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With resting-state functional MRI (rs-fMRI) there are a variety of post-processing methods
that can be used to quantify the human brain connectome. However, there is also a choice
of which preprocessing steps will be used prior to calculating the functional connectivity
of the brain. In this manuscript, we have tested seven different preprocessing schemes
and assessed the reliability between and reproducibility within the various strategies by
means of graph theoretical measures. Different preprocessing schemes were tested on
a publicly available dataset, which includes rs-fMRI data of healthy controls. The brain
was parcellated into 190 nodes and four graph theoretical (GT) measures were calculated;
global efficiency (GEFF), characteristic path length (CPL), average clustering coefficient
(ACC), and average local efficiency (ALE). Our findings indicate that results can significantly
differ based on which preprocessing steps are selected. We also found dependence
between motion and GT measurements in most preprocessing strategies. We conclude
that by using censoring based on outliers within the functional time-series as a processing,
results indicate an increase in reliability of GT measurements with a reduction of the
dependency of head motion.
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INTRODUCTION
Resting-state functional MRI (rs-fMRI) is a neuroimaging
method that has emerged as a powerful tool to evaluate functional
connectivity patterns of the human brain (Fox and Greicius,
2010). Neuroimaging studies have demonstrated that the connec-
tivity topology of the brain can vary depending on the mental
state (Greicius, 2008), neuropsychological disorder (Bassett et al.,
2008; Liu et al., 2008; Rubinov et al., 2009; Sanz-Arigita et al.,
2010; Brier et al., 2014), sex (Tian et al., 2011) and even age
(Achard and Bullmore, 2007; Micheloyannis et al., 2009; Wang
et al., 2010; Zuo et al., 2010b, 2012). However, these studies
depend on a signal (blood oxygen level dependent—BOLD) that
is described by low frequency fluctuations (<0.1 Hz) (Biswal
et al., 1995) and which has a very low signal to noise ratio. Thus,
even the slightest source of artifacts such as physiological fluctua-
tions (respiration and cardiac fluctuations) as well as head motion
can highly influence the final estimates of connectivity. Hence, the
preprocessing steps chosen to remove the fluctuations in these
data caused by artifacts is extremely important (Shmueli et al.,
2007; Birn, 2012).

In a recent review, Bennett and Miller (2010) highlight the
importance of measuring the reliability in fMRI. They note that
reliability of fMRI data is not high compared to other scientific
measures, and there is still much work to be done to improve

the reliability estimates. Recently, Zuo and Xing (2014) published
a review addressing test-retest reliability in several functional
connectivity measures. They emphasize the need to evaluate the
reliability in rs-fMRI, such that, in functional connectivity mea-
sures it is important to guarantee a low variability within subjects
and a high variability between subjects. The article also discusses
that the choice of different preprocessing strategies can affect the
reliability of rs-fMRI. For Zuo and Xing (2014), test-retest reli-
ability “is a group-level statistic and refers to the temporal or
intra-individual stability of an index measured across multiple
occasions in a group of subjects.” There are a considerable amount
of methods to evaluate the reliability (intraclass correlation coef-
ficient (ICC), Pearson correlation, coefficient of variation, cluster
overlap, voxel counts, etc.), and the decision depends on which
post-processing method that is being evaluated. With task-based
fMRI the reproducibility of the level of activation, cluster size and
cluster location based on a task are of great relevance (Raemaekers
et al., 2012). However, in rs-fMRI there are several choices of
post-processing methodologies that evaluate the brain’s func-
tional connectivity (Margulies et al., 2010) and the reliability of
each of these methods need to be measured separately.

In rs-fMRI, functional connectivity can be measured by a
variety of methods including Independent Component Analysis
(ICA), seed-based functional connectivity, Analysis of Low
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Frequency Fluctuations (ALFF), Graph Theory (GT), etc.
(Margulies et al., 2010; Rubinov and Sporns, 2010). Our group
has previously (Franco et al., 2013) analyzed the reliability and
reproducibility of Resting State Networks (RSN), according to
two post-processing methods (ICA and seed-based functional
connectivity) where reliability was assessed through ICC. Results
indicated that at the group level, ICA and seed based functional
connectivity showed high to excellent reliability. However, at the
individual level, reliability was found to be in the poor to mod-
erate range. Using ICC, Zuo et al. (2010a) evaluated the test-test
reliability of using temporally concatenated ICA (TG-ICA) com-
bined with dual regression. They verified that there exists high
test-retest reliability in rs-fMRI networks when using ICA as
an analysis method. Thomason et al. (2011) studied the relia-
bility of the connectivity map through a longitudinal study of
rs-fMRI of children. Using a Pearson’s correlation, they evalu-
ated the reliability within and between sessions in six RSN. They
concluded that rs-fMRI is a reliable method to assess brain net-
works of children. Turner et al. (2012) verified the reliability of
ALFF in patients with schizophrenia. Test-rested was measured
through ICC, where results indicated that the reliability to be
moderate to high in healthy controls as well as chronically treated
schizophrenic patients.

Reliability studies generally evaluate the test-retest of a method
through the same preprocessing strategy. This is important when
dealing with longitudinal studies. However, it is known that a crit-
ical source of variation between studies can arise from simply
removing, including or changing parameters from the prepro-
cessing steps on the functional data. Two independent studies,
Weissenbacher et al. (2009) and Chang and Glover (2009) ana-
lyzed the influence of different pre-processing steps to evaluate
functional connectivity in seed-based methods. Hallquist et al.
(2013) evaluated the influence of a band-pass filter and nuisance
regressors. Based on these publications, it can be observed that
adding, removing or changing the order of the steps of pre-
processing can substantially change the measures of functional
connectivity. Moreover, Van Dijk et al. (2012), Power et al. (2013)
and Satterthwaite et al. (2013) showed that head motion can
introduce false correlations when estimating functional connec-
tivity. Using the same dataset as Power et al. (2013), Jo et al. (2013)
evaluated the effect of using different nuisance regression vari-
ables and evaluated the correlations between regions of interest
(ROIs). This study also evaluated if censoring time points with
high motion also biased their results. Jo et al. (2013) observed
that by using global signal regression, the sensitivity of correla-
tion due to motion is increased. They conclude that by despiking
these data, using motion estimation regression and using a differ-
ent regression parameter called a “local white matter regressor”
in their preprocessing steps, it reduced the sensitivity to motion
when calculating the correlation between seed pairs. Finally, they
found that by using this set of nuisance variables, there is little
effect on the data whether including or not the preprocessing step
of censoring high motion time points.

In GT, the selection of the nodes must be carefully made, since
the choice of the nodes and edges directly influence the neuro-
biological interpretation of the network topology (Rubinov and
Sporns, 2010; Liang et al., 2012). Recently, Liang et al. (2012)

evaluated three different methods of pre-processing of rs-fMRI
data; with and without global signal nuisance regression, with
three different band-pass filters, and with two correlation schemes
for the formation of the connectivity matrix (CM). Results indi-
cated that there is a higher reliability when calculating the CM
using a Pearson’s correlation vs. the use of partial correlation.
Not using global signal regression as a preprocessing step also
exhibited a higher reliability in comparison to including it in
the preprocessing strategy. The use of different filter bands also
altered the reliability of the results. Analyzing different stages of
preprocessing, Braun et al. (2011) evaluated the test-retest reli-
ability by ICC, in GT measures of 33 healthy control subjects.
They found that measures of GT are dependent of preprocess-
ing methods and parameters used in constructing the network.
Before selecting the preferred preprocessing strategy, it is neces-
sary to take into consideration that head motion can influence
connectivity measures, between subjects but also between groups.
Recently, Yan et al. (2013a), verified that head motion can com-
promise the results of test-retest reliability in several connectivity
measurements. In this same year, Yan et al. (2013b) evaluated
the relationship of GT measurements and head motion. With the
objective of reducing the dependency of GT measurements, they
applied different preprocessing methods, including a censoring
based on head motion step. It was found that the preprocess-
ing strategies tested were not sufficient to reduce dependency
of GT measurements and motion estimation at the individual
level, while the motion correction strategies at group level can be
beneficial.

Table 1 presents different studies that used GT measures
to analyze the functional connectivity in controls as well as
individuals with psychological and neurological diseases. Based
on this table and knowing that adding or removing differ-
ent stages of preprocessing can greatly affect the final results,
we propose to evaluate different preprocessing methods of rs-
fMRI data and how they affect GT measures. We have chosen
seven different preprocessing schemes to evaluate the reliability
between them and the reproducibility within them. This has been
tested on a publicly available dataset with rs-fMRI of healthy
controls (http://fcon_1000.projects.nitrc.org/indi/IndiPro.html).
Graph-based algorithms require the selection of network nodes.
We used a parcellation mask in which the brain was segmented
into 190 regions (CC200—not including the cerebellum) based
on functional similarity (Craddock et al., 2012). The graph the-
oretical measures evaluated were global efficiency (GEFF), char-
acteristic path length (CPL), average clustering coefficient (ACC),
and average local efficiency (ALE). Through three different tests,
we are evaluating which preprocessing strategy can (1) be com-
parable to other preprocessing strategies seen the GT rs-fMRI
literature, (2) shows a low variance in connectivity measurements
within a homogeneous population and finally, (3) exhibits a low
dependency of GT measurement on head motion estimation.

MATERIALS AND METHODS
SUBJECTS
The resting state fMRI data used in this paper consists of a pub-
licly available dataset, the 1000 Functional Connectomes Project
that is part of the International Neuroimaging Data-sharing
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Table 1 | List of preprocessing steps chosen in research articles that performed graph theoretical measurements on rs-fMRI data.

Study Despiking Band-pass High-pass Blurring Motion WM Scrubbing with Polynomial Global RETROICOR N

filtering filtering Regression and CSF motion Regression Signal

Regression parameters Regression

Anderson et al., 2011 x x x x x 36 controls

Cao et al., 2013 x x x x 26 controls

Braun et al., 2011 x* x x x x 33 controls

Liu et al., 2008 x 62 (31 controls/31
patients)

Liang et al., 2012 x** x*** 47 controls

Sanz-Arigita et al., 2010 x 39 (21 controls/18
patients)

Achard et al., 2006 x 5 controls

Achard and Bullmore,
2007

x 26 (15 old/11
young controls)

Salvador et al., 2005 x 5 controls

Van den Heuvel et al.,
2008

x 28 controls

Van den Heuvel et al.,
2009

x 19 controls

Yan et al., 2013b x x**** x x x x 158 controls

*Used two band-pass frequencies (0.04–0.08 Hz), (0.0083–0.15 Hz).
**Band-passed in three different frequency ranges: 0.01–0.1 Hz; 0.01–0.027 Hz; and 0.027–0.073 Hz.
***Tested with and without global signal regression.
****Performed motion regression with two different parameters; regression based on realignment: rigid-body 6-parametermodel and Friston 24-parametermode.

Initiative (INDI- http://fcon_1000.projects.nitrc.org/) (Biswal
et al., 2010). A subset of these dataset was selected, where the
inclusion criteria were; healthy control, right handed, data was
collected from a homogeneous population and where there was
a small variance in age between subjects. A total of 102 subject
from the Peking University dataset where selected (Mean age =
11.62 ± 1.76; 43 female), which were originally used as controls
for an Attention Deficit Hyperactivity Disorder (ADHD) study
in children. All data were collected in a Siemens 3.0T MRI scan-
ner with the following parameters, TR = 2000 ms, TE = 30 ms,
and 240 image time points (8 min). As stated in Biswal et al.
(2010), these data were approved for distribution by the insti-
tutional review boards of NYU Langone Medical Center and the
New Jersey Medical School.

DATA PREPROCESSING
Functional data were preprocessed using AFNI’s
“afni_proc.py” scripting algorithm (http://afni.nimh.nih.gov/
pub/dist/doc/program_help/afni_proc.py.html). Seven different
preprocessing strategies have been evaluated. However, for
all the preprocessing strategies, these data underwent a few
established preprocessing steps. Initially, the first 3 images where
removed to avoid T1 effects, despiked, slice-time corrected, 3d
motion corrected, nuisance regression with motion parameters,
registered to MNI152 (using the T1 structural image), and scaled
to percent signal change (average = 100). Registration to MNI
space was visually inspected for each subject. Spatial smoothing
was not performed in order to not extend blood oxygen level
dependency (BOLD) signal between different regions of interest
(nodes). Additionally, motion parameters, as well as the average
BOLD signal of cerebrospinal fluid (CSF), white matter (WM)
and whole brain where extracted for subsequent use.

The seven selected preprocessing strategies are detailed in
Table 2. The different strategies are based on increasing the num-
ber of processing techniques and of what is typically seen within
the resting-state literature. Bandpass filtering consists of filter-
ing the functional data between 0.01 and 0.1 Hz. WM, CSF, and
Global signal regression is a multiple regression step where the
extracted CSF, WM, or Global signals are used are nuisance vari-
ables. We are evaluating two different censoring options; either
censoring based on motion parameters or based on signal outliers
within the BOLD data. Censoring consists of removing (cen-
soring) time points of the functional data that pass a threshold
chosen a-priori. This technique has only recently started to be
used as a preprocessing step with resting state data (Power et al.,
2012, 2014; Yan et al., 2013b), using motion parameters as a
censoring criterion.

Censoring based on motion parameters consists by initially
estimating the amount of motion that occurs between subse-
quent images within the six motion parameters (translation: x,y,z;
rotation: roll, pitch, yaw), which is calculated during the 3D
motion correction preprocessing step. The amount of motion
in each image is calculated by the sum of square differences in
displacement:

Mot (i)s =
(
(xi − xi−1)

2 + (
yi − yi−1

)2 + (zi − zi−1)
2

+(ri − ri−1)
2 + (

pi − pi−1
)2 + (

yawi − yawi−1

)2
)1/2

(1)

were x, y, and z are the translation estimates and r, p, yaw
are the rotation estimates, i is the image, and s is the subject.
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Table 2 | Description of the different preprocessing strategies evaluated.

Preprocessing Bandpass CSF and WM Scrubbing with Scrubbing with Global

strategy filtering regression motion parameters outliers signal regression

A

B X

C X

D X X

E X X X

F X X X

G X X X X

Time points (i) that have motion (Mot(i)) above 0.2 mm were
censored.

In censoring based on outliers the time points are censored
based directly on the signal intensity of the voxels through-
out time (Cox, 2002). Specifically, for each voxel, the median
(m(v)0 and the median absolute deviation (MAD(v)) are cal-
culated. Next, an acceptable intensity range for each voxel is
defined by [m(v) − a · MAD(v); m(v) + a · MAD(v)], where a =
Q−1(0.01/N)∗(π/2)1/21, and Q() is the reversed Gaussian cumu-
lative distribution function (cdf) and N is the length of the time
series. If a time point of a particular voxel is outside this range, it
is considered an outlier. For each time point, the total amount of
voxels within the brain that are outliers is calculated. Time points
are censored in which 10% of voxels are considered outliers. The
algorithm for estimating outliers was first presented and can be
seen in detail here (Cox, 2002).

REGIONS OF INTEREST (NODES)
A publically available mask was used to segment the brain
into 190 regions of interest (ROIs), the CC200 (Craddock
et al., 2012). The 10 regions that are contained within cere-
bellum were excluded from this analysis. For each subject, the
average time series of the voxels within each ROI was calcu-
lated and subsequently used to calculate the graph theoretical
measurements.

GRAPH THEORY MEASURES
The connectivity matrix (CM) was estimated by calculating the
pair-wise correlation (Pearson’s r) of the time series between
each of the 190 nodes, leaving a total of 17955 correla-
tion pairs. Before calculating the GT measures, a threshold
must be applied to the CM. Four different threshold lev-
els (absolute values) were applied to the CM (0.2, 0.3, 0.4
e 0.5) and subsequently binarized. GT measures were calcu-
lated in a freely available toolbox, Brain Connectivity Toolbox
(https://sites.google.com/site/bctnet/). Global Efficiency (GEFF),
Characteristic Path Length (CPL), Average Clustering Coefficient,
and Average Local Efficiency (ALF) were measured for each sub-
ject, at each preprocessing strategy and threshold. A detailed
review about these measures can be seen in Rubinov and Sporns
(2010).

1If the noise is Gaussian, then the MAD = σ(2/π)1/2; A standard Gaussian
N(0, 1) will exceed Q−1(p) with probability p.

STATISTICAL ANALYSIS
We performed three distinct statistical analyses to evaluate the
reliability and reproducibility of the different preprocessing
strategies and also to assess the relationship of the GT measures
with head motion estimates.

Test 1—reliability across different preprocessing strategies
Reliability across the seven different preprocessing strategies was
evaluated. This was calculated through a repeated measures One-
Way ANOVA. This statistical analysis was performed for each GT
measurement and also at each threshold level (0.2, 0.3, 0.4, and
0.5), with a total of 16 One-Way ANOVAS. Follow up paired t-
tests were also calculated in order to directly compare the different
preprocessing strategies.

Test 2—reproducibility of the connectivity matrix
In order to fully evaluate how the preprocessing strategies affect
the functional data, we have tested the reproducibility of the
CM. The CM was evaluated directly without calculating the
GT measures. For each node pair, the standard deviation was
calculated across the 102 subjects. Therefore, for each pre-
processing method there is a standard deviation matrix that
estimates how much variance there is across subjects within
each node pair. We will call these the Standard Deviation
Matrices (SDM). Figure 1 illustrates a schematic of this test
and the equations used to calculate the SDM. Additionally,
the average correlation was calculated for each preprocessing
method.

Test 3—motion vs. GT measures correlation
In order to evaluate these data in several quantitative measure-
ments, we are replicating an analysis performed by Yan et al.
(2013b). The relationship between the average motion and GT
measurements was assessed. A correlation (Pearson’s r) between
each GT measurement and the average motion estimation of each
subject was calculated. This test was performed to evaluate the
ability to reduce or remove the dependency of GT measurements
on head motion.

RESULTS
TEST 1—RELIABILITY ACROSS DIFFERENT PREPROCESSING
STRATEGIES
Mauchly’s test indicated that the assumption of sphericity was
violated (chi-square = 899.86, p < 0.001) within our data.

Frontiers in Neuroscience | Brain Imaging Methods February 2015 | Volume 9 | Article 48 | 4

https://sites.google.com/site/bctnet/
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods
http://www.frontiersin.org/Brain_Imaging_Methods/archive


Aurich et al. Reliability of graph theoretical measures in rs-fMRI

FIGURE 1 | An illustrative schematic of Test 2. For each node pair, the standard deviation of the correlation (rs) is calculated across subjects(s). The Standard
Deviation Matrix (SDM) is used to assess the reproducibility of a preprocessing strategy.

Therefore, a repeated measure ANOVA with a Greenhouse-
Geisser correction (epsilon = 0.366) was calculated. Results
indicated that the mean value of all the GT measurements dif-
fered significantly [F(2.194, 221.6) = 497.57, p < 0.001, partial Eta
squared = 0.831] between different preprocessing strategies at all
four thresholds. Since there are a total of 336 (21 pairs of prepro-
cessing strategies, 4 levels of threshold and 4 different preprocess-
ing methods) post-hoc paired t-tests performed (using Bonferroni
correction), a summary of these tests is shown in Table 3. The
grand majority of the paired t-tests indicated a statistical signif-
icant difference (p < 0.05) between the preprocessing strategies.
Therefore, Table 3 only indicates the tests where the hypothesis
was not rejected (p > 0.05), i.e., there was no statistical differ-
ence between the preprocessing strategies at a particular threshold
and GT measure. Preprocessing strategies A and B differed sta-
tistically from all other preprocessing methods, consequently are
not show in Table 3. Numbers indicate the total amount of paired
t-tests that were not rejected at a particular preprocessing strat-
egy pair and GT measure across threshold levels. For example,
when comparing preprocessing strategies “C” and “G” for ACC,
there was a statistical significant difference only at the 0.5 thresh-
old level, and no difference in thresholds 0.2, 0.3, and 0.4. Hence
forward the number “3” in the cell. A detailed description of all
the results post-hoc paired t-tests can be seen in Supplementary
Table 1.

TEST 2—REPRODUCIBILITY OF THE CONNECTIVITY MATRIX
Figure 3 exhibits the matrices that display the SDM for each
preprocessing strategy and their mean value. Additionally,
the average correlation score for each preprocessing strategy
are; A = 0.2640 (±0.1301), B = 0.2967 (±0.1363), C = 0.0291
(±0.1065), D = 0.0251 (±0.1205), E = 0.0225 (±0.1218), F =
0.0238 (±0.1209), and G = 0.0009 (±0.1169). The absolute aver-
age correlation for the preprocessing strategies are; A = 0.2644
(±0.1293), B = 0.2973 (±0.1349), C = 0.0763 (±0.0798), D =
0.0859 (±0.0882), E = 0.0867 (±0.0885), F = 0.0860 (±0.0883),
G = 0.0826 (±0.0827).

Table 3 | Results from Test 1.

Preprocessing strategy GT Measure Preprocessing

strategy

D E F G

C GEFF
CPL 1 1
ACC 1 1 1 3
ALE

D GEFF – 4 4
CPL – 4 4
ACC – 4 4 3
ALE – 4 4 3

E GEFF – –
CPL – – 1
ACC – – 4
ALE – – 3

F GEFF – – – 4
CPL – – – 4
ACC – – – 3
ALE – – – 4

Numbers indicate the amount of post-hoc paired t-tests (one for each threshold

level) that did not show statistical differences between preprocessing strategies.

Preprocessing strategies (A, B, C, . . . ) are described in Table 2. GEFF, Global

Efficiency; CPL. Characteristic Path Length; ACC, Average Cluster Coefficient;

ALE, Average Local Efficiency.

TEST 3—MOTION vs. GT MEASURES CORRELATION
Pearson’s correlation scores comparing the average motion of a
subject per scan and their GT measure, at each threshold, are
shown in Table 4.

QUANTITY OF CENSORING
In order to evaluate the amount of time points that where
censored by each method, we calculated the quantity of time
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Table 4 | Correlation scores between preprocessing strategies and average motion estimation parameters.

GT Threshold A B C D E F G

Measurement level

GEFF 0.2 0.435 0.417 0.283 0.247 0.685 0.204 0.704

0.3 0.442 0.412 0.319 0.247 0.691 0.218 0.703

0.4 0.453 0.411 0.340 0.267 0.694 0.236 0.710

0.5 0.461 0.431 0.289 0.255 0.700 0.207 0.706

Mean (Stdev) 0.448 (±0.012) 0.418 (±0.009) 0.308 (±0.027) 0.254 (±0.009) 0.693 (±0.006) 0.216 (±0.014) 0.706 (±0.003)

CPL 0.2 –0.429 –0.414 –0.292 –0.249 –0.686 –0.207 –0.706

0.3 –0.424 –0.413 –0.207 –0.220 –0.669 –0.200 –0.687

0.4 –0.392 –0.388 –0.088 –0.142 –0.632 –0.132 –0.659

0.5 –0.349 –0.376 0.056 –0.101 –0.463 –0.101 –0.454

Mean (Stdev) –0.399 (±0.037) –0.398 (±0.019) –0.133 (±0.151) –0.178 (±0.068) –0.613 (±0.102) –0.160 (±0.052) –0.627 (±0.117)

ACC 0.2 0.396 0.436 0.160 0.198 0.542 0.126 0.596

0.3 0.424 0.455 0.282 0.203 0.407 0.103 0.455

0.4 0.444 0.448 0.382 0.307 0.413 0.222 0.477

0.5 0.457 0.443 0.367 0.275 0.517 0.197 0.578

Mean (Stdev) 0.430 (±0.027) 0.446 (±0.008) 0.298 (±0.102) 0.246 (±0.054) 0.470 (±0.070) 0.162 (±0.057) 0.527 (±0.071)

ALE 0.2 0.407 0.436 0.240 0.205 0.554 0.139 0.605

0.3 0.436 0.450 0.313 0.217 0.527 0.159 0.548

0.4 0.444 0.421 0.364 0.282 0.549 0.222 0.591

0.5 0.454 0.421 0.373 0.264 0.600 0.177 0.630

Mean (Stdev) 0.435 (±0.020) 0.432 (±0.014) 0.323 (±0.061) 0.242 (±0.037) 0.558 (±0.031) 0.174 (±0.035) 0.594 (±0.034)

Threshold levels were applied to the connectivity matrix. Preprocessing strategies (A, B, C, . . . ) are described in Table 2. GEFF, Global Efficiency; CPL, Characteristic

Path Length; ACC, Average Cluster Coefficient; ALE, Average Local Efficiency; Stdev, Standard Deviation of the correlation.

points that where censored in all 102 subjects for strategies “E”
and “F.” When censoring based on motion with a threshold of
0.2 mm (Equation 1), there was an average of 6.25 (±9.75) time
points removed, which represents 2.68% of the time points cen-
sored. Additionally, it was observed that 24.5% of subjects not
have any time points removed. In contrast, on average only 1.07
(±4.26) of the time points were removed when censoring based
on outliers (0.46% of time points), and 79.4% of the subjects did
not have any time points removed.

DISCUSSION
The main objective of this study was to evaluate the reliability of
GT measurements across different preprocessing strategies and
also test the reproducibility within a particular strategy. For us
to be able to apply fMRI, or more specifically, rs-fMRI within a
clinical setting, we must first critically evaluate its reliability and
reproducibility at the subject level (Bennett and Miller, 2010).
There are many sources of variability in fMRI data and unfortu-
nately the steps chosen in the preprocessing pipeline can be one of
these variables. Based on Table 1, we can see that there isn’t a con-
sensus on which preprocessing strategy is the best to be applied to
rs-fMRI data. Therefore, if there isn’t even a consensus on the pre-
processing strategies used to preprocess functional data, how can
we establish if fMRI is reliable or not? We have chosen to test some

of the mostly used preprocessing strategies for resting state data
(Table 2), including a novel method, censoring by two different
quantitative measurements (motion and BOLD signal outliers).

With a large (N = 102) homogeneous group, we evaluated
whether seven different preprocessing strategies can significantly
change GT measurements. Analyzing results from Table 3, final
measurements can be altered significantly simply by including or
removing a preprocessing step. Only preprocessing strategies “D”
and “F” do not differ in any of the different threshold levels and
GT measurements tested. The difference between pipelines “D”
and “F,” is that “F” includes a censoring based on outliers step.
Also based on Table 3, preprocessing strategy G has similar results
to D and F is almost every GT measurement.

Figure 2 shows the average GT measurements for all the pre-
processing methods and different thresholds tested. It is evident
that preprocessing strategies “A” and “B” differ the most from the
other methods. These two pipelines are the ones that employ the
least amount of processing steps. Additionally, the average cor-
relation scores within the CM are the largest for methods “A”
and “B,” with r = 0.2640 and r = 0.2967, respectively. As seen in
Table 1, similar preprocessing strategies where employed in ear-
lier GT studies. In general, methods “D” through “G” do not
differ as much and are typically, in the more recent studied, the
preprocessing strategies mostly used. Preprocessing method “C,”
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FIGURE 2 | Graph Theoretical Measurements for each of the

preprocessing strategies and threshold level applied to the connectivity

matrix. Error bars indicate the standard deviation across subjects. Graph

Theoretical Measurements are GEFF, Global Efficiency; CLP, Characteristic
Path Length; ACC, Average Cluster Coefficient; ALE, Average Local
Efficiency. Preprocessing strategies (A, B, C, . . . ) are described in Table 2.

which does not include bandpass filtering, is also different in most
GT measurements (Table 3) compared to other methods.

Test number 2 had the purpose of evaluating directly the CM
across subjects, without calculating the final GT measurements.
Reliability was assessed by calculating, at each node pair, the vari-
ance in correlation score across subjects within a preprocessing
strategy. Figure 3 indicates that, given the preprocessing strategy
chosen, there can be an increase or decrease in the variation of
the CM across subjects. The lowest variation can be seen in meth-
ods “C” (mean stdev = 0.1394) followed by a higher variation
seen in method “A” (mean stdev = 0.1656). Methods “D” and “F”
have almost identical variation in the CM across subjects, with an
average standard deviation of the CM equal to 0.1729 and 0.1722,
respectively. The highest average standard deviations are seen in
methods “B,” “E,” and “G.”

Test number 3 was performed to verify the relationship of
GT measurements and subject head motion. Across the different
GT measurements and threshold levels, on average, preprocess-
ing strategy “F” has the lowest correlation with head motion,
closely followed by method “D” (Table 4). The measurements
of GEFF showed weak to strong correlation with head motion
across the preprocessing strategies. Strategies “D” and “F” (in

GEFF) showed the lowest amount of correlation with motion
in all thresholding levels, with an average correlation of 0.254
and 0.216, respectively. While preprocessing strategy “G” exhib-
ited the highest correlation with motion (mean correlation =
0.706). CPL, ACC, and ALE all demonstrated a similar pattern
of results. What is surprising, is that in preprocessing strategy “E”
which censors out time points with high motion, does not reduce
the dependency of GT metrics on motion. It actually increases
the correlation with motion when compared with strategy “D,”
which does not contain the censoring step in the preprocessing
strategy. Yan et al. (2013b) found similar results to ours regard-
ing head motion. They compared preprocessing using censoring
by motion parameters with global signal nuisance regression, and
found that using a combination of both increases the relationship
of GT measurements and motion estimation, compared to only
using global regression. In this paper, we did not perform a pre-
processing using only strategy “D” plus global signal regression;
therefore, we cannot thoroughly compare our results.

Also, in regards to global signal regression, Liang et al. (2012)
investigated the reliability of GT measurements on rs-fMRI and
found that the use of the global signal regression produces less
reliable results compared to when not using this pre-processing
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FIGURE 3 | Standard Deviation Matrices (SDM), which are results from Test 2. The mean of each SDM is indicated for each preprocessing strategy and is
calculated only from the right-superior diagonal of the matrix. Preprocessing strategies (A, B, C, . . . ) are described in Table 2.

step. This was measured by comparing scans acquired with short
and long time intervals. With global signal regression, the average
CM among subjects for the “G” preprocessing strategy is close to
zero, which may indicate that the number of positive and negative
correlation scores are balanced. This corroborates with the study
by Braun et al. (2011), where they assessed the reliability of CM
and found that the number of negative correlations varied greatly
between the different strategies. With the use of the global signal
regression, approximately half of the correlations were negative,
whereas with the other methods, that number ranges from 0 to
34.8% of the correlation pairs.

In regards to the number of time points removed in strategies
“E” and “F,” censoring based on head motion (mean = 6.25 ±
9.75) removed considerably more images when compared to cen-
soring based on outliers (mean = 1.07 ± 4.26). The low number
of points that were censored by strategy “F” reveals the reason why
strategies “D” and “F” have similar results, exhibited in Table 3. It
is also preferable to remove the least amount o time points from
your data. It is possible, in a few cases, to remove motion arti-
fact in some images by the use of image processing algorithms.
Therefore, there is no need to remove these time points from the
data analysis since these images have been corrected. A paper has
recently been published that addresses this issue (Power et al.,
2014).

This manuscript is limited in the sense that different threshold
levels of censoring based on motion and outliers were not evalu-
ated. By modifying the threshold levels it is expected that the end
results should change considerably.

Preprocessing strategies A and B have shown similar mean val-
ues in all GT measurements (Figure 2). However, the outcomes of
using these two preprocessing steps differ significantly from the
other five strategies being evaluated, including GT measurements

and average correlation score within the connectivity matrix. It
is important to emphasize that in the studies by Sanz-Arigita
et al. (2010), Van den Heuvel et al. (2008) and Van den Heuvel
et al. (2009), they used only a high-pass or band-pass filter.
Based on our results, we have shown that it is important to
verify which pre-processing strategy is being used, in order to
compare GT measurements across different studies that evalu-
ate a similar population. Considering all the tests performed,
preprocessing strategies “D” and “F” portray as being the most
reliable methods. The only difference between them is that pre-
processing strategy “F” includes a censoring based on outliers
step. Additionally, they also present results that cannot be sta-
tistically differentiated (Table 3). Preprocessing method “D” is a
well-established preprocessing pipeline that has been proven to
be a reliable scheme (Weissenbacher et al., 2009). There is how-
ever a decrease in dependency between on GT measures and head
motion when using the censoring based on outliers step (method
“F”). Therefore, based on the results, we recommend using pre-
processing strategy “F” to increase the reliability across subjects
and reduce the dependency on head motion. We were unable
to find in the current literature articles that have used censor-
ing based on outliers on GT measures and compared the final
outcomes.

We have shown a preprocessing strategy that is reliable among
a large homogeneous group, where we point to a method that
best reduces the variance across subjects (healthy controls) and
controls for head motion. However, in research studies were it
is intended to compare clinical populations (i.e., patients vs.
controls) a reduction in the variation of the CM might not be
optimal. This is the major limitation of this study. Also, differ-
ent preprocessing strategies can be used and/or developed that
were not tested in this study. Finally, further research needs to
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be performed to establish which preprocessing strategy reduces
intra-group variation, while increasing or maintaining inter-
group differences.
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