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Ursodeoxycholic acid and its main conjugate glycoursodeoxycholic acid are bile acids

with neuroprotective properties. Our previous studies demonstrated their anti-apoptotic,

anti-inflammatory, and antioxidant properties in neural cells exposed to elevated levels

of unconjugated bilirubin (UCB) as in severe jaundice. In a simplified model of the

blood-brain barrier, formed by confluent monolayers of a cell line of human brain

microvascular endothelial cells, UCB has shown to induce caspase-3 activation and

cell death, as well as interleukin-6 release and a loss of blood-brain barrier integrity.

Here, we tested the preventive and restorative effects of these bile acids regarding

the disruption of blood-brain barrier properties by UCB in in vitro conditions mimicking

severe neonatal hyperbilirubinemia and using the same experimental blood-brain barrier

model. Both bile acids reduced the apoptotic cell death induced by UCB, but only

glycoursodeoxycholic acid significantly counteracted caspase-3 activation. Bile acids

also prevented the upregulation of interleukin-6 mRNA, whereas only ursodeoxycholic

acid abrogated cytokine release. Regarding barrier integrity, only ursodeoxycholic acid

abrogated UCB-induced barrier permeability. Better protective effects were obtained by

bile acid pre-treatment, but a strong efficacy was still observed by their addition after

UCB treatment. Finally, both bile acids showed ability to cross confluent monolayers of

human brain microvascular endothelial cells in a time-dependent manner. Collectively,

data disclose a therapeutic time-window for preventive and restorative effects of

ursodeoxycholic acid and glycoursodeoxycholic acid against UCB-induced blood-brain

barrier disruption and damage to human brain microvascular endothelial cells.

Keywords: blood-brain barrier, glycoursodeoxycholic acid, human brain microvascular endothelial cells,
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Introduction

In neonatal life, increased levels and prolonged exposure to
unconjugated bilirubin (UCB) may trigger bilirubin-induced
neurological dysfunction (Cohen et al., 2010). Although the
mechanisms underlying neurological dysfunction are still
unclear, the understanding of UCB-induced neurotoxicity has
increased greatly in the past years (Brites and Brito, 2012). A gen-
eral impairment of membrane structure, properties, and function
(Rodrigues et al., 2002b; Brito et al., 2004), with neuronal oxida-
tive stress, the release of pro-inflammatory cytokines by glial cells
and altered myelinogenesis have been demonstrated (Silva et al.,
2002, 2010; Falcão et al., 2006; Fernandes et al., 2006; Brito et al.,
2008; Vaz et al., 2010; Barateiro et al., 2014). The awareness of the
important role of the blood-brain barrier (BBB) and particularly
of brain microvascular endothelial cells (BMEC) in the course
of bilirubin-induced neurological dysfunction has also grown. In
fact, the influence of UCB on porcine and rat BMEC (Akin et al.,
2002; Cardoso et al., 2012) and in a mouse BMEC line (Kapitul-
nik et al., 2012) revealed that UCB induces a loss of endothelial
cell viability. Our recent studies on human BMEC (HBMEC)
have shown that UCB decreases endothelial cell survival and
induces the release of cytokines, such as interleukin-6 (Palmela
et al., 2011), which are known to be involved in BBB disruption
in pathological conditions (Kaur and Ling, 2008; Carvey et al.,
2009). Furthermore, HBMEC exposure to UCB resulted in bipha-
sic effects depending on the time of interaction, where prolonged
incubation compromised the endothelial junctions and led to sig-
nificant impairment of barrier integrity (Palmela et al., 2012).
Interestingly, UCB-induced disruption of barrier properties of
BMEC was observed even in the presence of astrocytes (Cardoso
et al., 2012), an in vitro co-culture model that better resembles the
in vivo condition. Importantly, these in vitro evidences have been
confirmed in autopsy studies of a kernicterus premature infant
presenting increased vascularization and infiltration of erythro-
cytes and albumin in the brain parenchyma (Brito et al., 2013).
Moreover, recent studies of additional cases of kernicterus have
shown that the most susceptible brain regions to UCB toxicity, as
the cerebellum, hippocampus, and basal ganglia, present marked
signs of BBB dysfunction, as reduced pericyte vascular coverage
and alterations in the basement membrane (Palmela et al., sub-
mitted). Thus, these features point to an enhanced permeability
of the vascular walls, at least in severely ill pre-term infants with
bilirubin encephalopathy.

The bile acid ursodeoxycholic acid (UDCA), which exists in
very low levels in the circulation in humans, is largely used as
therapy for chronic liver diseases involving cholestasis (Poupon
et al., 1994; Brites et al., 1998; Lazaridis et al., 2001). UDCA
is conjugated in the liver originating tauroursodeoxycholic acid
(TUDCA) and glycoursodeoxycholic acid (GUDCA), the latest
accounting for approximately 80% of the bile acid conjugates
produced in patients under therapy (Rudolph et al., 2002). In
addition, a four-fold increase of GUDCA relatively to that of
TUDCA was found in the bile of patients with complete extra-
hepatic biliary obstruction treated with UDCA (Rudolph et al.,
2002). Several studies have suggested a potential role of UDCA
in the treatment of non-liver diseases involving increased levels

of apoptosis (Keene et al., 2002; Rodrigues et al., 2003) due to
the anti-apoptotic properties of this bile acid (Amaral et al.,
2009b). Interestingly, the anti-apoptotic properties of UDCA
were recently demonstrated in osteoblasts exposed to bilirubin
(Ruiz-Gaspa et al., 2014). Our own studies have shown that
UDCA and GUDCA protect astrocytes from apoptosis and sup-
press the production of pro-inflammatory cytokines (Rodrigues
et al., 2000; Silva et al., 2001b; Fernandes et al., 2007a) while
also counteracting UCB-induced neuronal death and synaptic
changes (Silva et al., 2012). Moreover, GUDCA abrogated UCB-
induced alterations in the redox status, mitochondrial dysfunc-
tion and energy impairment in neurons (Brito et al., 2008; Vaz
et al., 2010). Interestingly, the mechanism of action of UDCA
and its conjugates appears to rely on the stabilization of the cell
membrane structure and maintenance of its dynamic properties,
derived from their ability to prevent alterations in membrane
lipid polarity and fluidity, as well as in the protein order and
redox status (Rodrigues et al., 2001, 2002b; Solá et al., 2002).

In regard to the beneficial effects of these bile acids on
endothelial cells, little is known. Nevertheless, it was shown that
TUDCA is able to protect against amyloid-β-induced apopto-
sis (Viana et al., 2009) and leukocyte rolling and adhesion to
the endothelium induced by lipid peroxidation products (Vla-
dykovskaya et al., 2012), as well as to promote vessel repair
(Cho et al., 2015). Interestingly, UDCA was shown to inhibit
endothelin-1 production (Ma et al., 2004) and to have an anti-
angiogenic capacity (Suh et al., 1997;Woo et al., 2010), suggesting
an influence on endothelial cells in a much more complex man-
ner. However, it remains unknown whether protective effects of
UDCA and GUDCA are exerted on the endothelial cells of the
human BBB, and specifically toward UCB-induced injury. Thus,
we here aimed to first evaluate if such bile acids are able to pro-
tect HBMEC from UCB-induced apoptosis and ultrastructural
changes. Next, we intended to investigate if UDCA and GUDCA
are able to prevent the production of a mediator of endothelial
permeability, interleukin-6, as well as changes in barrier integrity
induced by UCB. By treating cells with UDCA and GUDCA
prior to UCB exposure, or 4 and 8 h after the initiation of the
incubation procedure, our purpose was to establish the thera-
peutic window of opportunity to be used in jaundiced infants
at risk of bilirubin-induced neurological dysfunction requiring
complementary medicines to the conventional treatments.

Materials and Methods

Chemicals
The basal medium Roswell Park Memorial Institute 1640,
antibiotic-antimycotic solution, human serum albumin (frac-
tion V, fatty acid free), bovine serum albumin, Hoechst 33258
dye, sodium fluorescein and UCB were purchased from Sigma
Chemical Co. (St. Louis, MO, USA). Non-essential amino acids,
sodium pyruvate, L-glutamine, fetal bovine serum and minimum
essential medium vitamins were from Biochrom AG (Berlin,
Germany). Nuserum IV and rat-tail collagen I were acquired
from BD Biosciences (Erembodegem, Belgium). TRIzol Plus
RNA Purification Kit, was from Invitrogen (Carlsbad, CA, USA).
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Caspase-3 substrate and Ac-Asp-Glu-Val-Asp-p-nitroanilide,
were acquired from Calbiochem (San Diego, CA, USA). DuoSet
ELISA kit was from R&D systems (Minneapolis, MN, USA).
Primers for real-time PCR analysis were purchased from Thermo
Scientific (Soeborg, Denmark). RevertAid H Minus First Strand
cDNA synthesis and Maxima SYBR Green qPCR Master Mix
(2×) were obtained from Fermentas (Burlington, ON, Canada).
All other chemicals were of analytical grade and were purchased
fromMerck (Darmstadt, Germany).

Cell Culture and Treatment
To test whether UCB-induced injury to endothelial cells could
be abrogated in the presence of UDCA and GUDCA, we used a
HBMEC line as a simplified model of the human BBB. This cell
line was derived from primary cultures of HBMEC transfected
with SV40 large T antigen (Stins et al., 2001) and was recently
proved to be the most suitable human cell line for an in vitro BBB
concerning barrier tightness (Eigenmann et al., 2013). Cells were
cultured in Roswell Park Memorial Institute medium supple-
mented with 10% fetal bovine serum, 10% NuSerum IV, 1% non-
essential amino acids, 1% minimum essential medium vitamins,
1mM sodium pyruvate, 2mM L-glutamine, and 1% antibiotic-
antimycotic solution, seeded at a density of 8×104 cell/mL in col-
lagen I-coated coverslips or plates and treated after 2 days in cul-
ture, as previously described (Palmela et al., 2011). For integrity
studies, based on the measurement of paracellular permeabil-
ity to sodium fluorescein, cells were seeded on collagen I-coated
polyester transwell inserts (0.4µm, Corning Costar Corp., USA)
at a density of 8 × 104 cell/insert and treated after 8 days in cul-
ture (Palmela et al., 2012). Endothelial cultures were maintained
at 37◦C in a humid atmosphere enriched with 5% CO2, and all
experiments were performed at confluence.

UCB was purified (Mcdonagh and Assisi, 1972) and a 10mM
stock solution was prepared in 0.1M NaOH and used imme-
diately after preparation. The pH value was restored to 7.4 by
addition of equal amounts of 0.1M HCl, and all the procedures
were performed under light protection to avoid photodegrada-
tion. Confluent monolayers of the HBMEC line were incubated
with 100µMUCB, or with no addition (control), in the presence
of 100µM human serum albumin. This experimental condition
mimics the bilirubin/albumin ratio (1:1 molar ratio; 8.7mg/g)
found in a kernicterus case described by us (Brito et al., 2012)
and is within the 5.4–21.0mg/g ratio recently associated to acute
bilirubin encephalopathy in Egypt (Iskander et al., 2014). Deter-
mination of unbound bilirubin, or free bilirubin, by the widely
used peroxidase method (Roca et al., 2006) showed that this
experimental condition corresponds to a free bilirubin concen-
tration of 23.6 nM, as previously reported by Palmela et al. (2012).
The free bilirubin level used in the present in vitromodel is within
the range of values found by us in a group of moderately jaun-
diced neonates (19.1± 1.5 nM) (Brito, 2001) and by Ahlfors et al.
(2009) (21–51 nM) in babies readmitted for jaundice. Also to
mention that the apparent discrepancy between the free bilirubin
value obtained in our lab and those indicated by Roca et al. (2006)
may result from the fact that Roca et al. (2006) did not include
cells in their system, thus not considering the fraction of bilirubin
that is bound/included in cells (Brito et al., 2000; Palmela et al.,

2012), nor the non-conjugating pathways for UCB catabolism
(Ahlfors et al., 2009). The incubation period used for each param-
eter varied between 1 and 48 h, based on the time to obtain the
maximal effect observed in prior studies (Palmela et al., 2011,
2012). The incubation medium consisted in the regular medium
without fetal bovine serum and Nuserum IV, to avoid distur-
bance of the final concentration of albumin in the incubation
medium.

Co-incubation studies were also performed with the bile acids
UDCA and GUDCA, molecules with octanol/water partition
coefficients of 1000 for the unconjugated form and 105 for the
glycine-amidated molecule, and logP values of 3.0 and 2.02 for
the former and the later, respectively (Roda et al., 1990). In the co-
incubation studies, UDCA or GUDCA were added at a final con-
centration of 50µM, which is found in the circulation of patients
under therapy with UDCA. In particular, the concentration of
50µM GUDCA is commonly found in the serum of patients
after treatment with UDCA at a dose of 13–15mg per kilogram
of body weight per day (Podda et al., 1990; Poupon et al., 1994;
Brites et al., 1998). We previously showed that such concentra-
tion is not toxic to neurons (Silva et al., 2001b) and, most impor-
tantly, has beneficial properties in preventing neurodegeneration
(Brito et al., 2008; Vaz et al., 2010). The bile acids were added at
three different time points: 1 h prior to UCB addition and at 4 or
8 h after UCB incubation. For short periods of UCB incubation
only the effects of 1 h pre-incubation with the bile acids were eval-
uated. Appropriate controls including cells treated with UDCA
and GUDCA (without UCB) were also included to ascertain the
absence of toxicity of these molecules.

For the integrity experiments, endothelial cells were cultured
on semipermeable filters inserted in the culture plate well. With
this system, there are two compartments: the apical or upper one
that can be considered as the “blood-side,” where UCB, bile acids
and human serum albumin were added, and the basal or lower
compartment, which is considered the “brain side.”

Assessment of Apoptosis
Caspase-3 activity and the number of apoptotic nuclei were deter-
mined after 4 and 48 h of UCB exposure, respectively, since
these time points represent the maximum effects of UCB alone
(Palmela et al., 2011).

Activity of caspase-3 was measured by a colorimetric method
(Calbiochem, Darmstadt, Germany), as usual in our lab (Palmela
et al., 2011). The results were expressed as fold change from con-
trol values. Assessment of nuclear morphology of the HBMEC
line followingHoechst 33258 staining was evaluated as previously
described (Palmela et al., 2011). Fluorescence was visualized
using a Leica DFC 490 camera (Leica,Wetzlar, Germany) adapted
to an AxioScope.A1 microscope (Zeiss, Göttingen, Germany).
Values were expressed as percentage of apoptotic nuclei.

Transmission Electron Microscopy
Ultrastructural analysis was performed by transmission electron
microscopy following 48 h exposure to UCB in HBMEC pre-
treated with UDCA or GUDCA. Cells were fixed with 1.2% glu-
taraldehyde in 0.1M phosphate buffer and 1% osmium tetroxide
in the same buffer, dehydratedwith a graded series of ethanol, and
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then embedded in epoxy resin. Ultrathin sections were stained
with uranyl acetate and lead citrate and observed with a Hitachi
H-7500 transmission electron microscope (Tokyo, Japan) at an
acceleration voltage of 80 kV.

Measurement of Interleukin-6 mRNA Expression
and Protein Release
The HBMEC line was exposed to UCB for 1 h for mRNA anal-
ysis, and for 4 h for cytokine release quantification, since the
maximum effects of UCB alone in interleukin-6 expression and
secretion were observed at these time points (Palmela et al.,
2011).

Analysis of mRNA expression was performed by quan-
titative real time PCR using a SYBR Green qPCR Master
Mix (2×), as described previously (Palmela et al., 2011). This
assay was performed using β-actin as an endogenous con-
trol to normalize the expression level of interleukin-6 mRNA.
The following sequences were used as primers: interleukin-
6 sense, 5′-GACAGCCACTCACCTCTTCA-3′ and anti-sense,
5′-TTCACCAGGCAAGTCTCCTC-3′ (Wang et al., 2006); β-
actin sense, 5′-ACAGAGCCTCGCCTTTGCCG-3′ and anti-
sense, 5′-TGGGCCTCGTCGCCCACATA-3′ (NM_001101.3).
Non-specific products of PCR were not found in any case. The
relative quantification was made using the Pfaffl modification of
the 11CT equation (CT, cycle number at which the fluorescence
passes the threshold level of detection), taking into account the
efficiencies of individual genes. The results were normalized to β-
actin and the initial amount of the template of each sample was
determined as fold change from control samples (reference).

Endothelial interleukin-6 release was assessed in duplicate,
using a specific DuoSet ELISA development kit, according to the
manufacturer’s instructions. Measurements were obtained at a
wavelength of 450 nm, with a reference filter of 620 nm, using
a microplate reader. The average control values were 135 pg/mL
and the results were expressed as fold change from control.

Evaluation of Barrier Integrity by Permeability
Measurement
The capacity of UDCA and GUDCA to modulate permeability
was evaluated in cells treated with UCB for 48 h, the time-point
resulting in the maximum disruption of the integrity state of
HBMEC monolayer by UCB (Palmela et al., 2012).

In our previous studies, we found that UCB increases the
permeability to sodium fluorescein (Palmela et al., 2012), a low
molecular weight tracer (376 Da), but not to albumin-bound
Evans blue, a high molecular weight tracer (68 kDa). So, in this
study HBMEC paracellular permeability assay was conducted
with sodium fluorescein as previously described (Veszelka et al.,
2007; Cardoso et al., 2012; Palmela et al., 2012). Briefly, cell cul-
ture inserts were transferred to 12-well plates containing Ringer–
Hepes solution (118mM NaCl, 4.8mM KCl, 2.5mM CaCl2,
1.2mM MgSO4, 5.5mM D-glucose, 20mM Hepes, pH 7.4) in
the basal compartments. The sodium fluorescein solution (10
mg/mL sodium fluorescein in Ringer–Hepes) was added to the
upper chambers. The inserts were transferred to new wells at
20, 40, and 60min. Lower chamber solutions were collected to
determine sodium fluorescein levels (Hitachi F-2000 fluorescence

spectrophotometer, excitation: 440 nm and emission: 525 nm).
Flux across cell-free inserts was also measured. The endothelial
permeability coefficient was calculated as previously described
(Deli et al., 2005) and the average control permeability coefficient
was 1.4× 10−5 cm/s.

Assessment of UDCA and GUDCA Passage
across the HBMEC Monolayer
To establish whether UDCA and GUDCA are able to cross the
BBB endothelium, a two-chamber culture system was used. Bile
acids were added to the upper chambers and media from the
lower chambers were collected after 4 and 48 h of incubation.
The bile acid passage across the HBMEC monolayer was evalu-
ated by measuring the concentrations of UDCA and GUDCA by
an enzymatic-fluorimetric assay (Brites et al., 1998). Results were
shown as average concentration (µM)± SEM.

Statistical Analysis
Results are expressed as means ± SEM values from, at least,
three separate experiments. Differences between groups were
determined by one-way ANOVAwith Bonferroni post-test, using
Prism 5.0 (GraphPad Software, San Diego, CA). Statistical signif-
icance was considered when P-values were lower than 0.05.

Results

UDCA and GUDCA Protect HBMEC from
UCB-Induced Apoptosis, but only GUDCA is
Effective in Reducing Caspase-3 Activation
UCB-induced apoptosis in the HBMEC line includes the pres-
ence of apoptotic features that increased with the time of expo-
sure and reached maximal levels at 48 h (Palmela et al., 2011).
Thus, this time was chosen to evaluate the ability of UDCA and
GUDCA to protect HBMEC from UCB-induced apoptosis. The
bile acids were added at three different time points, evaluating
their potential when added before and after the injury. Addition
of UDCA and GUDCA reduced UCB injury, regardless of the
time of addition (Figure 1). This protective effect was maximal in
the treatments with GUDCA, especially when added at 1 h prior
to UCB addition (54% reduction fromUCB values, P < 0.001, vs.
42% for UDCA at the same time point, P < 0.01). Importantly,
bile acids partially reverted UCB injury with a nearly 30% protec-
tion rate reduction compared to UCB damage (Figure 1), when
added 8 h after UCB addition.

We next assessed the preventive bile acid effect on caspase-3
activity at 4 h, the time point where the maximal effect of UCB
on endothelial cells was observed (Palmela et al., 2011). As seen
in Figure 2, only GUDCA was able to significantly protect from
UCB-induced activation of caspase-3 (P < 0.05).

Ultrastructural Changes Induced by UCB in
HBMEC are Abrogated by UDCA and GUDCA
Based on the UCB-induced effects on apoptosis after 48 h incu-
bation and the rescue ability of both UDCA and GUDCA to
partially restore cell functionality, we decided to further assess
whether changes at HBMEC ultrastructural level were produced
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FIGURE 1 | Ursodeoxycholic acid (UDCA) and glycoursodeoxycholic

acid (GUDCA) protect human brain microvascular endothelial cells

(HBMEC) from unconjugated bilirubin (UCB)-induced apoptosis. A cell

line of HBMEC was incubated without (control) or with 100µM UCB, in the

presence of 100µM human serum albumin, for 48 h. The bile acids (50µM)

were added prior to (1 h) or after (4 or 8 h) UCB addition. Quantification of

apoptosis is shown as percentage of apoptotic nuclei per total number of cells

and results are expressed as mean ± SEM from at least three independent

experiments. ∗∗∗P < 0.001 vs. control; §P < 0.05, §§P < 0.01, and
§§§P < 0.001 vs. UCB alone.

by UCB and prevented by bile acid treatment. The transmis-
sion electron microscopy analysis revealed a marked reduction
in the amount of ribosomes in UCB-treated cells, with an evi-
dent recovery in the presence of both bile acids (Figure 3). The
same occurred relatively to cellular fragments detaching from the
cultured HBMEC andmitochondrial cristae disruption observed,
showing the damaging effects of UCB, once again markedly
reduced in the presence of each of the bile acids.

FIGURE 2 | Glycoursodeoxycholic acid (GUDCA), but not

ursodeoxycholic acid (UDCA), has a protective effect on unconjugated

bilirubin (UCB)-induced caspase-3 activation in human brain

microvascular endothelial cells (HBMEC). A cell line of HBMEC was

incubated without (control) or with 100µM UCB, in the presence of 100µM

human serum albumin, for 4 h. The bile acids (50µM) were added 1 h prior to

UCB incubation. Quantification of caspase-3 activity is shown as fold change

from control values and results are expressed as mean ± SEM from at least

three independent experiments. ∗∗∗P < 0.001 vs. control; §P < 0.05 vs. UCB

alone.

UCB-Induced Increase of Interleukin-6 mRNA
and Cytokine Expression in HBMEC is More
Effectively Reduced by UDCA than by GUDCA
One of the important effects of UCB on HBMEC previously
observed by us was the upregulation of interleukin-6 mRNA
levels and protein secretion (Palmela et al., 2011). This previ-
ous work indicated that UCB induced the maximum cytokine
secretion at 4 h, while the highest mRNA expression was at 1 h
following UCB exposure. These time points were then selected
and the bile acids were added 1 h prior to UCB incubation. As
seen in Figure 4, both bile acids abrogated interleukin-6 mRNA
upregulation (Figure 4A), with reductions from UCB values of
27% for GUDCA (P < 0.05) and 46% for UDCA (P < 0.001).
On the other hand, only UDCA showed preventive effects on
UCB-induced release of interleukin-6 (Figure 4B), decreasing
UCB-induced cytokine secretion by 35% (P < 0.001).

UDCA and GUDCA Prevent and Rescue
Disruption of HBMEC Integrity by UCB
The ability of the tested bile acids to counteract UCB-induced
upregulation of interleukin-6, led us to hypothesize that UDCA
and GUDCA would protect against the consequent endothelial
hyperpermeability. Thus, we measured the paracellular perme-
ability to the low molecular weight compound, sodium fluores-
cein. This is a widely used indicator of the barrier properties, with
several studies showing increased values in conditions associated
with hyperpermeability (Hülper et al., 2013; Labus et al., 2014).
In our previous study we showed that this parameter is signifi-
cantly enhanced upon prolonged UCB exposure (Palmela et al.,
2012), as also observed in the present study (Figure 5). Here,
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FIGURE 3 | Ursodeoxycholic acid (UDCA) and

glycoursodeoxycholic acid (GUDCA) have protective effects on

unconjugated bilirubin (UCB)-induced ultrastructural changes in

human brain microvascular endothelial cells (HBMEC). A cell line

of HBMEC was incubated without (control) or with 100µM UCB, in

the presence of 100µM human serum albumin, for 48 h. The bile

acids (50µM) were added 1 h prior to the addition of UCB.

Representative ultrastructure observations by transmission electron

microscopy are shown. In UCB-treated cells note the decrease in

mitochondrial cristae (arrows) and ribosomes (arrowhead) and the

appearance of detaching cellular fragments (asterisk), which are

abrogated by UDCA and GUDCA.

FIGURE 4 | Decrease in unconjugated bilirubin (UCB)-induced

interlkeukin (IL)-6 mRNA expression and cytokine release in

human brain microvascular endothelila cells (HBMEC) is higher

with ursodeoxycholic acid (UDCA) than with

glycoursodeoxycholic acid (GUDCA). A cell line of HBMEC was

incubated without (control) or with 100µM UCB, in the presence of

100µM human serum albumin, for 1 or 4 h. The bile acids (50µM)

were added 1 h prior to the addition of UCB. Changes in IL-6

mRNA after 1 h (A) and protein release after 4 h of incubation (B)

are shown. Quantification is shown as fold change from control

values and results are expressed as mean ± SEM from at least

three independent experiments. ∗P < 0.05, ∗∗P < 0.01, and
∗∗∗P < 0.001 vs. control; §P < 0.05 and §§§P < 0.001 vs. UCB alone;
#P < 0.05 and ##P < 0.01 UDCA vs. GUDCA.

we also observed that UDCA and GUDCA alone do not affect
the HBMEC integrity, since we did not observe any changes in
permeability values. However, analysis of the bile acids effect on
the permeability to sodium fluorescein revealed that only UDCA
prevented UCB injury, and if added before (22% reduction from
UCB values, P < 0.01) or at 4 h (18% protection from UCB
values, P < 0.05). In fact, while UCB induced an increased

passage of sodium fluorescein molecules from 1.42 × 10−5 cm/s
in controls to 2.48 × 10−5 cm/s in UCB-treated samples, incu-
bation with UDCA reduced such value to 1.95 × 10−5 cm/s
or to 1.99 × 10−5cm/s in cells pre-treated or treated 4 h after
UCB addition. In contrast, the values obtained for GUDCA were
2.19×10−5 and 2.24×10−5 cm/s (pre- and 4 h after UCB addition
treatments, respectively), thus not different from UCB values.
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FIGURE 5 | Ursodeoxycholic acid (UDCA), but not

glycoursodeoxycholic acid (GUDCA), abrogates paracellular

permeability impairment to sodium fluorescein (SF) in human

brain microvascular endothelial cells (HBMEC). A cell line of

HBMEC was incubated without (control) or with 100µM UCB, in the

presence of 100µM human serum albumin, for 48 h. The bile acids

(50µM) were added prior to (1 h) or after (4 or 8 h) UCB addition.

Quantification of permeability to SF is expressed as fold change from

control values and results are shown as mean ± SEM from at least

three independent experiments. ∗∗∗P < 0.001 vs. control; §P < 0.05 and
§§P < 0.01 vs. UCB alone; #P < 0.05 UDCA vs. GUDCA.

UDCA and GUDCA Cross the HBMEC Monolayer
in a Time-Dependent Manner
The addition of 50µM of each of the studied bile acids to
the upper (“blood”) compartment of an insert culture sys-
tem was performed to evaluate if they were able to cross the
HBMEC monolayer and thus hypothetically achieve the brain
parenchyma. After a short period of incubation (4 h) the bile
acids were barely detectable in the lower chamber of the culture
plate. However, when longer periods of treatment were applied
(48 h) a significant increase in the bile acid passage through the

monolayer was obtained (18.8 ± 4.8 and 16.2 ± 3.9µM, for
UDCA and GUDCA, respectively).

Discussion

In this study we investigated the ability of the bile acid UDCA
and its glycine conjugate GUDCA to abrogate the injury caused
by UCB in a simplified in vitro model of the human BBB,
formed by confluent monolayers of HBMEC. The beneficial role
of UDCA and its conjugates on liver-associated pathologies has
been extensively addressed in the past (Lazaridis et al., 2001;
Paumgartner and Beuers, 2004; Perez and Briz, 2009). Inter-
estingly, it was also demonstrated that these bile acids act as
pleiotropic agents and can be used as therapeutic molecules
in other non-hepatic pathological conditions, including tumors,
hemorrhagic stroke, and neurodegenerative disorders like amy-
otrophic lateral sclerosis (Min et al., 2012), Huntington’s (Keene
et al., 2002), Alzheimer’s (Solá et al., 2003), and Parkinson’s dis-
eases (Duan et al., 2002). We have previously shown that UDCA
and/or GUDCA have protective properties in reducing the UCB-
mediated induction of cell death in both neurons and astrocytes
(Silva et al., 2001b; Fernandes et al., 2007b; Vaz et al., 2010).
Moreover, we observed the beneficial effects of these bile acids in
reducing the increased secretion of pro-inflammatory cytokines
by astrocytes and microglia treated with UCB (Fernandes et al.,
2007b; Silva et al., 2012) and the oxidative injury in neurons
exposed to UCB (Brito et al., 2008), as reviewed by Brites (2012).
Importantly, numerous studies have demonstrated that these
specific therapeutic properties of UDCA and its conjugates do
not apply to the more hydrophobic bile acids. In fact, deoxy-
cholic acid (hydrophobic bile acid) was shown to increase lipid
polarity and fluidity, while UDCA and TUDCA (hydrophilic bile
acids) are able to reverse such effects (Solá et al., 2002). Addition-
ally, UDCA demonstrated to protect neurons from UCB toxicity,
while other hydrophobic bile acids like cholic and chenodeoxy-
cholic acids even aggravated UCB injury (Silva et al., 2001b).
The same was observed with endothelial cells where deoxycholic
and taurochenodeoxycholic acids caused the cell lysis by acting
as detergents (Greenwood et al., 1991) while TUDCA revealed
beneficial effects in preventing cell damage by other injurious
conditions (Viana et al., 2009; Vladykovskaya et al., 2012). Thus,
we aimed to understand if the unconjugated species UDCA and
the most predominant conjugate GUDCA derivative, with LogP
values of 3.0 and 2.02, respectively (Roda et al., 1990), in humans
had protective properties in our simplified in vitro model of the
BBB in conditions mimicking severe hyperbilirubinemia.

Our previous studies have shown that the BMEC response to
UCB is extremely elaborate and far more complex than formerly
thought. Our in vitro findings include the elevation of endothelial
cell death, the upregulation of caveolae and caveolin-1 levels, the
increased production of interleukin-6, and the release of matrix
metalloproteinases (Palmela et al., 2011, 2012; Cardoso et al.,
2012). Consequently, these events led to junction weakness, as
well as disruption of endothelial barrier integrity. To such dis-
ruption may also contribute the impairment of the cytoskeleton
organization induced by UCB (Silva et al., 2001a, 2006), which is
known to compromise the intercellular junctions assembly and
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lead to an increased paracellular permeability (Cardoso et al.,
2010). Thus, in addition to diffusion of free bilirubin across the
brain microvascular endothelium, the paracellular hyperperme-
ability of the microvasculature may further favor the freely move-
ment of free bilirubin, as well as of UCB-bound to albumin, via
the paracellular space. Also interesting is the increased caveolin-1
expression and the enhanced number of caveolae (Palmela et al.,
2012) since caveolae are known to transport albumin, which
raises the possibility of augmented entrance of albumin-bound
UCB by the transcellular pathway. Validating these in vitro find-
ings, signs of BBB compromise were also observed in some brain
regions of human cases of neonatal kernicterus, including albu-
min presence in the brain parenchyma, increased vascularization
and microvascular hyperpermeability (Brito et al., 2012, 2013),
reduced pericyte vascular coverage and loss of basement mem-
brane components (Palmela et al., submitted). These findings
suggest that the BBB plays an important role in the progression
of brain damage by severe hyperbilirubinemia and, thus, that this
interface should be considered when studying this pathology.

Here, we intended to evaluate the effects of UDCA and
GUDCA at the time-point corresponding to the most signifi-
cant UCB-induced injury previously observed. Furthermore, as
UCB effects on HBMEC were also concentration-dependent, we
focused on the concentration with the most disruptive potential
regarding the integrity of HBMEC (100µMUCB in the presence
of 100µM human serum albumin), which corresponds to the
bilirubin:albumin ratio that induces acute bilirubin encephalopa-
thy and kernicterus (Brito et al., 2012; Iskander et al., 2014)
and to free bilirubin values found in jaundiced neonates (Brito,
2001; Ahlfors et al., 2009). To assess the therapeutic window of
opportunity of GUDCA and UDCA we tested bile acid efficacy
when used before (prevention), or at 4 and 8 h after UCB addi-
tion (recovery). To further understand if such bile acids can be
promising candidates to rescue neural function in brain diseases
we assessed their capacity to cross the HBMEC monolayer, here
used as an in vitromodel of BBB.

Bile acids revealed a high capacity in protecting HBMEC
from UCB-induced apoptosis. Interestingly, GUDCA was the
most effective against apoptotic features and caspase-3 activa-
tion, and was able to restore basal levels, even when the injury
was already initiated. Although the anti-apoptotic role of UDCA
has been documented in hepatic and non-hepatic cells (Amaral
et al., 2009a), the findings here reported are the first in a sim-
plified in vitromodel of the human BBB. Interestingly, apoptotic
cell death results in increased permeability (Erdbruegger et al.,
2006), rendering conceivable that the mechanisms underlying
HBMEC protection may involve the anti-apoptotic properties of
the bile acids. Regardless of the mechanism(s) involved in the
protection, the present study opens new avenues for treatment
of neurodegenerative diseases that have increasingly been asso-
ciated with endothelial demise and BBB disruption (Zlokovic,
2008).

When analysing the possible ultrastructural changes produced
by UCB and their recovery by the bile acids, we noticed that the
loss of ribosomes in UCB-treated samples was reverted by both
UDCA and GUDCA. Alterations in ribosomes were associated
with apoptosis (Nishida et al., 2002) and autophagy (Cebollero

et al., 2012), phenomena already observed in HBMEC treated
with UCB (Palmela et al., 2011, 2012). Indeed, Hansen et al.
(2001) found elevated levels of bilirubin in ribosomes follow-
ing exposure of rats to hyperbilirubinemia and hyperosmolality,
recognized as a risk factor of kernicterus by increasing BBB per-
meability (Wennberg, 2000). Therefore, it is tentative to speculate
that UCB may induce HBMEC ribophagy, a recent term do des-
ignate autophagic turnover of ribosomes (Cebollero et al., 2012),
and that both bile acids are able to prevent and recover such event
from occurring.

The transmission electron microscopy analysis provided fur-
ther information about the toxicity of UCB to other cell
organelles, particularly themitochondria. Our observations high-
lighted a loss of mitochondrial cristae after UCB exposure, which
appeared to be restored in HBMEC pre-incubated with each
of the bile acids. In a recent study, damaged mitochondria in
the presence of UCB were identified in rat BMEC (Cardoso
et al., 2012). Mitochondria has been considered one of the first
targets of UCB injury to the cells (Mustafa and King, 1970),
showing accumulation of glycogen, a sign of impaired energetic
function (Batty and Millhouse, 1976). Other studies, including
several from our own group, have shown loss of mitochon-
drial membrane potential, release of cytochrome c, and impaired
cytochrome c oxidase activity (Rodrigues et al., 2000, 2002a;
Malik et al., 2010; Barateiro et al., 2012). To note that the pro-
tective ability of the bile acids, especially UDCA, in prevent-
ing mitochondria dysfunction by UCB was shown in some of
those studies (Rodrigues et al., 2000, 2002a). Moreover, the mito-
chondria enlargement that seems to occur in cells treated with
GUDCA and UCB may represent a mechanism to protect cells
from apoptotic stimuli (Chiche et al., 2010). Detachment of cel-
lular fragments in UCB-treated samples is in line with the release
of small vesicles from HBMEC already noticed by scanning elec-
tron microscopy (Palmela et al., 2012). All these features cor-
roborate the previously demonstrated interaction of UCB with
membranes (Brites and Brito, 2012) and the stabilizing effect of
the bile acids at this level (Rodrigues et al., 2002b; Solá et al.,
2002).

Amongst the cytokines produced by HBMEC upon UCB
interaction is interleukin-6 (Palmela et al., 2011), a cytokine that
has been reported to induce the disruption of the BBB (Maruo
et al., 1992; De Vries et al., 1996). Only UDCA was able to
reduce both interleukin-6 mRNA expression and protein release.
Compromised BBB by vascular leak and tight junction disas-
sembly may lead to deregulated flux of molecules and loss of
brain homeostasis. Thus, the restorative effects of the bile acids in
interleukin-6 levels may contribute to sustain HBMEC integrity
in the presence of UCB. While GUDCA revealed strong anti-
apoptotic effects, UDCA was more effective in preventing the
increased interleukin-6 secretion by HBMEC treated with UCB.
Interestingly, UDCA was also more able than GUDCA in rescu-
ingHBMEC from the increased permeability induced by UCB, an
effect that was observed even if the bile acid was added 4 h after
UCB-addition. Such dissimilarities among the bile acids species
may derive from the different changes that UDCA and the con-
jugated species were shown to produce in the composition of
membrane lipid content (Bellentani et al., 1996).
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Crossing the BBB is one of the main milestones for thera-
peutic molecules that are meant to act in the brain. Although
detection of UDCA and its taurine conjugate was found in the
brain parenchyma after injection in rodents (Kaemmerer et al.,
2001; Rodrigues et al., 2003; Parry et al., 2010) and in the cere-
brospinal fluid after oral administration in patients with amy-
otrophic lateral sclerosis (Parry et al., 2010), no studies were till
now performed using HBMEC. Here, we show that both UDCA
and GUDCA cross the HBMEC monolayer, in vitro. However,
the mechanism underlying the passage of the bile acids across
the BBB has never been reported. Among the factors that may
influence BBB permeation are the bile acids’ physico-chemical
characteristics, namely their octanol/water partition coefficient
(Roda et al., 1990), and the presence of several transporters at
the BBB (Abbott et al., 2010) that may modulate their passage
across the endothelium. Therefore, additional studies are nec-
essary to establish the mechanism involved in these bile acids
passage across the BBB. The suggested potential therapeutic role
for UDCA and GUDCA also needs further evaluation in animal
models of severe jaundice, such as the Gunn rat (Gunn, 1938)
or the glucuronosyl-transferase knock-out mice (Nguyen et al.,
2008).

Collectively, our in vitro data show that the disruption of
endothelial cell function and BBB dynamic properties by expo-
sure to UCB in conditions mimicking a severe neonatal jaundice
can be prevented and partially restored by UDCA and GUDCA.

The results also show a higher efficacy when the bile acids are
administered before injury, reinforcing their preventive effects.
They further show that both molecules slowly permeate across
the BBB endothelium, which points to their potential to reach the
brain and elicit therapeutic properties in target cells.
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