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Testosterone influences the brain via organizational and activational effects. Numerous
relevant studies on rodents and a few on humans focusing on specific behavioral and
cognitive parameters have been published. The results are, unfortunately, controversial
and puzzling. Dosing, timing, even the application route seem to considerably affect
the outcomes. In addition, the methods used for the assessment of psychometric
parameters are a bit less than ideal regarding their validity and reproducibility.
Metabolism of testosterone contributes to the complexity of its actions. Reduction to
dihydrotestosterone by 5-alpha reductase increases the androgen activity; conversion
to estradiol by aromatase converts the androgen to estrogen activity. Recently, the
non-genomic effects of testosterone on behavior bypassing the nuclear receptors
have attracted the interest of researchers. This review tries to summarize the current
understanding of the complexity of the effects of testosterone on brain with special focus
on their role in the known sex differences.
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INTRODUCTION
Despite current efforts of the European commission to combat
gender issues with respect to gender equality, men and women
are different in several important aspects (Cahill, 2014). These
aspects include cognitive functioning and behavioral traits. Some
of these may be socially induced, but scientists have showed on
intact animals that other factors such as genetics and gender
itself are mostly responsible forthe sex differences in behavior
and cognition. Therefore, the current research strategies are call-
ing for including both males and females in the research in order
to report the possible gender differences (Ruigrok et al., 2014).
Indeed, the exact mechanisms and reasons of sex differences in
brain structures that mediate some of these functional dissim-
ilarities are unknown. Genetics and endocrine factors are the
most prominent biological explanations and are interconnected.
Testosterone is the major male sex hormone. It is present in
women, although in much lower concentrations. Testosterone has
also been intensively studied in relation to sex differences and
behavioral functions. This review focuses on physiology of testos-
terone to give the reader understanding of the mechanisms and
complexity of testosterone action and then tries to summarize the
studies and experiments focusing on the functional changes in
anxiety, depression, spatial abilities and memory. Readers inter-
ested in sex differences and brain structures might find the needed
information in the recently published focused review (Filova
et al., 2013).

TESTOSTERONE PHYSIOLOGY
Testosterone is produced mainly in Leydig cells of testes in males,
and in ovaries in females. In both, testosterone can be synthetized

in the adrenal gland cortex (Burger, 2002; Dohle et al., 2003).
However, in addition to the classic steroidogenic organs such as
gonads, adrenals and even placenta, the active biosynthesis of
steroids also occurs in the brain (Mellon et al., 2001). This syn-
thesis can be either de novo from the cholesterol, or testosterone
is derived from classical steroids as is deoxycorticosterone or pro-
gesterone, which enter through blood stream into nervous system.
The latter one depends on the enzymatic ability of the neural
region or cell. The key regulatory enzyme is Steroidogenic acute
regulatory protein (StAR) (Miller and Auchus, 2011). This phos-
phoprotein mediates the transfer of cholesterol from the outer to
the inner mitochondrial membrane, from where cholesterol can
be further processed by corresponding enzymes. The StAR gene
is expressed solely in the steroidogenic tissues. However, StAR
mRNA expression in a rat brain was first shown by Furukawa
(Furukawa et al., 1998) and confirmed in humans and mouse
brains in several regions by immunohistochemistry.

The complexity of testosterone mechanism of action is under-
lined by its metabolism and steroid nature. The classical view sug-
gests genomic mechanism, i.e., after translocation into cytoplasm,
testosterone binds the androgen receptor, and subsequently after
transportation into the nucleus it binds on the hormone response
element at DNA, where it activates or silences the expression
of genes and subsequent protein synthesis (Tsai and O’malley,
1994). During recent years, a new pathway for non-genomic
mechanism was shown. This can include activating the mem-
brane receptors and thus activating the second messengers, or
after translocation to the cell, testosterone can either directly
activate second messenger intracellular cascade, or can bind to
its respective receptor and as a complex of hormone-receptor it
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can activate the second messenger cascade (Michels and Hoppe,
2008). Additionally, testosterone can be changed into either estra-
diol by aromatase or into dihydrotestosterone by reductase. The
pathway depends on the enzymatic equipment of the cells.

The synthesis of sex hormones is ultimately controlled by
gonadotropin-releasing hormone (GnRH), which is produced by
the hypothalamus and which stimulates the pituitary gland to
release luteinizing hormone and follicle stimulating hormone,
where LH increases the expression of StaR protein in target cells
(Ubuka et al., 2014). GnRH secretion in adulthood is pulsatile
and highest during sleep with subsequent highest peaks of testos-
terone to be during the early morning hours (Lord et al., 2014).
Nevertheless, the testosterone levels decline gradually with aging,
mainly due to the attrition of Leydig cells and hypothalamic
GnRH pulse generation slow down. Rapid drop can be observed
in the 6th decade of life in males.(Basaria, 2013). A higher inci-
dence of mood disorders that occurs with aging is then related to
decreased testosterone and/or other androgens. However, not all
studies agree with this simple explanation. Sartorius et al. showed,
that there was no decline in testosterone levels in males who self-
reported to be in very good health. Indeed, a subgroup of patients
who were smoking and/or obese was associated with age related
decline in serum androgens (Sartorius et al., 2012). Similarly,
Camacho et al. reported that lifestyle factors and body weight
were more important in maintaining the plasma testosterone
levels than aging itself (Camacho et al., 2013).

In any respect, the causal role of testosterone deficiency and
behavioral disorders including effect on cognitive abilities is still
debated. Therefore, in the next chapters we will try to summarize
the main experimental studies on individual behavioral traits.

ANXIETY
Our daily decision-making as well as response to stress is our
everyday experience. Indeed, many factors contribute and even
more factors modify the decision-making and stress reaction,
with anxiety level to be one of them. Nevertheless, it has clearly
been shown, and recently reviewed that women show higher
anxiety in comparison to men (Mchenry et al., 2014). From all
behavioral parameters, the anxiety seems to be most sensitive to
testosterone. The most cited paper analyzing the effects of testos-
terone on anxiety in mice has shown in several experiments that
testosterone—either endogenous or exogenous decreased anxi-
ety in elevated plus maze (Aikey et al., 2002). In addition, the
same study showed that this anxiolytic effect of testosterone is
dose-dependent and very likely mediated by 5-alpha reductase
that reduces testosterone to dihydrotestosterone. The study was
conducted in male mice, but similar anxiolytic effects of single
testosterone administration resulted in reduced fear of healthy
women (Van Honk et al., 2005). In rats, a single testosterone
injection did not reduce anxiety, however, a repeated admin-
istration had anxiolytic effects tested by the burying behavior
test (Fernandez-Guasti and Martinez-Mota, 2005). A possible
mechanism can include the androgen receptor, as its blockade
has been shown to prevent the testosterone-induced anxiolysis.
Similar results were obtained in our experiment. However, the
anxiolytic effect was observed only in the light-dark box. We
were not able to reproduce the anxiolytic effects of testosterone

in the elevated plus maze and in the open field (Hodosy et al.,
2012). On the other hand, flutamide alone had anxiolytic effects
in the open field. This suggests that the association between
testosterone and anxiety might not be linear. A number of exper-
iments on gonadectomized rats from the lab of professor Frye
further showed that dihydrotestosterone 3-alpha metabolites can
be the mediators of testosterone anxiolytic effects (Edinger and
Frye, 2004, 2005). In addition, blockade of the dihydrotestos-
terone transformation to 3-alpha androstanediol by a 3-alpha
hydroxysteroid dehydrogenase inhibitor prevented the anxiolysis
(Frye and Edinger, 2004). Age-related decline in cognitive and
affective functions was associated with lower concentrations of
testosterone metabolites in the hippocampus. Again, this effect
blocked by administration of 3-alpha metabolites administra-
tion (Frye et al., 2010). Another mechanism of anxiolytic effect
of testosterone was explained in recently published experiment,
where exogenous or endogenous opioids could modulate anxiol-
ysis (Khakpai, 2014). In this study, the gama aminobutyric acid
systemthat has been proposed in the past, on the other hand,
did not alleviate the anxiety level (Roohbakhsh et al., 2011). An
important determinant of the postnatal association between anx-
iety and testosterone or its metabolites might be prenatal stress.
Stress induced during gestation resulted in both, reduced testos-
terone and increased anxiety of the adult offspring (Walf and
Frye, 2012). Taken together, the results are consistent and despite
differences in the methodology it seems clear that testosterone
reduces anxiety in both genders. Its higher concentrations in men
might be the reason for the sex differences in anxiety. However,
a very important study in rhesus monkeys showed that phar-
macological castration reduced and testosterone supplementation
normalized anxiety levels (Suarez-Jimenez et al., 2013). A result
that is in contrast to the majority of literature of experiments
in rodents. Of course, this discrepancy might be discussed with
major differences in the methodology—other behavioral tests,
and in the intervention—surgical vs. pharmacologic castration.
But in general, experiments on monkeys are more relevant to
human behavior and, thus, this study must not be overseen.
Some of the animal experiments on testosterone and anxiety are
summarized in Table 1.

DEPRESSION
Although the depressive disorder is more prevalent in females
(Bebbington, 1996) when compared to males, the prevalence of
depression in males increases with age (Khera, 2013) as plasma
testosterone drops. Consequently, many experiments and stud-
ies were performed to confirm the causative role of testosterone
decline in depression pathogenesis. Indeed, these studies were not
triggered by the lone fact of testosterone decline and sex differ-
ence in prevalence of depressive disorders. In depressive disorders
with decreased libido and low testosterone, the androgen hor-
mone replacement therapy was at least as effective as serotonin
reuptake transporters (Kranz et al., 2014). Further it was investi-
gated that testosterone can modulate serotonergic transmission,
where serotonin plays a crucial role in depression development
(Jovanovic et al., 2014). But it is not only the prevalence of depres-
sion that differ between sexes. In a study on opposite sex twins,
it has been demonstrated that also the etiology of depression
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is different in men and women (Kendler and Gardner, 2014).
Whether testosterone plays a major role in the sex differences
in depression is unclear, but a number of studies indicate that
it can affect the mood of depressive patients as well as healthy
probands (Mchenry et al., 2014). Nevertheless, it is only one of
many biological factors potentially responsible for the sex differ-
ences in depression. These were reviewed recently (Altemus et al.,
2014). Observational studies on older men revealed that their
depressive symptoms are associated with low plasma testosterone
(Joshi et al., 2010). Low testosterone and depressive symptoms
are both associated with the risk of falls, which are important
for life expectancy in the elderly (Kurita et al., 2014). Similarly,
in women testosterone concentrations are lower in depressive
patients when compared to healthy controls (Kumsar et al., 2014).
However, standard antidepressant treatment leads to normaliza-
tion of testosterone. This suggests that the causality could be
different than predicted—depression lowers testosterone. On the
other hand, in both men and women, testosterone supplementa-
tion leads to improvement of depressive symptoms (Pope et al.,
2003; Miller et al., 2009). However, not all interventional studies
confirmed the anti-depressant effect of testosterone. At least in
one published randomized controlled trial, the effects of testos-
terone were comparable to placebo effects (Seidman et al., 2001).
Similarly, not all observational studies show a consistent pic-
ture. At least in one small study, depressive women had higher
testosterone (Weber et al., 2000). When publication bias and the
high intra- and inter-individual variability of testosterone are
taken into account, these small negative or contradictory studies
could be even more important. The meta-analyses of the pub-
lished studies are also to be taken into account. In a meta-analysis
of the effects of testosterone on depression, the anti-depressant
effect was positive, at least in patients suffering from hypogo-
nadism (Zarrour et al., 2009). The biology of the association
between testosterone and depression has been reviewed recently
(Mchenry et al., 2014). In an animal model of aging the associ-
ated depressive-like behavior correlated with lower testosterone
(Egashira et al., 2010). Aged mice of both sexes benefited from
testosterone supplementation. In the forced swim test the aged
mice treated with testosterone or its metabolites spent less time
immobile suggesting that the antidepressant effect of testosterone
is mediated via several pathways including the androgen and the
estrogen receptor (Frye and Walf, 2009). Another experiment on
intact rats revealed that the effect of testosterone on depression
is dose-dependent (Buddenberg et al., 2009). Interestingly, sim-
ilar experiment on gonadectomized rats showed that the testos-
terone metabolite—3-alpha androstanediol, but not testosterone
reverted the depression induced by gonadectomy (Frye et al.,
2010). Selected animal experiments on the effects of testosterone
on depression are compared in Table 2.

SPATIAL ABILITIES
Spatial cognitive abilities as well as general cognition and memory
decline with aging together with the testosterone levels. During
the productive ages and even in early adulthood, men generally
outperform women in spatial abilities (Linn and Petersen, 1985).
Especially, mental rotation shows a clear sex difference in favor
of men. Not surprisingly, observational studies have focused on

the association between testosterone and spatial abilities. Some
studies have found a positive relationship between testosterone
and mental rotation in men (Silverman et al., 1999). Error rate
as well as the reaction time negatively correlated with testos-
terone (Hooven et al., 2004). However, it is not only the actual
concentration of testosterone that is studied in relation to spa-
tial performance. Prenatal testosterone and its proxy—the finger
length ratio (second to fourth digit) seem to have a stronger
association with figure-disembedding and targeting, as additional
spatial abilities (Falter et al., 2006). In this study, mental rotation
was affected only by sex. In another study, actual testosterone was
not associated with spatial abilities, but prenatal testosterone cor-
related positively with spatial abilities in women (Kempel et al.,
2005). In line with these findings is the lack of an association
between actual salivary testosterone levels and mental rotation
in men and women (Puts et al., 2010). However, in a large
observational study analyzing spatial abilities in adult men from
various age categories, low testosterone was associated with bet-
ter spatial visualization (Yonker et al., 2006). In a very interesting
study, it was found that in men, the pubertal concentrations of
testosterone are negatively associated with mental rotation in the
adulthood (Vuoksimaa et al., 2012). In the same paper, the com-
parison of twins is reported. The twin with higher testosterone
scored worse in the mental rotation tests. The results are con-
tradictory, but may depend on the test used for the assessment
of spatial abilities. When virtual Morris water maze was used, a
positive correlation between testosterone and spatial navigation
was found in women, but not in men (Burkitt et al., 2007). The
size of the corpus callosum seems to add complexity in the rela-
tionship between spatial abilities and testosterone (Karadi et al.,
2006). This might be one of the causes for negative findings in
studies where some of the determinants are missing (Kubranska
et al., 2014). Another cause is likely the selection of the tested pop-
ulation. In gifted children, a negative correlation between salivary
testosterone and spatial abilities was found (Ostatnikova et al.,
1996). In Chinese men, the accuracy in mental rotation tests was
comparable to Americans, but the reaction times were longer
indicating that cultural differences could add to the variability of
published results (Yang et al., 2007). Last but not least, genetic
factors likely modulate the effect of testosterone. We have previ-
ously shown that at least in gifted boys, genetic polymorphisms
influencing testosterone metabolism affect also its relationship to
mental rotation (Celec et al., 2009, 2013). Especially, the CAG
short tandem repeat in the exon 1 of the androgen receptor
gene seems to be important for the action of testosterone and
its metabolites (Nowak et al., 2014). Despite all complexity, the
current picture indicates that the association between testosterone
and spatial abilities is curvilinear and sex-dependent. In women
higher testosterone is associated with better mental rotation, in
men lower testosterone is associated with better spatial abili-
ties. This seems to be true both for actual testosterone (Moffat
and Hampson, 1996) and for prenatal testosterone (Grimshaw
et al., 1995). Supplementation of testosterone in older men results
in improvement of spatial abilities, but it is accompanied with
changes in estradiol metabolism and it is likely that this inter-
feres with modifications of spatial abilities (Janowsky et al., 1994).
Even in rats, testosterone administration affects the strategy of
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the animals in spatial tasks (Spritzer et al., 2013). However, the
interaction between testosterone and mental rotation tests is bidi-
rectional. It has been shown that mental rotation testing affects
testosterone, at least in women (Durdiakova et al., 2012). In
Table 3, published experimental data on the effects of testosterone
on spatial abilities are summarized.

MEMORY
Women have better verbal memory, while men have an advan-
tage in visual-spatial memory (Lewin et al., 2001). Especially, the
difference in spatial memory has been studied in detail (Shah
et al., 2013). In a meta-analysis of animal experiments using radial
and water mazes, it has been confirmed that males outperform
females in spatial memory tasks (Jonasson, 2005). The positive
effect of testosterone on memory was, however, well documented
in both sexes. Numerous clinical studies in postmenopausal
women and men in the andropause showed improvements of
learning and memory after testosterone supplementation. Even
a short 6-week testosterone treatment resulted in improved spa-
tial and verbal memory of older men (Cherrier et al., 2001).
Testosterone has even showed a positive effect on spatial and ver-
bal memory in Alzheimer disease patients (Cherrier et al., 2005).
In young women, a single dose of testosterone improved spa-
tial memory (Postma et al., 2000). However, the mechanism of
action is unclear, as testosterone is now rather considered as a
precursor than as a final hormone. In contrast to some animal
experiments, observational studies in elderly men showed that
lower testosterone, especially its free fraction was associated with
worse visual-spatial memory (Moffat et al., 2002). This might be
related to the tasks used, as the testosterone levels in men are
related to the learning strategies, especially for spatial memory
(Choi and Silverman, 2002). The results are, however, incon-
sistent. In a study analyzing the effects of a single testosterone
injection on elderly men the treatment caused a worsening of
verbal memory (Wolf et al., 2000). Similarly, biweekly injections
of testosterone during 90 days resulted in memory decline (Maki
et al., 2007). In addition, patients with prostate cancer that need
hormonal castration via androgen deprivation therapy had worse
verbal memory than heathy controls. Interestingly, estradiol—the
estrogen metabolite of testosterone reversed the negative effects
of androgen deprivation (Beer et al., 2006). Similar findings were
found in elderly men and women where estradiol slowed down
the age-related memory decline (Carlson and Sherwin, 2000). It
seems that the effect of testosterone is dose-dependent and could
be curvilinear even within sexes. At least in men, it has been
demonstrated that moderate dosing resulted in improved mem-
ory, but not low and very high increases of testosterone (Cherrier
et al., 2007). Similar results were found in adult male rats where
only moderate testosterone doses resulted in spatial memory
improvements (Spritzer et al., 2011). A relatively high dose of
testosterone had no effect on memory or other analyzed behav-
ioral measures in postmenopausal women in a well-designed
and large study (Kocoska-Maras et al., 2011). In another study,
women with surgically induced menopause received testosterone
or placebo in addition to estrogen supplementation. Testosterone
in this case worsened the verbal memory (Moller et al., 2010).
A smaller, but longer study on postmenopausal women showed
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the complete opposite—improvement of verbal memory after
testosterone treatment (Davison et al., 2011). Similarly to other
behavioral measures memory will be influenced also by prenatal
concentrations of testosterone (Bull et al., 2010). This effect might
be mediated by the organizational effect of testosterone on brain
structures such as amygdala or hippocampus (Ackermann et al.,
2012). It has been shown that prenatal and neonatal testosterone
affects stress coping and the effects of stress on learning abilities,
at least in rodents (Shors and Miesegaes, 2002). Of course, genetic
factors might also play a role. At least in one study the APOE
genotype interacts with testosterone regarding the influence on
age-related cognitive decline (Panizzon et al., 2014). More such
studies can be expected in the near future.

Animal experiments help us to uncover the molecular and
physiological mechanisms behind the phenotype correlations
seen in human studies. The organizational effect of testosterone
on the hippocampus, the major memory structure in the brain
has been described a long time ago in rats using various mazes
(Roof and Havens, 1992; Roof, 1993). In birds, evidence exists for
a low testosterone period needed during the development of brain
functions such as vocal memory (Korsia and Bottjer, 1991). In
aged rats, an important experiment showed that the positive effect
was found only when testosterone was administered. The testos-
terone metabolite, dihydrotestosterone, which cannot be metab-
olized to estradiol did not showed this effect (Bimonte-Nelson
et al., 2003). This indicates that the effect of testosterone on mem-
ory is mediated by estradiol and the effect of aromatase which
converts testosterone to estradiol. However, in male deer mice
it has been shown that aging but not testosterone affects mem-
ory (Perrot-Sinal et al., 1998). Testosterone might rather increase
synaptic plasticity as shown in rats (Schulz and Korz, 2010).
Increased plasticity, however, only enables improved memory. But
whether the potential is used depends on other factors including
environment and timing and form of learning. Another advan-
tage of animal experiments is the possibility to surgically localize
the administration of testosterone into specific brain structures,
which is ethically not possible in humans. Such studies showed
that in adult male rats administration of any dose of testosterone
or the androgen receptor blocker flutamide resulted in worsen-
ing of spatial memory (Naghdi et al., 2001). Similar injections
of flutamide into amygdala had no effect on spatial memory,
but testosterone negatively affected spatial memory and learning
(Naghdi et al., 2003). When histological analyses were conducted,
it was found that the intrahippocampal injections of testosterone
led to an increase in the number of astrocytes in the target area
(Emamian et al., 2010). Co-administration of a protein kinase
AII inhibitor resulted in a synergistic negative effect on spatial
memory (Khorshidahmad et al., 2012). Interestingly, the injection
of anastrozole—an aromatase inhibitor resulted in improvement
of spatial learning and memory tested in the Morris water maze
(Moradpour et al., 2006). This further confirms that the negative
effect of testosterone on memory is localized to hippocampus and
is mediated by estradiol. When dihydrotestosterone—the andro-
gen metabolite of testosterone was injected into the CA1 region
of the hippocampus, spatial memory was improved (Babanejad
et al., 2012). Testosterone has very likely an important role in the
physiology of brain functions, but it might also be useful in some

pathologies. In castrated rats, testosterone was able to reverse the
ethanol-induced memory deficit (Khalil et al., 2005). In diabetic
rats, the memory impairment was partially reversed by testos-
terone administration as well (Nayebi et al., 2014). An experiment
in mice contributed to the growing list of confounding variables
with the length of the photoperiod. Castration and supplementa-
tion with testosterone had no effect when the photoperiod was
long (16 h of light per day). On the contrary, in mice housed
with a short photoperiod (8 h of light per day), the effects on spa-
tial memory were clearly seen (Pyter et al., 2006). A selection of
the numerous animal experiments focusing on testosterone and
memory are presented in Table 4.

FUNCTIONAL MAGNETIC RESONANCE IMAGING IN
HUMANS
Functional magnetic resonance imaging (fMRI) is a neuroimag-
ing procedure that uses MRI technology for measuring the brain
activity. The principle lies in detection of associated changes
in blood flow and is useful in mapping the brain functional
areas (Hofer et al., 2013). Several studies were performed using
human volunteers for spatial tasks, memory as well as mood
disorders/traits.

As for spatial tasks and mental rotation, the fMRI data are
valuably consistent. In line with the previous studies, the males
outperformed females in spatial tasks. Additionally, the fMRI
showed stronger activation of left inferior parietal lobe in males
compared to females. Also, the testosterone levels correlated with
activation levels during mental rotation task in males. In females,
the early follicular and midluteal phases were associated with
better outcome and higher estradiol concentrations (Schoning
et al., 2007). Likewise, a study of van Hemmen et al. confirmed
previously reported sex differences in neural activation during
mental rotation. Moreover, participants with complete androgen
insensitivity syndrome presented with female-like neural activa-
tion pattern in the parietal lobe, indicating that gonadal hormone
exposure rather than genetic sex itself plays role in brain func-
tions (Van Hemmen et al., 2014). The menstrual cycle and thus
the involvement of sex hormones, including testosterone, in spa-
tial abilities was further confirmed by Pletzer et al. In their study,
error rates linked with deactivation of inferior parietal lobes and
prefrontal lobes were higher during luteal phase for verbal tasks,
while in the follicular phase, spatial abilities in females were
confirmed (Pletzer et al., 2011).

ISSUES
PSYCHOMETRIC TESTS
The analysis of behavior is not as straightforward as biochemical
and molecular methods. Several alternatives exist for testing any
brain function. However, the tests are variable and it is only a con-
sensus, which can or should be used. The same applies to mazes
used for the assessment of animal behavior. Even for the widely
used Morris water maze several alternatives exist and numer-
ous different parameters are used in the particular studies. An
experiment showed that testosterone does not affect some of the
measures analyzed in the water maze, but does affect other mea-
sures such as spatial working memory retention (Sandstrom et al.,
2006).
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Table 4 | Selected animal studies analyzing the relationship between testosterone and memory.

Main objective Method Result References

Whether long term TST restoration
improves vasopressin innervations and
spatial learning memory

Three groups of male rats by age
(young, middle aged and senescent)
treated with TST or sham in MWM

TST treatment did not improve spatial
learning or retention of spatial
information. Aged rats performed worse
than young

Goudsmit et al., 1990

If testosterone improves spatial
abilities in adulthood, when
administered neonatally

Testosterone propionate applied to
neonatal rats; males and females,
tested in adulthood

TST increased performance in control
group males outperformed females, in
TST group the pattern was reversed

Roof, 1993

Spatial learning and circulatory levels
of testosterone in plasma

Males and females of Meadow voles
according to TST and E levels
underwent MWM

Male superiority was evident only with
high estradiol female group, no
difference between high and low TST
groups

Galea et al., 1995

Whether TST treatment neonatally
affects spatial leasing in adulthood in
gonadectomized rats with frontal
cortical lesion

Neonatally gonadectomized rats
(females and males) with or without
testosterone treatment underwent
MWM in adulthood

Lesions at day 7 did not impair spatial
learning but gonadectomy or
testosterone propionate impaired the
learning

Kolb and Stewart,
1995

If chronic administration of
anabolic-androgenic steroids improve
spatial cognition

Three groups of males supplemented
with nandrolone, oil and steroid cocktail
for 12 weeks, then MWM

No differences in spatial tasks in any of
the treated groups

Clark et al., 1995

Investigate the effect of reproductive
status on spatial learning in several
reproductive stages

Meadow voles and deer mice tested in
MWM either in breeding or
non-breeding stage in adulthood or as
juvenile

Better performance of males when
females in estrus, otherwise no
difference; High-E females performed
worse than low-E females or males. No
difference until adulthood

Galea et al., 1996

How testosterone supplementation
influences spatial learning after frontal
lesions in both sexes

Eight groups in experiment, females
(treated with testosterone or vehicle)
and males (gonadectomized or sham),
all groups moreover either with frontal
cortex lesion or sham

No difference of sex or hormonal
manipulation, but males with lesion
performed better than females with
lesion

Forgie and Kolb,
1998

Spatial learning in male deer mice in
relation to age

Four groups of deer mice divided by age
performed in MWM. Mice were divided
according to breeding state

Young and young breeding mice
performed better (higher TST) than old
and even young non-breeding (lower
TST) mice

Perrot-Sinal et al.,
1998

If prenatal androgen and estrogen
affects adult spatial learning

TST and DHT females, EB females and
flutamide males with prenatally (day 16)
treatment were tested in adulthood in
MWM

TST and EB sex differences observed in
MWM as a prenatal component

Isgor and Sengelaub,
1998

If there is difference in spatial memory
in females through oestrus

Male and female rats tested in MWM
during several estrus cycles

No overall sex difference I retention
spatial memory, females latency in
estrus was longer

Healy et al., 1999

If androgen exposure impairs cognitive
functions in SHR

Implantation of TST neonatally, and
tested in MWM on 45th day

Androgen impaired spatial memory in
SHR

King et al., 2000

Testosterone and flutamide effect on
spatial performance

Intrahippocampal administration of TST
or flutamide 30 min prior testing in
MWM

Increased latencies in both treated
groups, dose dependent

Naghdi et al., 2001

Role of sex steroids in apoE4 induced
cognitive impairment

Mice expressing human apoE4 or E3
treated with testosterone and tested in
MWM

Treatment improved memory deficits in
apoE4 females

Raber et al., 2002

(Continued)
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Table 4 | Continued

Main objective Method Result References

Developmental androgen sensitivity of
CA3 area and spatial performance

Neonatally TST or ovariectomized
females and TST castrated and TST
treated or not performed in MWM
during adulthood

High androgen groups did better than
low androgen groups

Isgor and Sengelaub,
2003

If testosterone and flutamide in
amygdale affect the spatial abilities

Testosterone or flutamide administered
into amygdale 30 min prior testing in
MWM

Testosterone dose dependent increase
in latency times, no effect of flutamide

Naghdi et al., 2003

If testosterone improves cognition in
older rats

Young and old TST or DHT treated rats
underwent water radial maze

TST (but not DHT) improved spatial
memory in older rats

Bimonte-Nelson
et al., 2003

If testosterone improves spatial
cognition in female rats

TST, DHT, Estradiol or control
ovariectomized female rats tested after
48 h in MWM

Estradiol impaired spatial acquisition.
TST and DHT without effect

Frick et al., 2004

Compare wild-types and testicular
feminization mutation rats

Tfm and control male rats and
heterozygote females performed in
water maze

Males control outperformed females;
Tfm showed intermediate performance

Jones and Watson,
2005

Evaluate effects of testosterone and
ethanol on spatial cognition

Male rats castrates with ethanol,
testosterone or both performed in
water maze

Ethanol induced deficits in spatial
cognition; testosterone reversed this
effect

Khalil et al., 2005

Role of testicular hormones on spatial
abilities

Castrated and intact males performed
in MWM and delayed-matching-to-place
MWM

Castration impaired working memory
retention, reversed by exogenous
testosterone

Sandstrom et al.,
2006

If photoperiod affects spatial learning
through testosterone reduction

Mice either in 16 or 8 h daylight for 14
weeks performed in MWM after
castration/sham/castration+
testosterone

Castrated with testosterone short day
mice performed better to other short
day mice, in long day no differences

Pyter et al., 2006

Evaluate effect of TST, estrogen and
anastrazol on spatial abilities

CA1 cannulation of adult male rats with
various dosages of testosterone,
estradiol, anastrazol or DMSO

TST and estradiol impaired spatial
learning, anastrazol improved it

Moradpour et al.,
2006

If castration of males affects the spatial
memory

Castrated and sham male rats
performed in MWM

No differences between groups Spritzer et al., 2008

Spatial learning and TST Castrated and intact male rats, rats
cannulated into right or left
hippocampus castrated or not did
spatial task in MWM

Castration did not affect learning Mohaddes et al.,
2009

Investigate effects of TST metabolites
on spatial performance

Male rats subjected to orchiectomy and
capsule with TST metabolites implanted
did spatial tasks in MWM

3-alpha and 3-beta-diols enhanced
spatial cognition

Osborne et al., 2009

Enhancement of aged female rats by
androgen supplementation

Old mice with implanted TST or DHT or
empty capsules performed in MWM
after 6 weeks

TST improved spatial cognition, DHT did
not

Benice and Raber,
2009

TST, testosterone; DHT, dihydrotestoterone; EB, estradiol benzoate; Tfm, testicular feminization mutation; DMSO, dimethytlsulfoxide; MWM, Morris water maze.

POPULATIONS
One of the major factors that might explain the differences
between the results of various studies is the variability of the
examined populations. As mentioned above, the cultural differ-
ences, sex and age have all been shown to impact the physiological

effects of testosterone. In animal experiments, chosen species and
the particular strain is also of importance. Looking at the stud-
ies in non-human primates in contrast to the majority of rodent
studies the results are mostly negative. For example, testosterone
manipulations in rhesus monkeys did not alter their working and
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reference memory, although emotional processing was affected.
Indeed, the treatment for testosterone might have not last long
enough to affect the cognition (Kelly et al., 2014). Other possible
explanations might be due to low number of animals included,
but also to physiological differences including body size and
the concluding testosterone kinetics (King et al., 2012). Specific
behavioral tests might also be responsible for the differences
observed (Lacreuse et al., 2012).

TESTOSTERONE MEASUREMENT
There are several possibilities as to what kind of biological samples
should be used for the testosterone measurement. Plasma, saliva,
urine are available and all have some strengths and weaknesses.
The simple scheme of free—bioactive fraction of testosterone that
should be assessed using salivary testosterone or plasma albu-
min and sex hormone binding globulin is not correct. Bound
testosterone has its effects on target tissues and it is not clear
which of the potential biological liquids is robust against tech-
nical and biological variability. One of the exotic possibilities
is measurement of testosterone in the hair. The concentration
in the hair might, however, be relevant as it integrates all the
intra-individual variability of testosterone (Dettenborn et al.,
2013).

TIMING
Testosterone undergoes several biorhythms. In some studies, even
the best-known circadian rhythm is not taken into account.
Implants that slowly release testosterone totally ignore daily varia-
tions that occur physiologically. Other rhythms such as infradian
cycles are completely forgotten when experiments are designed.
But beyond cyclic variations, testosterone undergoes chaotic tem-
porary changes that are usually described as noise. Although such
research is lacking, it might be that it has some physiological
role similarly to heart rhythm variability. In addition, the tim-
ing of behavioral analyses is of importance. While within 30 min
after administration, non-genomic effects are important, later
genomic effects are expected to be the major mediator. But this
does not have to be true. Even later, the non-genomic effects are
active in parallel with the gene expression changes. Only the study
of the particular effects is more and more complicated, especially
due to the complex kinetics of testosterone and the complex abili-
ties being tested as proved in a focused experiment (Hawley et al.,
2013). Additionally, physiological and also behavioral functions
are exerted on a rhythmic basis. Timing the behavioral tests for
light phase, while rodents usually are active during night can rep-
resent a major problem in animal behavior testing. Moreover, the
central circadian clock is located in the suprachiasmatic nucleus
of the hypothalamus and it receives signals directly from photore-
ceptors. GABA is thought to play a major role in coordinating the
synchronized firing of suprachiasmatic neurons (Urbanski, 2011).
However, steroid hormones may also exert their nongenomic
function through GABA receptors. Disrupting the GABAergic
system by untimed testosterone application, may be one other
reason for controversy results in behavioral analysis. Alternatively,
aging is strongly related to decline of circulating sex hormones,
disrupting thus also circadian rhythms and leading to impaired
sleep or cognitive functioning (Urbanski et al., 2014). Restoring

natural circulating hormone pattern in older but also in younger
animals could possibly lead also to more comprehensive results of
sex hormones and behavior studies.

ADMINISTRATION ROUTE
In most studies, testosterone is injected via i.p. or i.m. injections,
but there are indices that to study the effects of testosterone on
brain functions, the steroid has to be injected directly into the
target brain structure. At least in one experiment directly compar-
ing peripheral administration and intrahippocampal injections of
testosterone it was shown that the peripheral route had no effect
on learning and memory while central injections were effective
(Harooni et al., 2008).

TYPE OF TESTOSTERONE USED
Testosterone in the experiments is sometimes used as butyrate,
decanoate, undecanoate etc. These pharmacological forms have,
however, variable kinetics and might therefore have also variable
effects, especially in the brain, where the kinetics is of special
importance (Filova et al., 2012). Dosing of testosterone seems to
be of enormous importance. It varies between the experiments
widely and should always be taken into account when evaluating
the results. In experiments, moderate, but not very low or very
high doses of testosterone had some effect on behavioral measures
such as memory (Spritzer et al., 2011).

The effect of testosterone is influenced by several factors, but
only some of them are known. These include genetic polymor-
phisms related to testosterone metabolism or other pathways
related to cognitive functioning (Panizzon et al., 2014). Next gen-
eration sequencing and lower prices of genotyping will enable
detailed studies focusing on the genetic factors and especially on
the complex interactions between genetic, endocrine and other
environmental factors.

METABOLISM
Testosterone is currently seen more as a precursor of hormones.
In most target tissues, testosterone is converted into metabolites
such as dihydrotestosterone—a more potent androgen receptor
ligand. The enzyme aromatase, on the other hand, can metabo-
lize testosterone into estradiol—a ligand of the estrogen receptors.
Further metabolites are being added to the list. But in general,
it is of importance to recognize the role of the target tissue that
can convert testosterone to inducers of very different signaling
pathways. Without genetic or pharmacologic manipulation it is
not possible to distinguish the effects when testosterone itself is
administered.

NON-GENOMIC EFFECTS
The metabolism of testosterone makes studying the physiology of
testosterone effects on the brain difficult. But the response of tar-
get tissues are similarly complex. Testosterone can be recognized
by the androgen receptor inducing genomic effects—changes in
gene expression. But the same testosterone can induce other sig-
naling pathways that do not require changes in the use of the
genomic information. These effects are called non-genomic and
are studied for all steroid hormones. When testosterone is injected
into the hippocampus together with a protein synthesis inhibitor
that prevents genomic effects, spatial memory is improved in
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male rats (Naghdi et al., 2005). This points toward the possibility
that non-genomic effects can be opposite to the genomic effects.
But it also shows that doing such experiments and interpret-
ing their results is difficult. Inhibition of protein synthesis is
of course not specific. An alternative is to analyze the behav-
ior rapidly after testosterone injection, as it take roughly 30 min
to induce gene expression changes. But the kinetics of testos-
terone in vivo complicates the interpretation. Another option is
the co-administration of androgen receptor and estrogen receptor
blockers.

CONCLUSION AND FUTURE OUTLOOK
While fMRI results bring interesting data and knowledge on
behavioral traits and spatial abilities in relation to testosterone
levels and sex differences, the result obtained can show only asso-
ciation or correlation but not causal relationship of testosterone
effect on behavior. Nevertheless, also according to the numerous
published studies and animal experiments, testosterone seems to
affect brain functions. The high number of relevant publications
also indicates that it is a hot topic of interest. However, quan-
tity is not quality and currently, despite numerous publications
it is very difficult to conclude how testosterone affects cognitions
and emotions. Most of the published literature agrees on the fact
that testosterone is anxiolytic, anti-depressant and improves spa-
tial abilities. But this picture is oversimplified. Many variables add
to the complex interactions between testosterone and the brain.
Memory, both, verbal and spatial, is a good example. Age, sex,
current endocrine status, but also the timing of testosterone anal-
ysis or administration, status of the target tissues and several other
factors influence the outcome of observational or interventional
studies. It is, thus, clear that small studies can only describe a very
small window of the whole complex physiology. Analyzing testos-
terone concentrations, choosing appropriate doses and pharma-
cological forms is difficult enough. The psychometrics behind
behavioral tests in animal experiments and behind psychological
tests in human studies is, nevertheless, lacking. Standardization
in this area would surely improve our understanding of the neu-
roendocrinology of testosterone. More systematic research using
the whole spectrum of available tools and looking at the various
physiological aspects is needed. However, to be able to publish
such research, journals should accept manuscripts based on the
design and not on the results. Otherwise, the publication bias that
is obvious in the so far published literature will continue to be a
big issue. Many researchers in this field complain about negative
results that are very difficult to publish in the relevant journals.
The number of such unpublished observations and experiments
is unknown. But based on our humble experience, the negative
results will probably be more common than the published posi-
tive ones. And if the contradictory published findings are added,
the picture gets even more confusing. Large systematic research
projects with more cooperation between the most productive
research teams is definitely needed.

ACKNOWLEDGMENTS
This publication is the result of the implementation of the
project University Science Park of Comenius University in
Bratislava (ITMS 26240220086) supported by the Research and

Development Operational Programme funded by the European
Regional Development Fund.

REFERENCES
Ackermann, S., Spalek, K., Rasch, B., Gschwind, L., Coynel, D., Fastenrath, M.,

et al. (2012). Testosterone levels in healthy men are related to amygdala reac-
tivity and memory performance. Psychoneuroendocrinology 37, 1417–1424. doi:
10.1016/j.psyneuen.2012.01.008

Aikey, J. L., Nyby, J. G., Anmuth, D. M., and James, P. J. (2002). Testosterone rapidly
reduces anxiety in male house mice (Mus musculus). Horm. Behav. 42, 448–460.
doi: 10.1006/hbeh.2002.1838

Altemus, M., Sarvaiya, N., and Epperson, C. N. (2014). Sex differences in anx-
iety and depression clinical perspectives. Front. Neuroendocrinol. 35:4. doi:
10.1016/j.yfrne.2014.05.004

Babanejad, S., Naghdi, N., and Haeri Rohani, S. A. (2012). Microinjection of dihy-
drotestosterone as a 5alpha-reduced metabolite of testosterone into CA1 region
of hippocampus could improve spatial learning in the adult male rats. Iran J.
Pharm. Res. 11, 661–669.

Basaria, S. (2013). Reproductive aging in men. Endocrinol. Metab. Clin. North Am.
42, 255–270. doi: 10.1016/j.ecl.2013.02.012

Bebbington, P. (1996). The origins of sex differences in depressive disorder:
bridging the gap. Int. Rev. Psychiatry 8, 295–332. doi: 10.3109/09540269609
051547

Beer, T. M., Bland, L. B., Bussiere, J. R., Neiss, M. B., Wersinger, E. M., Garzotto, M.,
et al. (2006). Testosterone loss and estradiol administration modify memory in
men. J. Urol. 175, 130–135. doi: 10.1016/S0022-5347(05)00049-2

Benice, T. S., and Raber, J. (2009). Testosterone and dihydrotestosterone differen-
tially improve cognition in aged female mice. Learn. Mem. 16, 479–485. doi:
10.1101/lm.1428209

Bimonte-Nelson, H. A., Singleton, R. S., Nelson, M. E., Eckman, C. B., Barber,
J., Scott, T. Y., et al. (2003). Testosterone, but not nonaromatizable dihy-
drotestosterone, improves working memory and alters nerve growth factor
levels in aged male rats. Exp. Neurol. 181, 301–312. doi: 10.1016/S0014-4886(03)
00061-X

Buddenberg, T. E., Komorowski, M., Ruocco, L. A., Silva, M. A., and Topic,
B. (2009). Attenuating effects of testosterone on depressive-like behavior in
the forced swim test in healthy male rats. Brain Res. Bull. 79, 182–186. doi:
10.1016/j.brainresbull.2009.02.008

Bull, R., Davidson, W. A., and Nordmann, E. (2010). Prenatal testosterone, visual-
spatial memory, and numerical skills in young children. Learn. Individ. Differ.
20, 246–250. doi: 10.1016/j.lindif.2009.12.002

Burger, H. G. (2002). Androgen production in women. Fertil. Steril. 77(Suppl. 4),
S3–S5. doi: 10.1016/S0015-0282(02)02985-0

Burkitt, J., Widman, D., and Saucier, D. M. (2007). Evidence for the influ-
ence of testosterone in the performance of spatial navigation in a virtual
water maze in women but not in men. Horm. Behav. 51, 649–654. doi:
10.1016/j.yhbeh.2007.03.007

Cahill, L. (2014). Equal not equal the same: sex differences in the human brain.
Cerebrum 2014:5.

Camacho, E. M., Huhtaniemi, I. T., O’neill, T. W., Finn, J. D., Pye, S. R., Lee, D.
M., et al. (2013). Age-associated changes in hypothalamic-pituitary-testicular
function in middle-aged and older men are modified by weight change and
lifestyle factors: longitudinal results from the European male ageing study. Eur.
J. Endocrinol. 168, 445–455. doi: 10.1530/EJE-12-0890

Carlson, L. E., and Sherwin, B. B. (2000). Higher levels of plasma estra-
diol and testosterone in healthy elderly men compared with age-matched
women may protect aspects of explicit memory. Menopause 7, 168–177. doi:
10.1097/00042192-200007030-00007

Carrier, N., and Kabbaj, M. (2012). Testosterone and imipramine have antide-
pressant effects in socially isolated male but not female rats. Horm. Behav. 61,
678–685. doi: 10.1016/j.yhbeh.2012.03.001

Celec, P., Ostatnikova, D., Holesova, Z., Minarik, G., Ficek, A., Kelemenova, S.,
et al. (2009). Spatial abilities in prepubertal intellectually gifted boys and genetic
polymorphisms related to testosterone metabolism. J. Psychophysiol. 23, 1–6.
doi: 10.1027/0269-8803.23.1.1

Celec, P., Tretinárová, D., Minárik, G., Ficek, A., Szemes, T., Lakatošová, S., et al.
(2013). Genetic polymorphisms related to testosterone metabolism in intellec-
tually gifted boys. PLoS ONE 8:e54751. doi: 10.1371/journal.pone.0054751

www.frontiersin.org February 2015 | Volume 9 | Article 12 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


Celec et al. Testosterone and the brain

Cherrier, M. M., Asthana, S., Plymate, S., Baker, L., Matsumoto, A. M., Peskind, E.,
et al. (2001). Testosterone supplementation improves spatial and verbal memory
in healthy older men. Neurology 57, 80–88. doi: 10.1212/WNL.57.1.80

Cherrier, M. M., Matsumoto, A. M., Amory, J. K., Asthana, S., Bremner, W.,
Peskind, E. R., et al. (2005). Testosterone improves spatial memory in men with
Alzheimer disease and mild cognitive impairment. Neurology 64, 2063–2068.
doi: 10.1212/01.WNL.0000165995.98986.F1

Cherrier, M. M., Matsumoto, A. M., Amory, J. K., Johnson, M., Craft, S., Peskind,
E. R., et al. (2007). Characterization of verbal and spatial memory changes from
moderate to supraphysio logical increases in serum testosterone in healthy older
men. Psychoneuroendocrinology 32, 72–79. doi: 10.1016/j.psyneuen.2006.10.008

Choi, J., and Silverman, I. (2002). The relationship between testosterone and route-
learning strategies in humans. Brain Cogn. 50, 116–120. doi: 10.1016/S0278-
2626(02)00015-5

Clark, A. S., Mitre, M. C., and Brinck-Johnsen, T. (1995). Anabolic-androgenic
steroid and adrenal steroid effects on hippocampal plasticity. Brain Res. 679,
64–71. doi: 10.1016/0006-8993(95)00202-2

Dalla, C., Antoniou, K., Papadopoulou-Daifoti, Z., Balthazart, J., and Bakker, J.
(2005). Male aromatase-knockout mice exhibit normal levels of activity, anxi-
ety and "depressive-like" symptomatology. Behav. Brain Res. 163, 186–193. doi:
10.1016/j.bbr.2005.04.020

Dalla, C., Edgecomb, C., Whetstone, A. S., and Shors, T. J. (2008). Females do
not express learned helplessness like males do. Neuropsychopharmacology 33,
1559–1569. doi: 10.1038/sj.npp.1301533

Davison, S. L., Bell, R. J., Gavrilescu, M., Searle, K., Maruff, P., Gogos, A.,
et al. (2011). Testosterone improves verbal learning and memory in post-
menopausal women: results from a pilot study. Maturitas 70, 307–311. doi:
10.1016/j.maturitas.2011.08.006

Dettenborn, L., Hinkelmann, K., Muhtz, C., Gao, W., Wingenfeld, K., Spitzer, C.,
et al. (2013). Hair testosterone and visuospatial memory in middle-aged men
and women with and without depressive symptoms. Psychoneuroendocrinology
38, 2373–2377. doi: 10.1016/j.psyneuen.2013.03.011

Dohle, G. R., Smit, M., and Weber, R. F. (2003). Androgens and male fertility. World
J. Urol. 21, 341–345. doi: 10.1007/s00345-003-0365-9

Durdiakova, J., Hodosy, J., Kubranska, A., Ostatnikova, D., and Celec, P. (2012).
The effect of mental rotation on changes in plasma testosterone and cortisol
levels. Cent. Eur. J. Biol. 7, 1005–1012. doi: 10.2478/s11535-012-0084-6

Edinger, K. L., and Frye, C. A. (2004). Testosterone’s analgesic, anxiolytic, and
cognitive-enhancing effects may be due in part to actions of its 5alpha-
reduced metabolites in the hippocampus. Behav. Neurosci. 118, 1352–1364. doi:
10.1037/0735-7044.118.6.1352

Edinger, K. L., and Frye, C. A. (2005). Testosterone’s anti-anxiety and anal-
gesic effects may be due in part to actions of its 5 alpha-reduced
metabolites in the hippocampus. Psychoneuroendocrinology 30, 418–430. doi:
10.1016/j.psyneuen.2004.11.001

Egashira, N., Koushi, E., Okuno, R., Shirakawa, A., Mishima, K., Iwasaki, K.,
et al. (2010). Depression-like behavior and reduced plasma testosterone lev-
els in the senescence-accelerated mouse. Behav. Brain Res. 209, 142–147. doi:
10.1016/j.bbr.2010.01.030

Emamian, S., Naghdi, N., Sepehri, H., Jahanshahi, M., Sadeghi, Y., and Choopani,
S. (2010). Learning impairment caused by intra-CA1 microinjection of testos-
terone increases the number of astrocytes. Behav. Brain Res. 208, 30–37. doi:
10.1016/j.bbr.2009.11.004

Falter, C. M., Arroyo, M., and Davis, G. J. (2006). Testosterone: activa-
tion or organization of spatial cognition? Biol. Psychol. 73, 132–140. doi:
10.1016/j.biopsycho.2006.01.011

Fernandez-Guasti, A., and Martinez-Mota, L. (2005). Anxiolytic-like actions
of testosterone in the burying behavior test: role of androgen and
GABA-benzodiazepine receptors. Psychoneuroendocrinology 30, 762–770. doi:
10.1016/j.psyneuen.2005.03.006

Filova, B., Majzunova, M., Malinova, M., Ostatnikova, D., Celec, P., and Hodosy, J.
(2012). Factors determining the kinetics of a single dose of testosterone in rats.
Arch. Biol. Sci. 64, 859–863. doi: 10.2298/ABS1203859F

Filova, B., Ostatnikova, D., Celec, P., and Hodosy, J. (2013). The effect of testos-
terone on the formation of brain structures. Cells Tissues Organs 197, 169–177.
doi: 10.1159/000345567

Forgie, M. L., and Kolb, B. (1998). Sex differences in the effects of frontal cortex
injury: role of differential hormonal experience in early development. Behav.
Neurosci. 112, 141–153. doi: 10.1037/0735-7044.112.1.141

Frick, K. M., Fernandez, S. M., Bennett, J. C., Prange-Kiel, J., Maclusky, N.
J., and Leranth, C. (2004). Behavioral training interferes with the ability of
gonadal hormones to increase CA1 spine synapse density in ovariectomized
female rats. Eur. J. Neurosci. 19, 3026–3032. doi: 10.1111/j.0953-816X.2004.
03427.x

Frye, C. A., and Edinger, K. L. (2004). Testosterone’s metabolism in the hippocam-
pus may mediate its anti-anxiety effects in male rats. Pharmacol. Biochem.
Behav. 78, 473–481. doi: 10.1016/j.pbb.2004.04.019

Frye, C. A., Edinger, K. L., Lephart, E. D., and Walf, A. A. (2010). 3 alpha-
androstanediol, but not testosterone, attenuates age-related decrements in cog-
nitive, anxiety, and depressive behavior of male rats. Front. Aging Neurosci. 2:15.
doi: 10.3389/fnagi.2010.00015

Frye, C. A., and Seliga, A. M. (2001). Testosterone increases analgesia, anxioly-
sis, and cognitive performance of male rats. Cogn. Affect. Behav. Neurosci. 1,
371–381. doi: 10.3758/CABN.1.4.371

Frye, C. A., and Walf, A. A. (2009). Depression-like behavior of aged male and
female mice is ameliorated with administration of testosterone or its metabo-
lites. Physiol. Behav. 97, 266–269. doi: 10.1016/j.physbeh.2009.02.022

Furukawa, A., Miyatake, A., Ohnishi, T., and Ichikawa, Y. (1998). Steroidogenic
acute regulatory protein (StAR) transcripts constitutively expressed in the adult
rat central nervous system: colocalization of StAR, cytochrome P-450SCC (CYP
XIA1), and 3beta-hydroxysteroid dehydrogenase in the rat brain. J. Neurochem.
71, 2231–2238. doi: 10.1046/j.1471-4159.1998.71062231.x

Galea, L. A., Kavaliers, M., and Ossenkopp, K. P. (1996). Sexually dimorphic spatial
learning in meadow voles Microtus pennsylvanicus and deer mice Peromyscus
maniculatus. J. Exp. Biol. 199, 195–200.

Galea, L. A., Kavaliers, M., Ossenkopp, K. P., and Hampson, E. (1995). Gonadal
hormone levels and spatial learning performance in the Morris water maze in
male and female meadow voles, Microtus pennsylvanicus. Horm. Behav. 29,
106–125. doi: 10.1006/hbeh.1995.1008

Gibbs, R. B., and Johnson, D. A. (2008). Sex-specific effects of gonadectomy and
hormone treatment on acquisition of a 12-arm radial maze task by Sprague
Dawley rats. Endocrinology 149, 3176–3183. doi: 10.1210/en.2007-1645

Goel, N., and Bale, T. L. (2008). Organizational and activational effects of
testosterone on masculinization of female physiological and behavioral stress
responses. Endocrinology 149, 6399–6405. doi: 10.1210/en.2008-0433

Goudsmit, E., Van De Poll, N. E., and Swaab, D. F. (1990). Testosterone fails to
reverse spatial memory decline in aged rats and impairs retention in young
and middle-aged animals. Behav. Neural Biol. 53, 6–20. doi: 10.1016/0163-
1047(90)90729-P

Grimshaw, G. M., Sitarenios, G., and Finegan, J. A. (1995). Mental rotation at 7
years: relations with prenatal testosterone levels and spatial play experiences.
Brain Cogn. 29, 85–100. doi: 10.1006/brcg.1995.1269

Gutierrez-Garcia, A. G., Contreras, C. M., Vasquez-Hernandez, D. I., Molina-
Jimenez, T., and Jacome-Jacome, E. (2009). Testosterone reduces cumula-
tive burying in female Wistar rats with minimal participation of estradiol.
Pharmacol. Biochem. Behav. 93, 406–412. doi: 10.1016/j.pbb.2009.06.002

Harooni, H. E., Naghdi, N., Sepehri, H., and Rohani, A. H. (2008). Intra hippocam-
pal injection of testosterone impaired acquisition, consolidation and retrieval of
inhibitory avoidance learning and memory in adult male rats. Behav. Brain Res.
188, 71–77. doi: 10.1016/j.bbr.2007.10.017

Hawley, W. R., Grissom, E. M., Martin, R. C., Halmos, M. B., Bart, C. L., and
Dohanich, G. P. (2013). Testosterone modulates spatial recognition memory in
male rats. Horm. Behav. 63, 559–565. doi: 10.1016/j.yhbeh.2013.02.007

Healy, S. D., Braham, S. R., and Braithwaite, V. A. (1999). Spatial working memory
in rats: no differences between the sexes. Proc. Biol. Sci. 266, 2303–2308. doi:
10.1098/rspb.1999.0923

Herrera-Perez, J. J., Martinez-Mota, L., Chavira, R., and Fernandez-Guasti, A.
(2012). Testosterone prevents but not reverses anhedonia in middle-aged males
and lacks an effect on stress vulnerability in young adults. Horm. Behav. 61,
623–630. doi: 10.1016/j.yhbeh.2012.02.015

Hodosy, J., Zelmanova, D., Majzunova, M., Filova, B., Malinova, M., Ostatnikova,
D., et al. (2012). The anxiolytic effect of testosterone in the rat is medi-
ated via the androgen receptor. Pharmacol. Biochem. Behav. 102, 191–195. doi:
10.1016/j.pbb.2012.04.005

Hofer, P., Lanzenberger, R., and Kasper, S. (2013). Testosterone in the brain:
neuroimaging findings and the potential role for neuropsychopharmacol-
ogy. Eur. Neuropsychopharmacol. 23, 79–88. doi: 10.1016/j.euroneuro.2012.
04.013

Frontiers in Neuroscience | Neuroendocrine Science February 2015 | Volume 9 | Article 12 | 14

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


Celec et al. Testosterone and the brain

Hooven, C. K., Chabris, C. F., Ellison, P. T., and Kosslyn, S. M. (2004). The relation-
ship of male testosterone to components of mental rotation. Neuropsychologia
42, 782–790. doi: 10.1016/j.neuropsychologia.2003.11.012

Isgor, C., and Sengelaub, D. R. (1998). Prenatal gonadal steroids affect adult spatial
behavior, CA1 and CA3 pyramidal cell morphology in rats. Horm. Behav. 34,
183–198. doi: 10.1006/hbeh.1998.1477

Isgor, C., and Sengelaub, D. R. (2003). Effects of neonatal gonadal steroids on
adult CA3 pyramidal neuron dendritic morphology and spatial memory in rats.
J. Neurobiol. 55, 179–190. doi: 10.1002/neu.10200

Janowsky, J. S., Oviatt, S. K., and Orwoll, E. S. (1994). Testosterone influences spa-
tial cognition in older men. Behav. Neurosci. 108, 325–332. doi: 10.1037/0735-
7044.108.2.325

Jonasson, Z. (2005). Meta-analysis of sex differences in rodent models of learning
and memory: a review of behavioral and biological data. Neurosci. Biobehav.
Rev. 28, 811–825. doi: 10.1016/j.neubiorev.2004.10.006

Jones, B. A., and Watson, N. V. (2005). Spatial memory performance
in androgen insensitive male rats. Physiol. Behav. 85, 135–141. doi:
10.1016/j.physbeh.2005.03.023

Joshi, D., Van Schoor, N. M., De Ronde, W., Schaap, L. A., Comijs, H. C., Beekman,
A. T. F., et al. (2010). Low free testosterone levels are associated with preva-
lence and incidence of depressive symptoms in older men. Clin. Endocrinol. 72,
232–240. doi: 10.1111/j.1365-2265.2009.03641.x

Jovanovic, H., Kocoska-Maras, L., Radestad, A. F., Halldin, C., Borg, J., Hirschberg,
A. L., et al. (2014). Effects of estrogen and testosterone treatment on serotonin
transporter binding in the brain of surgically postmenopausal women—a PET
study. Neuroimage 106C, 47–54.

Karadi, K., Kallai, J., Kover, F., Nemes, J., Makany, T., and Nagy, F. (2006).
Endogenous testosterone concentration, mental rotation, and size of the cor-
pus callosum in a sample of young Hungarian women. Percept. Mot. Skills 102,
445–453. doi: 10.2466/pms.102.2.445-453

Kelly, B., Maguire-Herring, V., Rose, C. M., Gore, H. E., Ferrigno, S., Novak, M. A.,
et al. (2014). Short-term testosterone manipulations do not affect cognition or
motor function but differentially modulate emotions in young and older male
rhesus monkeys. Horm. Behav. 66, 731–742. doi: 10.1016/j.yhbeh.2014.08.016

Kempel, P., Gohlke, B., Klempau, J., Zinsberger, P., Reuter, M., and Hennig,
J. (2005). Second-to-fourth digit length, testosterone and spatial ability.
Intelligence 33, 215–230. doi: 10.1016/j.intell.2004.11.004

Kendler, K. S., and Gardner, C. O. (2014). Sex differences in the pathways to major
depression: a study of opposite-sex twin Pairs. Am. J. Psychiatry 171, 426–435.
doi: 10.1176/appi.ajp.2013.13101375

Khakpai, F. (2014). The effect of opiodergic system and testosterone on anx-
iety behavior in gonadectomized rats. Behav. Brain Res. 263, 9–15. doi:
10.1016/j.bbr.2014.01.013

Khalil, R., King, M. A., and Soliman, M. R. (2005). Testosterone reverses ethanol-
induced deficit in spatial reference memory in castrated rats. Pharmacology 75,
87–92. doi: 10.1159/000087188

Khera, M. (2013). Patients with testosterone deficit syndrome and depression. Arch.
Esp. Urol. 66, 729–736.

Khorshidahmad, T., Tabrizian, K., Vakilzadeh, G., Nikbin, P., Moradi, S., Hosseini-
Sharifabad, A., et al. (2012). Interactive effects of a protein kinase AII inhibitor
and testosterone on spatial learning in the Morris water maze. Behav. Brain Res.
228, 432–439. doi: 10.1016/j.bbr.2011.12.028

King, H. M., Kurdziel, L. B., Meyer, J. S., and Lacreuse, A. (2012). Effects of
testosterone on attention and memory for emotional stimuli in male rhesus
monkeys. Psychoneuroendocrinology 37, 396–409. doi: 10.1016/j.psyneuen.2011.
07.010

King, J. A., Barkley, R. A., Delville, Y., and Ferris, C. F. (2000). Early androgen
treatment decreases cognitive function and catecholamine innervation in an
animal model of ADHD. Behav. Brain Res. 107, 35–43. doi: 10.1016/S0166-
4328(99)00113-8

Kocoska-Maras, L., Zethraeus, N., Radestad, A. F., Ellingsen, T., Von Schoultz,
B., Johannesson, M., et al. (2011). A randomized trial of the effect of
testosterone and estrogen on verbal fluency, verbal memory, and spatial
ability in healthy postmenopausal women. Fertil. Steril. 95, 152–157. doi:
10.1016/j.fertnstert.2010.05.062

Kolb, B., and Stewart, J. (1995). Changes in the neonatal gonadal hormonal envi-
ronment prevent behavioral sparing and alter cortical morphogenesis after early
frontal cortex lesions in male and female rats. Behav. Neurosci. 109, 285–294.
doi: 10.1037/0735-7044.109.2.285

Korsia, S., and Bottjer, S. W. (1991). Chronic testosterone treatment impairs vocal
learning in male zebra finches during a restricted period of development.
J. Neurosci. 11, 2362–2371.

Kranz, G. S., Wadsak, W., Kaufmann, U., Savli, M., Baldinger, P., Gryglewski, G.,
et al. (2014). High-dose testosterone treatment increases serotonin transporter
binding in transgender people. Biol. Psychiatry. doi: 10.1016/j.biopsych.2014.
09.010. [Epub ahead of print].

Kubranska, A., Lakatosova, S., Schmidtova, E., Durdiakova, J., Celec, P., and
Ostatnikova, D. (2014). Spatial abilities are not related to testosterone levels and
variation in the androgen receptor in healthy young men. Gen. Physiol. Biophys.
33, 311–319. doi: 10.4149/gpb_2014005

Kumsar, S., Kumsar, N. A., Saglam, H. S., Kose, O., Budak, S., and Adsan, O.
(2014). Testosterone levels and sexual function disorders in depressive female
patients: effects of antidepressant treatment. J. Sex. Med. 11, 529–535. doi:
10.1111/jsm.12394

Kurita, N., Horie, S., Yamazaki, S., Otoshi, K., Otani, K., Sekiguchi, M.,
et al. (2014). Low Testosterone levels, depressive symptoms, and falls in
older men: a cross-sectional study. J. Am. Med. Dir. Assoc. 15, 30–35. doi:
10.1016/j.jamda.2013.11.003

Lacreuse, A., Gore, H. E., Chang, J., and Kaplan, E. R. (2012). Short-term testos-
terone manipulations modulate visual recognition memory and some aspects of
emotional reactivity in male rhesus monkeys. Physiol. Behav. 106, 229–237. doi:
10.1016/j.physbeh.2012.02.008

Lewin, C., Wolgers, G., and Herlitz, A. (2001). Sex differences favoring women in
verbal but not in visuospatial episodic memory. Neuropsychology 15, 165–173.
doi: 10.1037/0894-4105.15.2.165

Linn, M. C., and Petersen, A. C. (1985). Emergence and characterization of sex
differences in spatial ability: a meta-analysis. Child Dev. 56, 1479–1498. doi:
10.2307/1130467

Lord, C., Sekerovic, Z., and Carrier, J. (2014). Sleep regulation and sex hormones
exposure in men and women across adulthood. Pathol. Biol. (Paris) 62, 302–310.
doi: 10.1016/j.patbio.2014.07.005

Maki, P. M., Ernst, M., London, E. D., Mordecai, K. L., Perschler, P., Durso, S.
C., et al. (2007). Intramuscular testosterone treatment in elderly men: evidence
of memory decline and altered brain function. J. Clin. Endocrinol. Metab. 92,
4107–4114. doi: 10.1210/jc.2006-1805

Martinez-Mota, L., Ulloa, R. E., Herrera-Perez, J., Chavira, R., and Fernandez-
Guasti, A. (2011). Sex and age differences in the impact of the forced swimming
test on the levels of steroid hormones. Physiol. Behav. 104, 900–905. doi:
10.1016/j.physbeh.2011.05.027

Mcconnell, S. E., Alla, J., Wheat, E., Romeo, R. D., Mcewen, B., and Thornton,
J. E. (2012). The role of testicular hormones and luteinizing hormone
in spatial memory in adult male rats. Horm. Behav. 61, 479–486. doi:
10.1016/j.yhbeh.2012.01.003

Mchenry, J., Carrier, N., Hull, E., and Kabbaj, M. (2014). Sex differences in anx-
iety and depression: role of testosterone. Front. Neuroendocrinol. 35:1. doi:
10.1016/j.yfrne.2013.09.001

Mellon, S. H., Griffin, L. D., and Compagnone, N. A. (2001). Biosynthesis and
action of neurosteroids. Brain Res. Brain Res. Rev. 37, 3–12. doi: 10.1016/S0165-
0173(01)00109-6

Michels, G., and Hoppe, U. C. (2008). Rapid actions of androgens. Front.
Neuroendocrinol. 29:4. doi: 10.1016/j.yfrne.2007.08.004

Miller, K. K., Perlis, R. H., Papakostas, G. I., Mischoulon, D., Iosifescu, D. V., Brick,
D. J., et al. (2009). Low-dose transdermal testosterone augmentation therapy
improves depression severity in women. CNS Spectr. 14, 688–694.

Miller, W. L., and Auchus, R. J. (2011). The molecular biology, biochemistry, and
physiology of human steroidogenesis and its disorders. Endocr. Rev. 32, 81–151.
doi: 10.1210/er.2010-0013

Moffat, S. D., and Hampson, E. (1996). A curvilinear relationship between
testosterone and spatial cognition in humans: possible influence of hand
preference. Psychoneuroendocrinology 21, 323–337. doi: 10.1016/0306-4530(95)
00051-8

Moffat, S. D., Zonderman, A. B., Metter, E. J., Blackman, M. R., Harman, S. M., and
Resnick, S. M. (2002). Longitudinal assessment of serum free testosterone con-
centration predicts memory performance and cognitive status in elderly men.
J. Clin. Endocrinol. Metab. 87, 5001–5007. doi: 10.1210/jc.2002-020419

Mohaddes, G., Naghdi, N., Khamnei, S., Khatami, S., and Haeri, A. (2009). Effect of
spatial learning on hippocampal testosterone in intact and castrated male rats.
Iran. Biomed. J. 13, 49–58.

www.frontiersin.org February 2015 | Volume 9 | Article 12 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive


Celec et al. Testosterone and the brain

Moller, M. C., Bartfai, A. B., and Radestad, A. F. (2010). Effects of testosterone
and estrogen replacement on memory function. Menopause 17, 983–989. doi:
10.1097/gme.0b013e3181dc2e40

Moradpour, F., Naghdi, N., and Fathollahi, Y. (2006). Anastrozole improved
testosterone-induced impairment acquisition of spatial learning and memory in
the hippocampal CA1 region in adult male rats. Behav. Brain Res. 175, 223–232.
doi: 10.1016/j.bbr.2006.08.037

Moradpour, F., Naghdi, N., Fathollahi, Y., Javan, M., Choopani, S., and Gharaylou,
Z. (2013). Pre-pubertal castration improves spatial learning during mid-
adolescence in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 46, 105–112.
doi: 10.1016/j.pnpbp.2013.07.005

Naghdi, N., Majlessi, N., and Bozorgmehr, T. (2005). The effect of intrahippocam-
pal injection of testosterone enanthate (an androgen receptor agonist) and
anisomycin (protein synthesis inhibitor) on spatial learning and memory in
adult, male rats. Behav. Brain Res. 156, 263–268. doi: 10.1016/j.bbr.2004.05.032

Naghdi, N., Nafisy, N., and Majlessi, N. (2001). The effects of intrahippocampal
testosterone and flutamide on spatial localization in the Morris water maze.
Brain Res. 897, 44–51. doi: 10.1016/S0006-8993(00)03261-3

Naghdi, N., Oryan, S., and Etemadi, R. (2003). The study of spatial memory in
adult male rats with injection of testosterone enanthate and flutamide into the
basolateral nucleus of the amygdala in Morris water maze. Brain Res. 972, 1–8.
doi: 10.1016/S0006-8993(03)02227-3

Nayebi, A. M., Pourrabi, S., and Hossini, S. (2014). Testosterone ameliorates
streptozotocin-induced memory impairment in male rats. Acta Pharmacol. Sin.
35, 752–757. doi: 10.1038/aps.2014.6

Nowak, N. T., Diamond, M. P., Land, S. J., and Moffat, S. D. (2014). Contributions
of sex, testosterone, and androgen receptor CAG repeat number to virtual
Morris water maze performance. Psychoneuroendocrinology 41, 13–22. doi:
10.1016/j.psyneuen.2013.12.003

Osborne, D. M., Edinger, K., and Frye, C. A. (2009). Chronic administra-
tion of androgens with actions at estrogen receptor beta have anti-anxiety
and cognitive-enhancing effects in male rats. Age (Dordr). 31, 191–198. doi:
10.1007/s11357-009-9114-3

Ostatnikova, D., Laznibatova, J., and Dohnanyiova, M. (1996). Testosterone influ-
ence on spatial ability in prepubertal children. Stud. Psychol. (Bratisl). 38,
237–245.

Panizzon, M. S., Hauger, R., Xian, H., Vuoksimaa, E., Spoon, K. M., Mendoza,
S. P., et al. (2014). Interaction of APOE genotype and testosterone on
episodic memory in middle-aged men. Neurobiol. Aging 35, e1771–e1778. doi:
10.1016/j.neurobiolaging.2013.12.025

Parrilla-Carrero, J., Figueroa, O., Lugo, A., Garcia-Sosa, R., Brito-Vargas, P.,
Cruz, B., et al. (2009). The anabolic steroids testosterone propionate
and nandrolone, but not 17alpha-methyltestosterone, induce conditioned
place preference in adult mice. Drug Alcohol Depend. 100, 122–127. doi:
10.1016/j.drugalcdep.2008.09.014

Perrot-Sinal, T. S., Kavaliers, M., and Ossenkopp, K. P. (1998). Spatial learning
and hippocampal volume in male deer mice: relations to age, testosterone
and adrenal gland weight. Neuroscience 86, 1089–1099. doi: 10.1016/S0306-
4522(98)00131-6

Pletzer, B., Kronbichler, M., Ladurner, G., Nuerk, H. C., and Kerschbaum, H.
(2011). Menstrual cycle variations in the BOLD-response to a number bisec-
tion task: implications for research on sex differences. Brain Res. 1420, 37–47.
doi: 10.1016/j.brainres.2011.08.058

Pope, H. G., Cohane, G. H., Kanayama, G., Siegel, A. J., and Hudson, J. I.
(2003). Testosterone gel supplementation for men with refractory depression:
a randomized, placebo-controlled trial. Am. J. Psychiatry 160, 105–111. doi:
10.1176/appi.ajp.160.1.105

Postma, A., Meyer, G., Tuiten, A., Van Honk, J., Kessels, R. P. C., and Thijssen,
J. (2000). Effects of testosterone administration on selective aspects of object-
location memory in healthy young women. Psychoneuroendocrinology 25,
563–575. doi: 10.1016/S0306-4530(00)00010-X

Puts, D. A., Cardenas, R. A., Bailey, D. H., Burriss, R. P., Jordan, C. L.,
and Breedlove, S. M. (2010). Salivary testosterone does not predict men-
tal rotation performance in men or women. Horm. Behav. 58, 282–289. doi:
10.1016/j.yhbeh.2010.03.005

Pyter, L. M., Trainor, B. C., and Nelson, R. J. (2006). Testosterone and photoperiod
interact to affect spatial learning and memory in adult male white-footed mice
(Peromyscus leucopus). Eur. J. Neurosci. 23, 3056–3062. doi: 10.1111/j.1460-
9568.2006.04821.x

Raber, J., Bongers, G., Lefevour, A., Buttini, M., and Mucke, L. (2002). Androgens
protect against apolipoprotein E4-induced cognitive deficits. J. Neurosci. 22,
5204–5209.

Roof, R. L. (1993). Neonatal exogenous testosterone modifies sex difference in
radial arm and Morris water maze performance in prepubescent and adult rats.
Behav. Brain Res. 53, 1–10. doi: 10.1016/S0166-4328(05)80261-X

Roof, R. L., and Havens, M. D. (1992). Testosterone improves maze performance
and induces development of a male hippocampus in females. Brain Res. 572,
310–313. doi: 10.1016/0006-8993(92)90491-Q

Roohbakhsh, A., Moghaddam, A. H., and Delfan, K. M. (2011). Anxiolytic-like
effect of testosterone in male rats: GARA(C) receptors are not involved. Iran.
J. Basic Med. Sci. 14, 376–382.

Ruigrok, A. N., Salimi-Khorshidi, G., Lai, M. C., Baron-Cohen, S., Lombardo,
M. V., Tait, R. J., et al. (2014). A meta-analysis of sex differences
in human brain structure. Neurosci. Biobehav. Rev. 39, 34–50. doi:
10.1016/j.neubiorev.2013.12.004

Sandstrom, N. J., Kim, J. H., and Wasserman, M. A. (2006). Testosterone modulates
performance on a spatial working memory task in male rats. Horm. Behav. 50,
18–26. doi: 10.1016/j.yhbeh.2005.09.008

Sartorius, G., Spasevska, S., Idan, A., Turner, L., Forbes, E., Zamojska, A.,
et al. (2012). Serum testosterone, dihydrotestosterone and estradiol con-
centrations in older men self-reporting very good health: the healthy man
study. Clin. Endocrinol. (Oxf). 77, 755–763. doi: 10.1111/j.1365-2265.2012.
04432.x

Schoning, S., Engelien, A., Kugel, H., Schafer, S., Schiffbauer, H., Zwitserlood, P.,
et al. (2007). Functional anatomy of visuo-spatial working memory during
mental rotation is influenced by sex, menstrual cycle, and sex steroid hor-
mones. Neuropsychologia 45, 3203–3214. doi: 10.1016/j.neuropsychologia.2007.
06.011

Schulz, K., and Korz, V. (2010). Hippocampal testosterone relates to refer-
ence memory performance and synaptic plasticity in male rats. Front. Behav.
Neurosci. 4:187. doi: 10.3389/fnbeh.2010.00187

Seidman, S. N., Spatz, E., Rizzo, C., and Roose, S. P. (2001). Testosterone replace-
ment therapy for hypogonadal men with major depressive disorder: a ran-
domized, placebo-controlled clinical trial. J. Clin. Psychiatry 62, 406–412. doi:
10.4088/JCP.v62n0602

Shah, D. S., Prados, J., Gamble, J., De Lillo, C., and Gibson, C. L. (2013). Sex dif-
ferences in spatial memory using serial and search tasks. Behav. Brain Res. 257,
90–99. doi: 10.1016/j.bbr.2013.09.027

Shors, T. J., and Miesegaes, G. (2002). Testosterone in utero and at birth dictates
how stressful experience will affect learning in adulthood. Proc. Natl. Acad. Sci.
U.S.A. 99, 13955–13960. doi: 10.1073/pnas.202199999

Silverman, I., Kastuk, D., Choi, J., and Phillips, K. (1999). Testosterone lev-
els and spatial ability in men. Psychoneuroendocrinology 24, 813–822. doi:
10.1016/S0306-4530(99)00031-1

Spritzer, M. D., Daviau, E. D., Coneeny, M. K., Engelman, S. M., Prince, W.
T., and Rodriguez-Wisdom, K. N. (2011). Effects of testosterone on spatial
learning and memory in adult male rats. Horm. Behav. 59, 484–496. doi:
10.1016/j.yhbeh.2011.01.009

Spritzer, M. D., Fox, E. C., Larsen, G. D., Batson, C. G., Wagner, B. A., and Maher,
J. (2013). Testosterone influences spatial strategy preferences among adult male
rats. Horm. Behav. 63, 800–812. doi: 10.1016/j.yhbeh.2013.03.018

Spritzer, M. D., Gill, M., Weinberg, A., and Galea, L. A. (2008). Castration differ-
entially affects spatial working and reference memory in male rats. Arch. Sex.
Behav. 37, 19–29. doi: 10.1007/s10508-007-9264-2

Suarez-Jimenez, B., Gore, H. E., Hachey, J., King, H. M., and Lacreuse, A. (2013).
Testosterone modulation of anxiety in gonadally-suppressed male rhesus mon-
keys: a role for gonadotropins? Pharmacol. Biochem. Behav. 104, 97–104. doi:
10.1016/j.pbb.2013.01.004

Tsai, M. J., and O’malley, B. W. (1994). Molecular mechanisms of action
of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63,
451–486. doi: 10.1146/annurev.bi.63.070194.002315

Ubuka, T., Son, Y. L., Tobari, Y., Narihiro, M., Bentley, G. E., Kriegsfeld, L. J., et al.
(2014). Central and direct regulation of testicular activity by gonadotropin-
inhibitory hormone and its receptor. Front. Endocrinol. (Lausanne). 5:8. doi:
10.3389/fendo.2014.00008

Urbanski, H. F. (2011). Role of circadian neuroendocrine rhythms in the
control of behavior and physiology. Neuroendocrinology 93, 211–222. doi:
10.1159/000327399

Frontiers in Neuroscience | Neuroendocrine Science February 2015 | Volume 9 | Article 12 | 16

http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science
http://www.frontiersin.org/Neuroendocrine_Science/archive


Celec et al. Testosterone and the brain

Urbanski, H. F., Sorwell, K. G., Garyfallou, V. T., Garten, J., Weiss, A., Renner,
L., et al. (2014). Androgen supplementation during aging: development of
a physiologically appropriate protocol. Rejuvenation Res. 17, 150–153. doi:
10.1089/rej.2013.1518

Van Hemmen, J., Veltman, D. J., Hoekzema, E., Cohen-Kettenis, P. T., Dessens, A.
B., and Bakker, J. (2014). Neural activation during mental rotation in com-
plete androgen insensitivity syndrome: the influence of sex hormones and
sex chromosomes. Cereb. Cortex. doi: 10.1093/cercor/bhu280. [Epub ahead of
print].

Van Honk, J., Peper, J. S., and Schutter, D. (2005). Testosterone reduces
unconscious fear but not consciously experienced anxiety: implications
for the disorders of fear and anxiety. Biol. Psychiatry 58, 218–225. doi:
10.1016/j.biopsych.2005.04.003

Vuoksimaa, E., Kaprio, J., Eriksson, C. J. P., and Rose, R. J. (2012).
Pubertal testosterone predicts mental rotation performance of young adult
males. Psychoneuroendocrinology 37, 1791–1800. doi: 10.1016/j.psyneuen.2012.
03.013

Walf, A. A., and Frye, C. A. (2012). Gestational or acute restraint in adulthood
reduces levels of 5alpha-reduced testosterone metabolites in the hippocampus
and produces behavioral inhibition of adult male rats. Front. Cell. Neurosci. 6:40.
doi: 10.3389/fncel.2012.00040

Weber, B., Lewicka, S., Deuschle, M., Colla, M., and Heuser, I. (2000). Testosterone,
androstenedione and dihydrotestosterone concentrations are elevated in female
patients with major depression. Psychoneuroendocrinology 25, 765–771. doi:
10.1016/S0306-4530(00)00023-8

Wolf, O. T., Preut, R., Hellhammer, D. H., Kudielka, B. M., Schurmeyer, T. H.,
and Kirschbaum, C. (2000). Testosterone and cognition in elderly men: a
single testosterone injection blocks the practice effect in verbal fluency, but
has no effect on spatial or verbal memory. Biol. Psychiatry 47, 650–654. doi:
10.1016/S0006-3223(99)00145-6

Yang, C. F. J., Hooven, C. K., Boynes, M., Gray, P. B., and Pope, H. G. (2007).
Testosterone levels and mental rotation performance in Chinese men. Horm.
Behav. 51, 373–378. doi: 10.1016/j.yhbeh.2006.12.005

Yonker, J. E., Eriksson, E., Nilsson, L. G., and Herlitz, A. (2006). Negative associa-
tion of testosterone on spatial visualization in 35 to 80 year old men. Cortex 42,
376–386. doi: 10.1016/S0010-9452(08)70364-2

Zarrour, F. A., Artz, S., Griffith, J., Sirbu, C., and Kommor, M. (2009). Testosterone
and depression: systematic review and meta-analysis. J. Psychiatr. Pract. 15,
289–305. doi: 10.1097/01.pra.0000358315.88931.fc

Zuloaga, D. G., Jordan, C. L., and Breedlove, S. M. (2011). The organizational
role of testicular hormones and the androgen receptor in anxiety-related
behaviors and sensorimotor gating in rats. Endocrinology 152, 1572–1581. doi:
10.1210/en.2010-1016

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 25 August 2014; accepted: 12 January 2015; published online: 17 February
2015.
Citation: Celec P, Ostatníková D and Hodosy J (2015) On the effects of testosterone on
brain behavioral functions. Front. Neurosci. 9:12. doi: 10.3389/fnins.2015.00012
This article was submitted to Neuroendocrine Science, a section of the journal Frontiers
in Neuroscience.
Copyright © 2015 Celec, Ostatníková and Hodosy. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

www.frontiersin.org February 2015 | Volume 9 | Article 12 | 17

http://dx.doi.org/10.3389/fnins.2015.00012
http://dx.doi.org/10.3389/fnins.2015.00012
http://dx.doi.org/10.3389/fnins.2015.00012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive

	On the effects of testosterone on brain behavioral functions
	Introduction
	Testosterone Physiology

	Anxiety
	Depression
	Spatial Abilities
	Memory
	Functional Magnetic Resonance Imaging in Humans
	Issues
	Psychometric Tests
	Populations
	Testosterone Measurement
	Timing
	Administration Route
	Type of Testosterone used
	Metabolism
	Non-Genomic Effects

	Conclusion and Future Outlook
	Acknowledgments
	References


