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A methodology for investigating learning is developed using activation distributions,

as opposed to standard voxel-level interaction tests. The approach uses tests of

dimensionality to consider the ensemble of paired changes in voxel activation. The

developed method allows for the investigation of non-focal and non-localized changes

due to learning. In exchange for increased power to detect learning-based changes, this

procedure sacrifices the localization information gained via voxel-level interaction testing.

The test is demonstrated on an arc-pointing motor task for the study of motor learning,

which served as the motivation for this methodological development. The proposed

framework considers activation distribution, while the specific proposed test investigates

linear tests of dimensionality. This paper includes: the development of the framework, a

large scale simulation study, and the subsequent application to a study of motor learning

in healthy adults. While the performance of the method was excellent when model

assumptions held, complications arose in instances of massive numbers of null voxels or

varying angles of principal dimension across subjects. Further analysis found that careful

masking addressed the former concern, while an angle correction successfully resolved

the latter. The simulation results demonstrated that the study of linear dimensionality is

able to capture learning effects. The motivating data set used to illustrate the method

evaluates two similar arc-pointing tasks, each over two sessions, with training on only

one of the tasks in between sessions. The results suggests different activation distribution

dimensionality when considering the trained and untrained tasks separately. Specifically,

the untrained task evidences greater activation distribution dimensionality than the trained

task. However, the direct comparison between the two tasks did not yield a significant

result. The nature of the indication for greater dimensionality in the untrained task is

explored and found to be non-linear variation in the data.

Keywords: canonical variates analysis, cognitive learning, BOLD fMRI, statistical parametric mapping, interaction

test

1. Introduction

This manuscript considers settings where task-related activation may be present before and after
learning, yet the distribution of activated voxels changes. For context, consider the motivating
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study for the work, where two motor tasks of equal difficulty
were performed in a scanner over two sessions. Training for one
of the tasks occurred in between the sessions, while the other
task served as a control. Current methodology would use ran-
dom effects statistical parametric mapping (SPM Friston et al.,
2011) to test for a differential effect of training between tasks to
study learning. However, this approach suffers from considering
only voxel-level activation, or change in activation, in isolation.
In contrast, learning may induce changes in activation distribu-
tion, i.e., the distribution of intensities of BOLD responses to the
paradigm. Moreover, the study of activation distributions offers
many potential benefits over voxel-level testing, including: the
elimination of multiplicity concerns, robustness to registration,
and sensitivity to hypotheses of particular interest in the study of
learning.

Analysis of dimensionality of fMRI task-based activation
maps (Worsley et al., 1997; Zarahn, 2002) provides a starting
framework. The proposed procedure considers the distribution
of activation maps and tests their dimensionality using eigen-
value decompositions. To illustrate the goals of the test, consider
our motivating example. Learning could manifest itself in many
ways in the collection of voxels that are activated. For example,
BOLD contrast estimates of the activated voxels could be identi-
cal across sessions, increased or decreased, change from activated
to not (and vice versa) or uncorrelated. The test of dimensionality
should be considered one of several possible probes to interrogate
such hypotheses.

Our investigation includes a large scale simulation study of
brain activation maps. The simulation results demonstrate that
the study of dimensionality in a framework similar to Zarahn
(2002) is able to capture learning effects. The motivating data set
is used to illustrate the method, which is applied to the trained
and untrained tasks separately and then jointly.

2. Methods

Subjects performed an fMRI motor task in two scanning ses-
sions, with training between them. A second, similarly difficult,
fMRI motor task was performed at the two sessions, but had
no training in between. We focus on activation maps within an
appropriately selected spatial mask, such as one encapsulating the
primary motor cortex. Let γ̂ijk(v) be the subject- (represented by
index i = 1, . . . ,N), session- (j = 1, 2), task- (k = 1, 2) and
voxel- (v = 1, . . . ,V) specific estimates of task activation. These
are obtained by voxel-wise regression of a HRF-convolved task
paradigm in registered space (see Lindquist, 2008; Lindquist et al.,
2009, for descriptions and discussion), conducted separately for
each subject’s visit.

This paper is concerned with the statistical analysis of, and
hypotheses associated with, the collection of subject-specific
activation maps, represented by the V × 2 matrix Ŵ̂ik =

{γ̂i1k(v), γ̂i2k(v)}
V
v=1.

A conceptual model is considered where the activation
maps are estimates of assumed true activation maps, Ŵik =

{γi1k(v), γi2k(v)}
V
v=1. Thus, variation in the elements of Ŵik is

(intra-subject) biological variation in the hemodynamic BOLD
response to the paradigm. In contrast, variation in Ŵ̂ik includes

this biological variation, as well as all of the variation and biases
that occur in the practical process of computing the BOLD
paradigm response.

Both Ŵ̂ik and Ŵik also vary across subjects. Consider the V × 2
matrix, Ak = {β1k(v), β2k(v)}

V
v=1 as representing the popula-

tion average of voxel-level activation. Here βjk(v) = E(γijk(v)),
j = 1, 2. A non-zero βjk(v) indicates that, on average, sub-
jects activated at that particular location. Treating v as being
meaningfully consistent across subjects requires that appropriate
template-based (or equivalent) registration has been performed.
The matrix, ÂK , is thus a data-level estimate of Ak, obtained by
taking empirical means across subjects at each voxel.

A straightforward investigation of learning for the first
(trained) task arises from a sharp null hypothesis test of:

H0 : β21(v)− β11(v) = β22(v)− β12(v),

conducted separately, voxel-by-voxel. This tests the difference
in the longitudinal change in the BOLD response between the
trained and untrained tasks. Comparing longitudinal learning
effects with a reference (untrained) task addresses non-learning
based biases across sessions. The test in question is normally
conducted with standard interaction tests—perhaps accounting
for subject-level correlation (see Diggle et al., 2002, for a general
treatment of correlated data). Typically, the test is performed sep-
arately at each voxel, via so-called Statistical Parametric Mapping
(SPM). Significance is usually ascertained with super-threshold
voxel level statistics using random field theory (see Friston et al.,
2011, and the references therein) or via resampling statistics
(Nichols and Holmes, 2001).

This SPM approach has several benefits for the study of learn-
ing. However, it also has limitations. Notably, the approach suf-
fers from multiplicity issues and concentrates only on focal and
localized interaction hypotheses, one voxel at a time. Moreover,
it is highly dependent on accurate co-registration across subjects.
Little information is gained from the ensemble of voxels, except
through smoothing during preprocessing.

As an alternative, consider examining the activation distribu-
tion. Let D = A2 − A1 = {β21(v) − β11(v), β22(v) − β12(v)}
be the V × 2 matrix of longitudinal changes in the contrasts of
interest, with its associated estimate, D̂. The SPM approach tests
whether the two entries of each row of D are the same. Suppose
one instead assumes that elements ofD arise from a bivariate dis-
tribution and interest is in the ensemble of voxel-specific pairs,
instead of individual voxels.

Figure 1 is a conceptual diagram showing possible shapes
associated with the distribution of voxel pairs. The conceptual
model is informed by the idea of Gaussian mixture models (see
McLachlan and Peel, 2000, for an introduction). The mixture
model is governed by four major areas: (A) voxels that were “acti-
vated” (had a change across sessions) only in the trained task, (B)
voxels that were activated in both tasks, (C) voxels that were acti-
vated only in the untrained task, and (D) voxels that were not
activated in either task.

It is the shape of (B) that is of primary interest. For instance,
any shift in B above the diagonal line represents training based
learning. If the shape is spherical, there is no correlation between
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FIGURE 1 | Conceptual diagram for fMRI activation distributions based

on the motivating study of motor learning. Shaded areas represent

learning based (inter-session differences) between a trained (Y axis) and

untrained (X axis) task. Across all panels, Area (A) represents voxels with

change in activation across sessions only in the trained task, (B) represents

voxels with change in activation across sessions in both the trained and

untrained task, (C) voxels with change in activation across sessions only in the

untrained task, (D) represents no change in activation for both tasks. The four

panels (I–IV) represent different potential shapes of the activation distributions

for (B) with (I, II) showing a two dimensional shape and (III, IV) showing an

approximately one dimensional. In (I, III) inter-sessions differences are

symmetrically represented whereas in II, IV one task had a uniformly greater

increase.

training status and change in activation across sessions. In con-
trast, the more ellipsoidal the shape, the greater the correlations
in activation extent across sessions.

While acknowledging that SPM operates voxel-by-voxel, and
that Figure 1 displays voxel groups, the SPM approach would
investigate each point’s distance from the diagonal line, assessing
significance relative to inter-subject variability. Therefore, given
enough data, the SPM approach would conceptually reject for
voxels in groups (A) and (C) in the cases represented by all panels.
However, it would reject most of the voxels in group B in panels
II and IV only. The approach would reject few of the voxels in (B)
for panels I and III. Contrast this with the shape and dimension-
ality of (B) being constant for panels I and II together and III and
IV together. Thus, to the extent that learning represents itself as
changes in the shape of the activation distribution, the voxel-wise
approach would not tell the complete story.

Instead, we view the shape of the bivariate distributions of
points in group (B) as informative for studying changes in task
activation. One key attribute is its intrinsic dimensionality (1 vs.
2 dimensional). Ignoring groups (A), (C), and (D), one would
conclude that (B) is two dimensional in panels I and II and
intrinsically one dimensional in III and IV. The dimensional-
ity of (B) is useful for differentiating whether changes in inten-
sity or distribution account for activation changes following
learning.

The use of principal components to investigate the dimen-
sionality of learning builds upon an existing literature on the

use of dimensionality testing in the study of activation maps
(Worsley et al., 1997). Specifically, Zarahn (2002) and Moeller
and Habeck (2006) considered it within the context of functional
imaging. The aim of this work is to study the goals, limitations
and hypotheses of tests of dimensionality of fMRI activation
maps. A test of one vs. two dimensions on the set D̂, that is
rank(D̂), investigates the null hypothesis

H0 : β21(v)− β11(v) = c{β22(v)− β12(v)}

for unspecified c and collectively for all voxels v.
Let Âk = 1

N

∑

Âik and recall that D̂ = Â2 − Â1. Fol-
lowing the existing work on tests of dimensionality in fMRI,
we use root tests of the second eigenvalue (see Mardia et al.,
1980) to investigate the hypotheses of one dimension vs. two.
A simulation-based investigation of this test follows. The sim-
ulation study includes: the strength of the effect, the intrin-
sic dimensionality (considering power and error rates), and
the impact of biological and measurement variation, includ-
ing variation in the angle of the subject-specific principal
direction.

3. Materials and Simulation

3.1. Motivating Data Set
A motor learning study served as motivation for this work,
though we emphasize that the methodology generally applies
to any study of change in activation. The goal of the motor
study centered on investigating skilled motor learning via the
Arc Pointing Task (APT) (Shmuelof et al., 2012), where the task
was designed to better understand neural correlates of motor
skill acquisition. The subjects completed two similarly demand-
ing motor tasks of drawing an arc within reference lines by
moving their (non-dominant in all cases) left wrist. The inte-
rior circles in Figure 2 represent the starting and end points of
the path. Subjects were directed to stay within the lines of the
outer circles while tracing the arc. Subjects were scanned while
performing the tasks at baseline and again 5 days later, with
training on just one of the two tasks in the interim. Compar-
ison of fMRI activation (or any measurement of motor func-
tion) from baseline to follow-up considers both effects related
to motor learning and those related to changes between ses-
sions. Comparison with the, otherwise similar, untrained task as
a reference eliminates additive inter-session biases unrelated to
learning.

The specifics of the study are as follows. Thirteen right-handed
subjects (8 females, 18–27 years of age) engaged in the above
described motor tasks, none having performed these tasks pre-
viously. Subjects participated in a 5 day protocol consisting of
daily behavioral sessions in the lab and two fMRI scans on the
baseline and final days (1 and 5, respectively). During scanning,
subjects performed the APT. Horizontal (trained) and vertical
(untrained, control) APT movements were performed in sepa-
rate block design experiments before and after training for the
horizontal task. Six movements were performed in 18 blocks
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FIGURE 2 | Example of the Arc Pointing Task (APT) executed within

the fMRI session. Subjects were asked to navigate a cursor lying between

the inner and outer concentric circles. Two tasks of similar difficulty were

investigated. A horizontal task (A) where subjects were trained in between

two scanning sessions and a vertical task (B) where subjects were not

trained.

(repeated 6 times), at a slow speed (1.5 s per movement). Sub-
jects received online feedback regarding the position of the cur-
sor, but no further information about their success or failure, or
about their movement speed. In the trained task, targets were
presented on the horizontal line (same configuration as during
the behavioral task in the lab) and in the untrained task, targets
were aligned vertically. Movements were always in the clock-
wise direction. Subjects performed the movements with their
(non-dominant) left wrist, while lying on their back, and receiv-
ing visual feedback of their movements through goggles (res-
onance technology, Los Angeles, CA). Further details on the
experimental paradigm can be found in Shmuelof et al. (2014).

Data was acquired on a Philips Intera 3T scanner using a
Philips SENSE head coil. The functional scans were collected
using a gradient echo EPI, with voxel size of 3 × 3 × 3mm
(240 × 240 × 240mm matrix). TR = 2 s, flip angle = 77o, axial
slices, TE = 25ms. Forty slices were gathered in an interleaved
sequence at a thickness of 3mm (no gap). Ninety − six volumes
were accumulated in each experimental run. The first 2 volumes
were discarded to allow magnetization to reach equilibrium. A
single T1-weighted anatomical scan was also obtained for each
subject (MPRAGE, 1mm3).

Functional data were preprocessed using SPM5 (http://www.
fil.ion.ucl.ac.uk/spm/software/spm5/). Before statistical analysis,
the data was also corrected for slice timing acquisition and head
motions, re-sliced to 2× 2× 2 mm voxels using a fourth degree
B-spline interpolation, and transformed into a Talairach standard
space (Talairach and Tournoux, 1988). A general linear model
was used for data analysis, followed by calculation of beta maps.
Scatter plots of beta before training and after training are shown
in Figures 3, 4.

By comparing the trained and untrained tasks, the population
impact of learning was estimated by considering differences in
the change in activation maps over sessions. Using the developed
notation, the collections compared are, {β21(v) − β11(v)}v=1,...V

to {β22(v) − β12(v)}v=1,...,V , where, as previously noted, the first

index indicates session (baseline and fifth day) and the second
indicates task (horizontal and vertical). The test of dimensional-
ity then considers whether the changes in activated voxels after
training is uncorrrelated with the changes in the untrained (but
otherwise similar) task. Under Gaussian assumptions, absence
of correlation among activated voxels implies that the extent of
activation is unrelated between sessions.

All subjects gave written, informed consent and received
a small compensation for participating in the Study, which
was approved by the Columbia University Institutional Review
Board.

3.2. Simulation Study
Assume there are V = V1+V2 voxels in total: V1 that are signifi-
cantly different across sessions (group B in Figure 1) and referred
to as “activated,” and V2 that are not (group D in Figure 1).
Under this working example, the term activated implies a non-
zero change in the contrast values across sessions. Thus, π = V2

V
is the percentage of non-activated voxels.

The simulation model is:

biv
iid
∼ N

{(

β21(v)− β11(v)
β22(v)− β12(v)

)

, Iσ 2

}

= N(δ(v), Iσ ), (1)

where δ(v) = {δ1(v), δ2(v)} = {β21(v)− β11(v), β22(v)− β12(v)}
and biv = {b1iv, b2iv} is a subject-specific realization plus noise.
The generation of the δ(v) parameters varied across simulation
settings, and is described separately for each case below.

In all simulation settings, the estimate of the V × 2 matrix
of the δ(v), labeled D̂, was obtained via the voxel-specific mean
across subjects. FollowingWorsley et al. (1997), theV×2 matrix,
Z, denotes δ̂ divided by its standard error. That is, Zk(v) =

Var{δ̂k(v)}
−1/2δ̂k(v) make up row v and column k of Z. Here the

variance was calculated across subjects separately for each voxel.
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FIGURE 3 | Contrast maps from the horizontal arc pointing task. The X axis for each plot is the first session while the Y axis is the second. Red lines show the

direction of the first principal component while a dotted identity line is shown for reference.

The cross-product matrix is then

S =

V
∑

v=1

Z(v)′Z(v)/V.

The Lawley/Hotelling trace statistic is:

Sq =

h
∑

j=q+1

λj/(h− q),

where λj, j = 1, 2, · · · , h are the eigenvalues of S, h is the
total number of eigenvectors and q is the testing rank. Under
independence and Gaussian assumptions, Sq follows an F dis-
tribution under the null hypothesis, where the first q principal
components capture all of the signal. In our case, h = 2, q = 1
and the test statistic is simply the second eigenvalue of S.

3.2.1. Simulation Under the Null Hypothesis
The first simulation setting considers the hypothesis of uni-
dimensionality; that is, whether δ1(v) = cδ2(v), where c is
constant across subjects. The parameter δ1(v) for the activated
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FIGURE 4 | Contrast maps of the vertical arc pointing task. The X axis for each plot is the first session while the Y axis is the second. Red lines shows the

direction of the first principal while a dotted identity line is shown for reference.

voxels was simulated as uniformly distributed in [min,max],
with this range computed from values of [0, 1]–[10, 15]. Note
that for voxels inactive in both time points, δ1(v) = 0. Thus,
δ1(1), . . . , δ1(V1) 6= 0 while δ1(V1 + 1), . . . , δ1(V) = 0. Note
that, δ2(v) = cδ1(v) regardless of null status.

Figure 5 shows example data for a simulated subject as well as
the estimated statistics. The null simulation varied according to
the following: (i) distance of the activated voxels from the inac-
tivated ones, as well as the range of activation, (controlled by
min and max); (ii) the percentage of inactivated voxels (π); and
(iii) the number of subjects (N). For all of the null hypothesis

scenarios, c = 1. The type I error rates correspond to the percent-
age of rejections of the Lawley/Hotelling trace statistic for each
simulation setting. The specifics of each scenario are described
below while the results are shown in Table 1.

Simulation under variation in the distance: In this scenario,
N = 12, V1 = 40, V2 = 200, and σ = 1. Five scenarios for
each pair ofmin andmax were considered. The results sug-
gest that the type I error is not significantly affected by the
distance of the activated voxels from the inactivated ones.
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FIGURE 5 | Example simulated data. (A) Shows the simulated data. (B) Shows the estimate of b using Equation (1). (C) Shows the estimate of Z, where

Zk (v) = Var{δ̂k (v)}
−1/2 δ̂k (v).

Changing the percentage of inactivated voxels: In this case,
N = 12, σ = 1, min = 0.5, and max = 1.5. The total
number of voxels was set at V = 240. These results suggest
that the test is not significantly affected by the percentage of
inactivated voxels.

Varying the number of subjects: In this case, V1 = 40, V2 =

200, σ = 1, and [min,max] = [0.5, 1.5]. The results imply
that the type I error does not change significantly as N
varies.

3.2.2. Simulation Under the Alternative Hypothesis
There are a variety of ways in which the null hypothesis can fail
to be true; herein, several key departures were analyzed. First,
consider a straightforward departure, where Figure 1 holds, with
sets (A) and (C) both empty. The extent of spherical and ellip-
tical variation around the principal axis are evaluated. However,
other departures could also be present.Most importantly, the null
could be true for each subject, but with a varying angle along
the principal axis. In addition, a non-trivial percentage of vox-
els changing activation status (i.e., sets (A) and (C) from Figure 1

being non-empty) would similarly represent a departure from the
null hypothesis. The simulation scenarios for these parameters
are described below.

The number of subjects remains N = 12 while min = 0.5,
max = 1.5, V1 = 40, and V2 = 200.

Simulation under a basic alternatives: Two basic alternative
settings were considered. In the first, the δ(v) were simu-
lated as two dimensional, yet one dimension dominates the
other. This method of simulation added orthogonal vari-
ation around the line used in the simulation under the
null hypothesis. Specifically, the activated voxels have Gaus-
sian variation orthogonal to the major axis (see Figure 6A).
This was done in lieu of simulating a bivariate Gaus-
sian with a non-zero correlation to consider an even,
non-concentrated spread along the major axis. Simulations

using a bivariate normal yielded similar results. In the sec-
ond setting the correlation was assumed to be zero (see
Figure 6B).

Variability of the angle of the principal axis Consider a null
setting, as in Section 3.2.1. However, assume that the con-
stant, c, varies across subjects. Let ci denote this constant
for subject i. To simulate the data, first the null simulation
from Section 3.2.1 was performed then the observed
bivariate points {b1iv, b2iv} were multiplied by the rotation

matrix

(

cos θi − sin θi
sin θi cos θi

)

, where θi is a subject-specific

rotation angle from the 45o line, generated from a Gaussian
distribution with mean 0 and standard deviation σa, which
varied from 0.01 to 0.5. Before the rotation, c = 1, while
afterwards, ci = tan(45o − θi). Examples of the simulated
data are shown in Figure 7.

Changing Activation Sets In this setting, the impact of a non-
trivial percentage of voxels, or change in voxels that switch
activation status, i.e., corresponding to a large collection of
voxels in sets (A) and (C) in Figure 1. An example simu-
lation is shown in Figure 8. Here, the bkiv were either 0 or
uniform, where a min = 0.5 and max = 1.5. The specific
values were: 200 voxels set to be inactive for both the trained
and untrained tasks, 40 voxels set to be activated for the
trained and untrained groups,Va voxels were activated with
training, but inactivated without training, while another Va

voxels were inactivated with training but activated without
training. Here Va was varied between 10 and 400. Note that,
in this setting, the Z matrix (see Figure 8) is substantially
different from the direction of its first eigenvector.

3.3. Simulation Results
Table 1 displays the results across the simulation settings. All tests
were performed at a nominal 5% error rate.
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TABLE 1 | Results of the simulation studies.

V1 V2 N min max σ Type I error

H0 Variation in the distance 40 200 12 0 1 1 0.051

40 200 12 0.5 1.5 1 0S.053

40 200 12 1.5 2.5 1 0.051

40 200 12 3 5 1 0.059

40 200 12 10 15 1 0.053

Changing the percentage of inactivated voxels 20 220 12 0.5 1.5 1 0.069

40 200 12 0.5 1.5 1 0.052

80 160 12 0.5 1.5 1 0.062

120 120 12 0.5 1.5 1 0.060

200 40 12 0.5 1.5 1 0.056

Varying the number of subjects 40 200 4 0.5 1.5 1 0.048

40 200 8 0.5 1.5 1 0.052

40 200 12 0.5 1.5 1 0.051

40 200 20 0.5 1.5 1 0.058

40 200 100 0.5 1.5 1 0.052

V1 V2 N min max σ σb Power

Ha Basic alternatives—correlated 40 200 12 0.5 1.5 1 0.05 0.042

40 200 12 0.5 1.5 1 0.1 0.059

40 200 12 0.5 1.5 1 0.2 0.184

40 200 12 0.5 1.5 1 0.5 0.972

40 200 12 0.5 1.5 1 1 1.000

40 200 12 0 1 1 0.2 0.195

40 200 12 0.5 1.5 1 0.2 0.186

40 200 12 1.5 2.5 1 0.2 0.196

40 200 12 3 5 1 0.2 0.188

40 200 12 10 15 1 0.2 0.195

40 200 4 0.5 1.5 1 0.2 0.046

40 200 8 0.5 1.5 1 0.2 0.101

40 200 12 0.5 1.5 1 0.2 0.171

40 200 20 0.5 1.5 1 0.2 0.342

40 200 100 0.5 1.5 1 0.2 0.998

Basic alternatives—uncorrelated 40 200 12 1 1 1 0.05 0.045

40 200 12 1 1 1 0.1 0.065

40 200 12 1 1 1 0.2 0.171

40 200 12 1 1 1 0.5 0.973

40 200 12 1 1 1 1 1.000

V1 V2 N min max σ σa Power

Variability of the angle of the principal axis—without angle correction 40 200 12 0.5 1.5 0.5 0.01 0.041

40 200 12 0.5 1.5 0.5 0.02 0.051

40 200 12 0.5 1.5 0.5 0.05 0.056

40 200 12 0.5 1.5 0.5 0.1 0.025

40 200 12 0.5 1.5 0.5 0.5 0.007

40 200 12 0 1 0.5 0.01 0.042

40 200 12 0.5 1.5 0.5 0.01 0.045

40 200 12 1.5 2.5 0.5 0.01 0.054

40 200 12 3 5 0.5 0.01 0.051

40 200 12 10 15 0.5 0.01 0.030

(Continued)
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TABLE 1 | Continued

V1 V2 N min max σ Type I error

Variability of the angle of the principal axis—with angle correction 40 200 12 0 1 0.5 0.01 0.005

40 200 12 0.5 1.5 0.5 0.01 0.027

40 200 12 1.5 2.5 0.5 0.01 0.064

40 200 12 3 5 0.5 0.01 0.078

40 200 12 10 15 0.5 0.01 0.109

V1 V2 N min max σ Va Power

Changing activation sets 40 200 12 0.5 1.5 0.5 10 0.057

40 200 12 0.5 1.5 0.5 20 0.048

40 200 12 0.5 1.5 0.5 40 0.057

40 200 12 0.5 1.5 0.5 100 0.097

40 200 12 0.5 1.5 0.5 400 0.205

Shown are type I error rates and power across simulation settings.

FIGURE 6 | Example simulation from the alternative hypothesis. The axes are the two dimensional bivariate simulated data representing inter-session

differences for each task in the motivating study. In (A) the voxels have Gaussian variation added orthogonally to the major axis. In (B) there is no relationship.

FIGURE 7 | Example simulation for the setting when the principal axis differs across subjects. The axes are the two dimensional bivariate simulated data

representing inter-session differences for each task in the motivating study. The gray line is a reference identity line, while the red line is the axis of principal direction.
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3.3.1. Simulations Under the Null Hypothesis
Adherence to the specified nominal error rate was remarkably
consistent as parameter settings varied. When varying the dis-
tance, the test showed only slight liberalism (Type I error rate
larger than the nominal) across settings. Only for unrealistically
small activation sets did the test demonstrate liberalism when
altering the activation set size. In addition, varying the number
of subjects had little impact. Adherence to the nominal error rate
was acceptable, even at very low numbers of subjects.

3.3.2. Simulations Under the Alternative Hypothesis
Under the basic alternative, where the true voxel states pos-
sessed a strong (but not perfectly linear) corelation, power varied
as expected. Under a strong correlation (σb close to 0), power
trended to the nominal type I error rate. Encouragingly, power
quickly trended to one as the true relationship moved away from
a dominant dimension. As expected, the power tended to 1 as
the sample size increased (confirming the relevant asymptotics).
However, the sample size needed to be relatively large to have
adequate power at the modest value of σb = 0.2.

In the case where no dimension dominated under the basic
alternative of absence of correlation, power changed significantly
with the spread of activation, σb. When the angle of principal
direction varied, power suffered dramatically. To address this,
a first stage subject-specific principal components rotation was
investigated. This appeared to improve power in settings where
the null and non-null voxels were more clearly delineated, but
continued to exhibit low power (11%) when the distance was
large (min = 10, max = 15). A non-trivial fraction of voxels
changing activation status had a negative impact on power.

4. Data Analysis of the Motivating Data Set

This section investigates the impact of training on activation
using the APT data described in Section 3.1 and represented in
Figures 3, 4, which show estimated beta maps. A null hypothe-
ses suggests that the data points are close to the principal line.

Notably, a distinction between the null and alternative hypoth-
esis is difficult to ascertain graphically. However, it is apparent
that the axis of principal direction varies by subject. Next, dimen-
sionality is tested via three methods: first considering only the
(trained) horizontal task, then only the (untrained) vertical task,
and then comparing both. When considering the untrained task
in isolation we are testingH0 :β21(v) = cβ11(v), thenH0 :β22(v) =
cβ12(v) for the trained and H0 : β21(v) − β11(v) = c{β22(v) −
β12(v)} when comparing trained and untrained. (The paper used
the latter as the primary motivating example.) In Table 2, the
results before and after angle correction are shown.

4.1. Motor Learning Data Results
The axis of principal direction varied by subject (see Figures 3, 4).
Before correcting for the principal angle, the tests of dimension-
ality were insignificant, for both the horizontal and the vertical
tasks. However, after correcting the principal angle by subject,
the p-values of the tests were highly reduced. Focusing only on
the tasks separately, the test of dimensionality yielded a p-value
of 0.05 for the vertical task and 0.16 for the horizontal one. When
comparing across tasks, the p-value was 0.36. Thus, the untrained
task has a significant second dimension that does not appear to
be present in the trained. Inspecting the data, excess variability
in the trained task appears to be due to biomodal changes in

TABLE 2 | P-values of the tests of dimensionality for the motor learning

data set.

Tasks Without angle With angle

correction correction

Horizontal Session 1 vs. Session 2 0.520 0.163

Vertical Session 1 vs. Session 2 0.598 0.050

Horizontal vs. Vertical 0.3620

The first row considers the Session 1 vs. Session 2 for the Horizontal task (H0 : β21 (v) =

cβ11 (v)). The second row does the same for the vertical task (H0 : β22 (v) = cβ12 (v)). The

third considers inter-session differences across tasks (H0 : β21 (v) − β11 (v) = c{β22 (v) −

β12 (v)}). P-values are given with and without having performed an angle correction.

FIGURE 8 | Example simulation from the alternative with changing

activation sets. The axes are the two dimensional bivariate simulated

data representing inter-session differences for each task in the motor

learning study. Shown are the true parameter values (leftmost panel),

the simulated subject data (middle panel) and the Z-values (rightmost

panel).
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activation. It is not surprising that the comparison across tasks
was non-significant, given the increased variability obtained from
taking differences and the issues of power for the test.

5. Discussion

5.1. Simulation Results
The simulation results suggest that tests of dimensionality are
a reasonable exploratory testing procedure for investigating the
distribution of paired activation maps. However, their confirma-
tory performance was hindered by instances with low power in

situations that could be realistically seen in practice. The adher-
ence to the nominal type I error rate, on the other hand, was
uniformly acceptable across simulation settings. Thus, a rejection
from this test is likely informative, while an acceptance less so.

The low power cases occurred where there is substantial vari-
ability in the principal axis, or where activation status changed.
This latter condition created confusion between noise and sig-
nal, with the test attributing signal variability as noise. Of the
two cases, careful masking could eliminate concern over chang-
ing activation status. However, variability in the principal axis
is likely the norm and could arise from a number of plausible

FIGURE 9 | A simulation example highlighting increased power

for detecting learning based differences. The axes are the two

dimensional bivariate simulated data representing inter-session

differences for each task in the motivating study. The alternative of

the dimensionality test is true and the P-value is 0.03, suggesting

that activation extent is unrelated between tasks. However, only

11% of the voxels satisfy a voxel level test of significance (colored

in red).
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biological, technological and processing causes. The straightfor-
ward refinement of a first stage subject-level principal component
rotation improves the power.

5.2. General Discussion
This manuscript posited a different paradigm for statistically
evaluating learning using task-related BOLD fMRI activation
maps. At its core, the primary advance is the supposition
of using the bivariate distribution of the activation maps, or
changes in activation maps, when comparing tasks over ses-
sions. Under this framework, changes in the distribution of
activated voxels are key, not voxel level changes in activation
extent, as would be evaluated in voxel-level parametric map-
ping interaction tests. An unintended benefit of this distribu-
tional approach in this setting is avoiding the familiar issue
of having to determine interactions where main effects are not
present.

The intended benefit of increasing power over voxel-level
interaction tests was found to be true, provided assumptions
hold. For example, Figure 9 provides a simulation example where
the alternative test of dimensionality is both true and detected
(P-value of 0.03). However, only 11% of the voxels would sat-
isfy a voxel level test of significance. We emphasize the differ-
ent nature of the hypotheses interrogated by these approaches
so that comparisons of power should be taken with a grain
of salt.

Evaluating distributional differences for learning-based acti-
vation tests a different scientific hypothesis than voxel level
testing. In our example, the question was how BOLD acti-
vation, or changes in activation, relate between trained and
untrained tasks. Investigating activation distributions is less
sensitive to the requirement of focal localization of effects
compared to interaction testing. For example, two small spa-
tially separated significant interaction regions may have differ-
ent voxel-level interaction significance than a single contiguous
region of the same aggregate size. In contrast, the distribution
may not change. Conversely, evaluating contrast map distribu-
tions does not provide the benefits of localization to inform
results.

It is worth emphasizing that the investigation of activation dis-
tribution represents a complementary procedure to voxel-level
testing and does not represent a form of omnibus test to be per-
formed prior to it. Thus, it is perhaps not useful to generate a
single analytic pipeline, whereby omnibus distributional tests are
followed by voxel level contrasts of interest.

An interesting next direction in this line of research
would consider full models of the joint distribution of
{β11(v), β12(v), β21(v), β22(v)}. This could be accomplished
using a Bayesian random effects approach via mixtures of Gaus-
sian random variables. However, the feasibility, applicability
and gain of such an approach over simpler solutions remains
unknown. A tantalizing possible benefit would be robustness to
inter-subject registration to a template. In contrast, interaction
tests focus on localization and as such, place a heavy burden on
accurate inter-subject registration. A full random effect mixture
model could possibly remove the need for inter-subject registra-
tion, or at least remove the need for non-affine registration.

The far simpler approach discussed in this manuscript
addresses dimensionality. The results show that the operating
characteristics of the approach are viable, if modeling assump-
tions are met. Particularly encouraging was the robustness to
variation in the distance of the center of activation from null vox-
els. However, its sensitivity to the angle of the principal axis is a
core issue, as such variation is clear from the data.

In the real data analysis it is noteworthy that the vertical and
horizontal tasks differed in their respective tests of dimension-
ality. Particularly, the null hypothesis was not rejected in the
trained task (horizontal) while it was in the untrained task (ver-
tical). However, there does appear to be more apparent non-
Gaussianity in the vertical task, suggesting a component of the
rejection is related to a form of dimensionality not well-covered
by the model. The contrast test comparing vertical vs. horizon-
tal was not significant. Therefore, it cannot be concluded that
the activation distribution given by the inter-session differences
across tasks is not linear. For all three cases, the data analysis
suggests large variability in the subject-specific principal axes, a
setting where low power was evidenced in the simulation study.
Thus, the null results are perhaps indicative of low power.
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