirical models
to understand the impact of METH use on host homeostasis
and increased permissiveness to opportunistic microorganisms.
Histoplasma capsulatum is the most prevalent cause of fungal
respiratory infections, representing 53.19% of cases of endemic
mycoses in the US (Chu et al., 2006). Since H. capsulatum is
endemic to the Midwestern USA, where METH is a critical
public health issue; the fungus is an ideal model organism to
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study the impact of METH in a systemic disease model. METH
abrogates normal macrophage function, resulting in accelerated
disease in murine histoplasmosis (Martinez et al., 2009). METH
decreases phagocytosis and killing of H. capsulatum by primary
macrophages. METH exposed H. capsulatum-infected mice have
increased fungal burdens, increased pulmonary inflammation,
and decreased survival. METH exposure results in cytokine dys-
regulation, aberrant processing of yeasts within macrophages, and
immobilization of MAC-1 receptors on the macrophage surface.
Additionally, METH inhibits T cell proliferation and alters anti-
body production, both important components of adaptive immu-
nity. Hence, it is established that METH alters the immune system
of a mammalian host, resulting in enhanced disease (Martinez
et al., 2009).

The encapsulated fungus Cryptococcus neoformans is the most
common cause of fungal meningitis in patients with AIDS
killing = 600,000 people worldwide (Park et al., 2009). Using
a systemic mouse model of infection and in vitro assays, it was
recently demonstrated that METH stimulates fungal adhesion,
capsular polysaccharide release, and biofilm formation in pul-
monary tissue (Patel et al., 2013). Interestingly, structural analysis
of the capsular polysaccharide of METH-exposed cryptococci
revealed that METH alters the carbohydrate composition of this
virulence factor, highlighting the fungus’s ability to adapt to envi-
ronmental stimuli, a possible explanation for its pathogenesis.
Additionally, METH facilitates C. neoformans dissemination from
the respiratory tract into the CNS. METH alters BBB integrity and
modifies the expression of tight junction and adhesion molecules
(Eugenin et al., 2013). These findings provide novel evidence
of the impact of METH abuse on the integrity of the cells that
comprise the BBB and protect the brain from infection.

CONCLUSION AND FUTURE PERSPECTIVES
METH use has become increasingly prevalent in recent years, cre-
ating a severe public health epidemic and societal burden. The
drug adversely changes user behavior, including putting METH
users at high risk for the acquisition of diverse infectious dis-
eases. Recent studies have identified a causal linkage between
METH and immune dysfunction in mature mammals. METH
immunosuppression may underlie the mechanism for the rapid
development of AIDS in METH users, progressing from HIV
to AIDS within only a few months (CDC, 2007). Investigators
are just beginning to decipher the complex effects of METH in
the context of HIV infection, but the limited nature of available
information suggests that this drug dramatically impacts disease.
Understanding the specific mechanisms of METH abuse and HIV
will require large epidemiological studies as well as the utilization
of relevant animal models that reproduce salient features of HIV
infection in humans and are devoid of numerous confounding
factors present in human studies.

Another important question yet to be answered is how METH
disarms the adaptive immune system, further rendering the host
more susceptible to opportunistic infections. We recently showed
that the impairment of adaptive immunity by METH dimin-
ishes the ability of mammalian hosts to mount and maintain
efficient immune responses to pathogens (Martinez et al., 2009).
However, the mechanisms responsible for altered regulation of

T- and B-cells in METH-exposed hosts require further study.
Identification of these underlying mechanisms will highlight new
therapeutic and prophylactic methods to improve immunity in
the context of drug abuse. These goals are of considerable signif-
icance in the fields of immunity, host-pathogen interactions and
drug abuse.

There is an urgent need for innovative METH treatment inter-
ventions to prevent the acquisition and transmission of infec-
tious diseases. Through utilization of drug abuse treatment and
community-based outreach programs, drug abusers can change
their HIV risk behaviors (Garfein et al., 2010; Miller et al., 2010;
Naar-King et al., 2010). Through targeted outreach and aware-
ness programs, the prevalence of drug abuse and drug-related
risk behaviors, such as needle-sharing and unsafe sexual practices,
can be reduced significantly, thus decreasing the risk of disease
acquisition. This is a challenge because due to recent reduction
in healthcare funding usually compromises the viability of these
preventive programs. Healthcare providers should be trained to
recognize signs of METH addiction, and work openly and hon-
estly with their patients to address the detrimental effects of
METH addiction.

At this time, cognitive behavioral and contingency manage-
ment interventions are the most effective treatments for METH
addiction (Rawson et al., 2004; Roll et al., 2006). For example, the
Matrix Model is a comprehensive behavioral treatment approach
for the reduction of METH abuse that merges cognitive therapy,
drug testing, family education, 12-Step support, individual coun-
seling and reinforcement for nondrug-related activities (Rawson
et al., 2004). Contingency management interventions also offer
tangible incentives in exchange for participating in therapy and
sustaining abstinence.(Roll et al., 2006) Currently, no specific
medications exist that counteract the effects of METH or that pro-
long abstinence from the abuse of METH by an addict. However,
novel anti-METH immunotherapies, primarily in the form of
monoclonal antibodies and lipid-based vaccines, are in early clin-
ical trial phases and act as pharmacokinetic antagonists, isolating
METH and its metabolites from vulnerable areas in the brain and
minimizing the toxic effects of the drug (Peterson et al., 2013;
Rüedi-Bettschen et al., 2013; Collins et al., 2014; Hambuchen
et al., 2014).

Finally, the research described to date is likely to be only the tip
of the proverbial iceberg, such that numerous other diseases, espe-
cially infectious diseases, are likely to be significantly modified by
METH. The propagation of this disease, along with many other
viral and bacterial contagions, demonstrates the necessity for con-
tinued studies in this area of healthcare and substance abuse. Until
the use of METH is strictly curtailed, the impact of METH on our
society will continue to be severe.
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