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OVERVIEW

Electrical stimulation of the preoptic area (POA) interrupts the lordosis reflex, a combined
contraction of back muscles, in response to male mounts and the major receptive
component of sexual behavior in female rat in estrus, without interfering with the
proceptive component of this behavior or solicitation. Axon-sparing POA lesions with an
excitotoxin, on the other hand, enhance lordosis and diminish proceptivity. The POA effect
on the reflex is mediated by its estrogen-sensitive projection to the ventral tegmental
area (VTA) as shown by the behavioral effect of VTA stimulation as well as by the
demonstration of an increased threshold for antidromic activation of POA neurons from
the VTA in ovariectomized females treated with estradiol benzoate (EB). EB administration
increases the antidromic activation threshold in ovariectomized females and neonatally
castrated males, but not in neonatally androgenized females; the EB effect is limited to
those that show lordosis in the presence of EB. EB causes behavioral disinhibition of
lordosis through an inhibition of POA neurons with axons to the VTA, which eventually
innervate medullospinal neurons innervating spinal motoneurons of the back muscle.
The EB-induced change in the threshold or the axonal excitability may be a result of
EB-dependent induction of BK channels. Recordings from freely moving female rats
engaging in sexual interactions revealed separate subpopulations of POA neurons for
the receptive and proceptive behaviors. Those POA neurons engaging in the control of
proceptivity are EB-sensitive and project to the midbrain locomotor region (MLR). EB thus
enhances lordosis by reducing excitatory neural impulses from the POA to the VTA. An
augmentation of the POA effect to the MLR may culminate in an increased locomotion
that embodies behavioral estrus in the female rat.
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rats. EB-induced increase in the excitability of VMN neurons does

Protracted electrical stimulation of the ventrolateral part of the
ventromedial nucleus of the hypothalamus (VMN) at low fre-
quencies has been found to cause lasting facilitation of the lor-
dosis reflex in female rats in the estrus, a combined contraction of
the longissimus and other back muscles caused by touch-pressure
stimulation on the flank-perineal skin given by male partners
(Pfaffand Sakuma, 1979). The resultant dorsiflexion of the female
trunk allows penile penetration. A recent study replicated the
effectiveness of low frequency stimulation, albeit by optogenic
stimulation in male mice, to elicit sexual behavior or aggression
from the ventrolateral VMN at different thresholds (Lin et al.,
2011). The effects of electrical stimulation at low frequencies
may be compatible with the scalable control of mounting and
attack at different optogenic stimulation thresholds at the similar
frequency range around 10 Hz (Lee et al., 2014).

SYSTEMIC ESTROGEN IS NEEDED FOR EFFECTIVE VMN
STIMULATION

Systemic treatment with submaximal doses of estrogen, in partic-
ular estradiol benzoate (EB), was needed for electrical stimulation
of the VMN to facilitate lordosis in the ovariectomized female

not fully explain the requirement of systemic EB to stimulation-
bound facilitation of lordosis, because VMN stimulation does not
promote lordosis in the absence of systemic EB, even at stronger
currents. The VMN contains estrogen receptor (ER) o positive
projection neurons to the midbrain, but ERa positive neurons are
also present in the preoptic area (POA), medial amygdala, mid-
brain central gray (CG), and lateral septum, to name but a few
(Simerly et al., 1990; Doncarlos et al., 1991). In the periphery, EB-
induced enlargement of the cutaneous sensory field pertinent to
the induction of lordosis has been shown (Kow and Pfaff, 1973).
The medial amygdala exerts an estrogen-dependent facilitatory
effect on lordosis, evidence that is based on lesion of the struc-
ture (Rajendren and Moss, 1993) and resection of its efferents
in the stria terminalis (Takeo et al., 1995). Significant reduction
the lordosis quotient following lesion of the amygdala was, how-
ever, detected only in the response to repeated coital stimulation.
Fos immunohistochemistry attributed the effect secondary to the
diminished activation of gonadotropin-releasing hormone neu-
rons. Thus, the medial amygdala cannot be a principal site for
estrogen action on the lordosis reflex. The lateral septum is also
an origin of a lordosis-inhibiting efferents (Yamanouchi and Arai,
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1990), and EB implants in this structure releases the behavioral
inhibition (Satou and Yamanouchi, 1999). Morphologically, how-
ever, only a small number of estrogen receptor immunoreactive
cells have been visualized in this structure (Yokosuka et al., 1997).

THE POA AS A TARGET OF ESTROGEN ACTION

Whereas, the VMN is known to play a key role in the lordosis
reflex and other components of estrogen-dependent female sex-
ual behavior, the POA has more often been associated with male
behavior and is not traditionally been considered to be vital in the
regulation of female behavior. Several earlier studies have shown,
however, that the POA is primarily an inhibitory structure for
the lordosis reflex. Stereotaxic implantation of minute amount of
crystalline EB either in the VMN or the POA supplements a sub-
threshold EB given systemically to induce lordosis (Barfield and
Chen, 1977). Although larger doses were needed to induce lordo-
sis by implants in the POA than in the VMN, this observation has
shown that the POA is a target site of estrogen action to induce
lordosis.

Pharmacological disruption of aminergic neurotransmission
in the POA has been found to promote lordosis (Ward et al.,
1975; Carter et al., 1978). Intracerebral implantation of the anti-
estrogens in the preoptic and anterior hypothalamic continuum
has also been found to antagonize systemic EB, which results
in a dramatic inhibition of lordosis (Luttge, 1976). Additionally,
lesions in the dorsal POA have been found to produce a signifi-
cant increase in lordosis (Nance et al., 1977). It is worth noting
that the CG receives dense projection from the rostral and dorsal
parts of the POA (Morrell et al., 1981; Swanson et al., 1987).

POA STIMULATION AND LORDOSIS

In freely moving EB-treated ovariectomized females, neurons
associated with bouts of sexual interactions with a male partner
in rate-meter and ethograms have been shown to have a mean
firing rate of 10.3 Hz (Kato and Sakuma, 2000). Electrical stim-
ulation of the POA at around 10 Hz suppressed lordosis, with a
slow onset and gradual suppression which reached a maximum at
90 min. This effect has also been characterized by slow recovery
of lordosis after the termination of POA stimulation (Pfaff and
Sakuma, 1979; Takeo et al., 1993). The peculiar time course in the
behavioral response to the POA stimulation disappeared by the
removal of dorsal connection of the POA by a horizontal knife cut
(roof cut), or in particular, the disruption of the stria terminalis,
resulting in immediate interruption of lordosis in response to cur-
rent application (Takeo et al., 1993). Therefore, the POA contains
a particular set of neurons that are responsible for the inhibition
of lordosis. The elimination of facilitatory neural components for
this reflex, which enter the POA via the stria terminalis, is respon-
sible for the prompt and exaggerated stimulation effect in the
roof-cut animals (Figure 1).

THE POA AND THE PROCEPTIVE BEHAVIOR

Of great significance in the observed effects of POA lesions on
lordosis is that the effects depend on test situation. For instance,
Whitney (1986) found that, in a no-exit paradigm when the
females were constrained in the vicinity of males, lordosis was
enhanced. In exit tests, in which the females could evade male

partners, no lordosis was seen as a consequence of the lack of
sexual contacts. Thus, the authors concluded that the enhanced
lordosis in the lesioned females detected by no-exit tests was not
due to any potentiation in the females’ preference to engage in
sexual interactions with males.

In the rat, sexual interactions are initiated and paced by
females in estrus through patterns of approach toward and with-
drawal from sexually active males (Erskine, 1989). Emotional
state of the females, determined by activity of the medial amyg-
dala, one major source of estrogen-sensitive POA afferents, may
regulate this approach and withdrawal (Kondo and Sakuma,
2005). Preoptic implants of estradiol suppress open-field and
increase wheel-running activities in ovariectomized female rats
(Fahrbach et al., 1985). These behavioral changes have been inter-
preted to reflect increased anxiety and fear learning together
with locomotor activation, the effects, as investigated in knock-
out mice (Ogawa et al., 2003), mediated by ERa-positive, but
not ERB-positive, neurons in the POA. In stressed female rats,
however, estradiol has been found to decrease anxious behavior
on the open field and to enhance radial-arm maze performance
(Bowman et al., 2002). Changes in cognitive and emotional activ-
ity have been inferred to reflect a general increase in arousal level
(Morgan and Pfaff, 2002), with both responses increasing the
likelihood of successful reproduction.

PREOPTIC LOCOMOTOR AREA

Thus, an increased locomotor activity in female rats in estrus
embodies enhanced sexual motivation (Quadagno et al., 1972;
Swanson and Mogenson, 1981; Mink et al., 1983; Edwards and
Einhorn, 1986; Rivas and Mir, 1990; Paredes and Vazquez, 1999),
and the POA has been positively identified as a site for estrogen-
induced activation of wheel running (Fahrbach et al., 1985)
through activation of ERa (Hertrampf et al., 2008). The POA
contributes to the rostro-caudal neural axis for the locomotor
synergy (Mori et al., 1992) with its projections to the midbrain
locomotor region (MLR) (Swanson et al., 1984, 1987). The pre-
optic locomotor region, from which stepping can be initiated
by chemical (Sinnamon, 1987) or electrical (Sinnamon, 1992)
stimulation, is situated in the medial portion of the lateral POA
(mLPO). The locomotor activity can be consistently reduced by
cholinergic activation of the periventricular POA (Brudzynski
and Eckersdorf, 1984; Brudzynski and Mogenson, 1986).

In the EB-dependent regulation of locomotor activity, two sep-
arate POA projections to the MLR that mediate EB effects have
been identified (Takeo and Sakuma, 1995). The female rat POA
contains neurons that promote proceptive behavior (Hoshina
et al., 1994). Females with lesions of the peripeduncular nucleus,
through which fibers with origins in the POA and other sub-
pallidal structures descend to the MLR (Swanson et al., 1984),
characteristically failed to show darting and other solicitatory
behavior (Pfeifle and Edwards, 1983). An observation that lesions
of the accumbens does not modify soliciting activity (Rivas and
Mir, 1990) may mean that the POA constitutes an independent
entity for solicitatory behavior, because the accumbens activates
locomotion through innervation of the POA (Swerdlow et al,,
1984). In a male rat engaging in sexual interaction, however, our
recent study showed that the shell of the accumbens contains
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FIGURE 1 | (A) Locations and the extent of the roof cut of the POA in the
sagittal (A) and frontal (B) planes. An L-shaped wire was inserted in the
midline (arrow) and rotated 180°. The asterisk shows the stimulation site in
the POA. AC, anterior commissure; LS, lateral septum; other abbreviations
are in the text. (C) Lordosis reflex suppression during bilateral POA
stimulation in the intact control (top) and roof-cut (bottom) animals. POA was
stimulated at 100 Hz for periods indicated by the bar in each panel. Stimulus
intensity was 100 wA per electrode. Note different time scales. (D)
Interruption of lordosis by POA stimulation in rats with bilateral cuts of the
stria terminalis (ST, shaded areas in E, top panel). POA stimulation was
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ineffective when the ST was spared (shaded areas in F). Stimulation sites are
in lower panels in (E) and (F) (Takeo et al., 1993). (G) Time course of
suppression of lordosis by electrical stimulation of the VTA. Pulses of 50 nA,
100 Hz were applied in 30-s trains during the period indicated by shaded bars.
(F) Locations of stimulation sites in the VTA and adjacent tegmentum plotted
on sections 400 um apart. Filled circles, suppression exceeding 50% of
prestimulation lordosis reflex score at current intensity below 50 pwA; open
circles, suppression under 50% or no effect. Abbreviations: CP, cerebral
peduncle: IR interpeduncular nucleus: ML, medial lemniscus: p, pons: R, red
nucleus: SN, substantia nigra; Ill, oculomotor nerve (Sakuma, 1995).

neurons encoding cues or contexts related to sexual behavior,
reward-related processing, and the inhibition of sexual behavior
after ejaculation (Matsumoto et al., 2012). These results suggest
that estrogen inhibits neural impulse flow from the MPO and
facilitates that from the lateral POA. The effects of estrogen, when
combined, would culminate in increased locomotor activity that
is typical of female rats in estrus.

PROJECTION NEURONS IN THE POA

Stereotaxic infusion of ibotenic acid, an excitotoxin which oblit-
erates POA neuronal soma but spares local axons of passage,
enhances lordosis by lowering the threshold for EB needed to
induce the reflex (Hoshina et al., 1994). At the same time, females
with the excitotoxin lesion did not commit themselves to sexual
interactions. Far from showing solicitation, these females antago-
nized and vigorously resisted any males that attempted to mount

them in the non-exit test paradigm. Meanwhile, gradual and
persistent suppression of the lordosis reflex followed electrical
stimulation of the local axons of passage that survived the excito-
toxic damage. Apart from the fact that the females with the POA
lesion needed less estrogen to obtain comparable prestimulation
quotients with the controls, the lesioned and control animals
responded similarly to the stimulation.

In the females with ibotenic-acid lesion of the POA, an addi-
tional roof cut dorsal to the POA abolished the stimulus-bound
suppression of lordosis, and the stimulation effect was thus due to
the activation of axons of passage that presumably descend from
the septum, cingulate cortex, or other structures. As described
above, the septum is an origin of lordosis-inhibiting efferents
(Yamanouchi and Arai, 1990). Thus, the POA is a major target for
EB in eliciting proceptive behavior; local POA neurons as well as
septal efferents appear to inhibit the lordosis, a receptive behavior.

www.frontiersin.org

March 2015 | Volume 9 | Article 67 | 3


http://www.frontiersin.org
http://www.frontiersin.org/Neuroendocrine_Science/archive

Sakuma

Preoptic area and sexual behavior

DESCENDING PROJECTION OF THE VENTRAL TEGMENTAL
AREA

The midbrain ventral tegmental area (VTA) is one of major pro-
jection targets of estrogen concentrating neurons in the POA
(Fahrbach et al., 1986). Earlier anterograde tracing studies in the
rat (Conrad and Pfaff, 1976) and gerbil (Finn et al., 1993) visu-
alized dense POA projection to the VTA. POA projection may
in turn activate both ascending and descending efferents of the
VTA (Simon et al., 1979a,b; Matsumoto et al., 2012). Electrical
stimulation of the VTA in EB-primed ovariectomized female rats
caused immediate and strong interruption of lordosis reflex in
response to either male mounts or manual cutaneous stimuli.

The intensity and the time course of the disruption bore a resem-
blance to that induced by POA stimulation in the rat with the
roof cut. Likewise, lordosis performance returned promptly to
the pre-stimulation level after the termination of stimulation.
Interestingly, electrical stimulation specifically blocked lordosis
without disturbing proceptive behavior. Pharmacological deple-
tion of dopamine did not affect the stimulation on lordosis.

The VTA disruption of lordosis is a result of an activation of
a pathway inhibitory to the reflex arc at the lower brainstem.
Indeed, non-dopaminergic descending projections of the VTA
have been traced ipsilaterally to the ventral and dorsal tegmental
nucleus and the ventral CG (Simon et al., 1979a).
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FIGURE 2 | Temporal relationship between neuronal activity and interactions, which were characterized into four types in
sexual behavior in rate-meter and ethogram charts. The peri-event histograms associated with different events in sexual
activity of these POA neurons was related to bouts of sexual behavior (see text).
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Antidromic Propagation
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FIGURE 3 | Effects of POA stimulation or lesion on the propagation of
CG-induced antidromic potentials into ventral tegmental area neurons.
Trains of antidromic stimuli were given at 0.5 Hz, and excerpts of the
responses in an ovariectomized, estrogen-treated rat are shown (A-E). The
POA was stimulated at 100 Hz for a 30-s period during the period indicated in
(B). Acute electrolytic lesion made during the period indicated in (D) had no
effect on this neuron. (F) and (G) depict recordings from an ovariectomized,
non-treated animal that were made before and after an electrolytic lesion of
the POA, respectively. As summarized in (H), all four cells in ovariectomized,

EB-treated animals originally showed low rates of antidromic propagation that
were temporarily increased by POA stimulation. A POA lesion in an
ovariectomized female rat, which originally showed a high rate of antidromic
propagation, exerted a contrasting effect to that of POA stimulation, resulting
in a decrease in the frequency and a delay in antidromic propagation. The
position of tip of each stimulation electrode and the extent of the POA lesion
are shown in (l), the location of each recorded neuron in (J), and the
antidromic stimulation sites in (K). Calibrations are 5ms and 1 mV (Sakamoto
et al., 1993).

Functional demarcation exists between the dorsal and ven-
tral parts of the CG. Opposite patterns of cardiovascular changes
have been found to be elicited from lateral and ventrolateral sub-
regions of the CG (Bandler and Shipley, 1994; Vaughan et al.,
1996). Activation of CG sites lateral to the aqueduct produced
increased arterial pressure and tachycardia; activation of sites ven-
trolateral to the aqueduct produced decreased arterial pressure
and bradycardia. The lordosis reflex is under a similar antago-
nistic regulation: the dorsal CG is a target of VMN projection,
from which the reflex can be promoted. The ventral CG contains
descending VTA axons-of-passage, which inhibits the reflex, and
electrical stimulation of this structure elicits antidromic action
potentials in VTA neurons (Sakamoto et al.,, 1993) (Figure 3).
One of the targets of the VTA projection, the dorsal tegmentum,
contains neurons associated with paradoxical sleep (Torterolo
et al., 2002). Paradoxical sleep is characterized by somatic mus-
cle atonia (Sakai and Neuzeret, 2011), which would result in the
disruption of lordosis.

Consistent with morphological studies, POA neurons have
been found to be antidromically driven from the VTA (Hasegawa
and Sakuma, 1993). Whereas EB treatment decreased antidromic
activation threshold for VMN neurons by CG stimulation
(Sakuma, 1984), EB showed an opposite effect on the threshold

for activation of POA neurons from the VTA. Besides, in both
projections, the authors found that EB was effective in females
or neonatally orchidectomized males but not in females given
testosterone as pups. EB-induced excitability changes in either
VMN or POA axons were observed in the ovariectomized females
and neonatally orchidectomized males, but not in androgenized
females, in parallel with the capability of EB treatment to induce
lordosis.

Changes in antidromic activation thresholds, along with those
in refractory periods and axonal conduction velocity, indicate an
altered axonal excitability. Our experiment in a model system
deploying GT1-7 cells showed that EB at physiological doses, that
is 100-300 pM in the medium, enhanced Ni?*-, Cd**-sensitive
BK current after 3 days in culture. BK or KCNM channels have a
large conductance, and are voltage-gated. Thus, in this model, the
enhanced expression of these channels would decrease excitability
(Nishimura et al., 2008).

DIFFERENT SUBSETS OF POA NEURONS

In order to clarify whether separate POA neurons regulate solic-
itatory and receptive components of female rat sexual behavior,
single unit activities were recorded (Kato and Sakuma, 2000)
(Figure 2). Perievent histograms identified separate groups of
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neurons that increased their firing rate (1) during the solicita-
tory period, from the initiation of solicitatory locomotion to the
male mounts, (2) when the male mounted, or (3) in response to
intromission. There was also another set of neurons that were
quiescent prior to and throughout the display of the lordosis.
Neurons associated with proceptive behavior and somatosensory
responses were recorded from the transitional region between the
medial and lateral POAs. Those neurons that behaved exactly
as if they inhibited the execution of the lordosis were located
medially in the medial POA to other neurons. These results thus
showed separate sets of POA neurons each specifically associated
with proceptive and receptive components of female rat sexual
behavior.

VTA NEURONS ARE EXCITED BY POA EFFERENTS

In urethane-anesthetized, EB-treated ovariectomized rats,
antidromic action potentials elicited in VTA neurons by CG stim-
ulation often terminated at the initial segment and rarely invaded
the neuronal soma (Sakamoto et al., 1993) (Figures 3A-K).
The authors also found that POA stimulation increased the
probability of successful antidromic invasion up to 90%.
Conversely, ovariectomized females showed almost 100% success
of antidromic invasion without POA stimulation in the absence
of EB; acute electrolytic destruction of the POA decreased the
invasion rate down to 50%. Thus, the POA is thought to excite
the soma of VTA neurons, and EB decreases the impact of
POA effect on the VTA. EB would thus decrease the efficacy of
neural transmission from the POA to the CG. The pattern of
estrogen-induced changes in the excitability of these descending
VTA neurons is that required for the behavioral disinhibition of
the lordosis reflex.

PROJECTIONS TO THE MEDULLA

The gigantocellular nucleus of the medullary reticular forma-
tion (NGc) and lateral vestibular nucleus (LVN) are the origins
of the ipsilateral reticulospinal and vestibulospinal tract, respec-
tively, which innervate spinal motoneurons responsible for the
induction of the lordosis. Lesion studies have suggested that the
contribution of these tracts is not dependent upon the integrity of
the other, and that the magnitude of the lordosis deficit is instead
correlated with amount of giant cell loss in NGc and Deiters cell
loss in the LVN (Modianos and Pfaff, 1979). Finally, lordosis is
facilitated by electrical stimulation of the LVN (Modianos and
Pfaff, 1977).

Electrical stimulation of the NGc in urethane-anesthetized
female rats induced antidromic activation in neurons in the CG.
Antidromically driven cells were in all parts of the CG and adja-
cent mesencephalic reticular field except within the inner ring of
the CG that surrounds the aqueduct.

As with the antidromic potentials induced in the VTA in
response to CG stimulation, POA stimulation reduced the rate
of successful propagation of NGc-induced antidromic potentials
into the soma, whereas VMN stimulation increased the rate.
Thus, the pattern of descending effects originating in the EB-
sensitive POA and VMN on these CG neurons is required for
their control of the lordosis reflex, via the regulation of the
activity of medullospinal neuron that govern the contraction

of back muscles responsible for the induction of the lordosis
reflex.
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