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The choroid plexus produces cerebrospinal fluid and plays an important role in brain

homeostasis both pre and postnatally. In vitro studies have suggested that cells from adult

choroid plexus have stem/progenitor cell-like properties. Our initial aim was to investigate

whether such a cell population is present in vivo during development of the choroid

plexus, focusing mainly on the chick choroid plexus. Cells expressing neural markers

were indeed present in the choroid plexus of chick and also those of rodent and human

embryos, both within their epithelium and mesenchyme. ß3-tubulin-positive cells with

neuronal morphology could be detected as early as at E8 in chick choroid plexus and their

morphological complexity increased with development. Whole mount immunochemistry

demonstrated the presence of neurons throughout choroid plexus development and they

appeared to be mainly catecholaminergic, as indicated by tyrosine-hydroxylase reactivity.

The presence of cells co-labeling for BrdU and the neuroblast marker, doublecortin,

in organotypic choroid plexus cultures supported the hypothesis that neurogenesis

can occur from neural precursors within the developing choroid plexus. Furthermore,

we found that extrinsic innervation is present in the developing choroid plexus, unlike

previously suggested. Altogether, our data are consistent with the presence of neural

progenitors within the choroid plexus, suggest that at least some of the choroid plexus

neurons are born locally, and show for the first time that choroid plexus innervation occurs

prenatally. Hence, we propose the existence of a complex neural regulatory network

within the developing choroid plexus that may play a crucial role in modulating its function

during development as well as throughout life.
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Introduction

The choroid plexus (CP) is important for the secretion of cere-
brospinal fluid (CSF) and plays an important role in brain devel-
opment, homeostasis and disease. The CP, found in lateral, third
and fourth ventricles of the brain, consists of a highly vascular-
ized stroma with loose connective tissue surrounded by a single
layer of simple cuboidal epithelium. The CP epithelium, consid-
ered to be a specialized ependymal epithelium, is continuous with
the ependyma lining the brain of lateral, III and IV ventricles. It
originates from the neuroepithelium, whereas the inner CP stro-
mal core is believed to originate from the mesenchyme (Lehtinen
et al., 2013; Liddelow et al., 2013).

The CP develops early during embryogenesis and which CP
is first clearly visible depends on the species. In mouse and
humans, the IV ventricle CP anlage is the first one observed
at approximately E10.5 and 41 days of gestation, respectively
(Dziegielewska et al., 2001; Hunter and Dymecki, 2007). In the
chick embryo, it has been indicated that a CP anlage is first
detectable in the lateral ventricles between E6 and E8. The chick
lateral ventricle CP rapidly grows, lengthening and branching out
many times with a dip in its growth reported at around E15–E16
followed by its thinning and flattening (Smith, 1966; Stastny and
Rychter, 1976).

The CP constitutes the blood-CSF barrier that is established
by the tight junctions of the CP epithelial cells. The CP is a very
active organ that continuously secretes CSF from early devel-
opment throughout life (Johansson et al., 2008; Liddelow et al.,
2012; Lehtinen et al., 2013). It has been proposed that its secretory
function is controlled by its autonomic innervation (Edvinsson
and Lindvall, 1978; Lindvall and Owman, 1981). CSF secretion
could be inhibited by stimulation of sympathetic nerves in the
neck (Lindvall et al., 1978c) and via activation of β2 receptors
(Nathanson, 1980). Sympathetic denervation in rabbits resulted
in hydrocephalus and was fatal (Lindvall and Owman, 1981).
It has been assumed that nerves enter the CP only after birth
(Tsuker, 1947; Edvinsson et al., 1973; Lindvall et al., 1977a,
1978a,b,c; Edvinsson and Lindvall, 1978), but there is only one
study where this issue was specifically addressed and that sug-
gests that the CP becomes innervated postnatally (Lindvall and
Owman, 1978). This seems peculiar, as innervation tends to occur
at early stages of organ development, before a high degree of com-
plexity is achieved.We therefore postulated that this would be the
case also for the CP and set to test this hypothesis.

A variety of stem/progenitor cells have been hypothesized
to reside within the CP. Nataf and co-workers have reported
that myeloid progenitors in the CP are capable of differentiation
toward macrophage or dendritic cell phenotypes (Nataf et al.,
2006). In addition, the CP has been reported to contain neu-
ral stem-like cells able to give rise to neural cells in vitro and
upon transplantation into a spinal cord injury model (Kitada
et al., 2001). The transcriptome of the CP from adult mouse
has revealed the presence of genes important for neural devel-
opment (Itokazu et al., 2006; Marques et al., 2011). The neu-
ral stem cell potential observed in the CP has been suggested
to reside in the CP epithelium on the basis of in vitro studies
(Itokazu et al., 2006). The localization of those putative neural

stem cell population(s) was not extensively studied in vivo. In
another study in rat pups, the presence of nestin-expressing cells
just beneath the CP epithelium, that decreased in number with
age, was taken to indicate the presence of neural stem cells in the
CP stroma (Huang et al., 2011). We hypothesized that the devel-
oping CP harbors a neurogenic niche that may account for the
proposed “neurogenicity” of the CP.

We assessed the presence of neural progenitors and time of
innervation in developing CPs, focusing on the chick CP in vivo
and in organotypic cultures. We show for the first time that
the CP mesenchymal compartment contains neural progenitor-
like cells that may be the precursors of the neurons identified
in this compartment, and that innervation of the CP is an early
developmental event. Hence, we suggest a model where a neural
regulatory network is present within the CP and may play a cru-
cial role in modulating its function during development as well as
throughout life.

Materials and Methods

Unless otherwise specified all general reagents were from Sigma
and tissue culture reagents from Gibco.

Chicken Embryos and Isolation of Choroid
Plexus (CP)
Fertilized Brown Leghorn chicken eggs were purchased from
Henry Stewart & Co. Ltd (Lincolnshire, UK). On arrival, eggs
were stored at 15◦C in the egg fridge (JENCONS Ltd., USA) and
used within 1 week. They were maintained on cardboard egg
racks in a humidified forced flow incubator at 38◦C (MARSH
automatic incubator, LYON electric company, USA) until the
required developmental stages. Chick embryos were decapitated
and brains removed. The meninges were carefully peeled off
because its connective tissue normally attaches to the pineal gland
which also connects to the 3rd ventricle CP. The isolated CP
was used for whole mount immunohistochemistry, organotypic
culture, or RNA extraction. Unless otherwise indicated, lateral
ventricle CPs were used.

Human and Mouse Embryos
Mouse embryonic brains were isolated and fixed in 4%
paraformaldehyde (PFA) overnight at 4◦C, cryo-protected by
incubation in 30% sucrose containing 0.02% sodium azide in PBS
(phosphate buffered saline) at 4◦C for approximately 24 h, OCT
embedded, and immunohistochemistry performed. Paraffin sec-
tions of human brains at Carnegie stage 23 (Cs23; 56 days of ges-
tation) were obtained from the Human Developmental Biology
Resource (HDBR).

Immunohistochemistry and Whole Mount
Labeling
Embryonic chick ormouse brains were fixed in 4%PFA overnight
at 4◦C, cryo-protected by incubation in 30% sucrose contain-
ing 0.02% sodium azide in PBS (phosphate buffered saline) at
4◦C for approximately 24 h, OCT embedded and cryosectioned
(14–16µm thick). Isolated CPs were fixed in 4% PFA overnight
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TABLE 1 | List of antibodies used for immunohistochemistry and whole mount staining.

Dilution Host Types Suppliers

ANTIGEN (PRIMARY ANTIBODIES)*

Aquaporin 1 (Aq-1) 1: 200 Mouse IgG Bioscience

βTub3 1: 1000 Mouse mAb IgG Promega,

BrdU 1: 100 Mouse IgG DSHB

Clusterin 1: 100 Rabbit pAb IgG Santa cruz (SC)

Doublecortin (Dcx) 1: 100 Goat IgG Cell signaling

Flk-1 1: 200 Rabbit pAb, IgG Fisher scientific

Glial fibrillary acidic protein (GFAP) 1: 1000 Rabbit pAb Chemicon

Laminin 1: 200 Rabbit pAb Milipore

Myelin basic protein 1: 100 Mouse IgG Chemicon

Nestin (human) 1: 1000 Rabbit pAb IgG Milipore

Nestin (rat, mouse) 1: 200 Mouse IgG Developmental studies hybridoma bank (DSHB)

NF200 1: 100 Rabbit IgG Sigma

Otx2 1: 200 Rabbit pAb IgG Abcam

P75NTR 1: 500 Rabbit IgG Sigma

Pax6 1: 100 Mouse mAb IgG1 DSHB

Phosphohistone3 (pH3) 1: 100 Rabbit IgG Upstate

Sox2 1: 1000 Rabbit pAb Milipore

Synaptic vesicles 2 (SV2) 1: 100 Mouse IgG1 DSHB

Transitin (chick) 1: 100 Mouse mAb IgG1 DSHB

Tyrosine hydroxylase 1: 400 Sheep pAb Millipore

VEGF 1: 100 Mouse mAb IgG1 SC

Vimentin 1: 100 Mouse IgG DAKO

ZO-1 1: 100 Rabbit pAb IgG Molecular Probe

SECONDARY ANTIBODIES

Anti-mouse IgG1a Alexa Fluor® 568 1: 400 Goat – Molecular probe

Goat anti-mouse IgM Alexa Fluor® 594 1: 400 Goat – Molecular probe

Anti-rabbit Alexa Fluor® 594 1: 400 Goat – Molecular probe

Anti-mouse IgG Alexa Fluor® 488 1: 400 Goat – Molecular probe

Anti-sheep Alexa Fluor® 488 1: 1000 Rabbit – Molecular probe

mAb, monoclonal antibody; pAb, polyclonal antibody. * The same antibodies were used in the different species unless the species is indicated in brackets.

at 4◦C and washed several times with PBS for whole mount label-
ing. For wax removal and epitope unmasking, human embryonic
brain sections were immersed in 1:20 Declere R© solution (Sigma)
in PBS, heated in a microwave oven at 720 watt for 5min and
then at 270 watt for 20min, rinsed in PBS and then processed as
cryosections. Brain sections or whole mount CPs were perme-
abilized (0.5% Triton X-100 in PBS) and blocked in 20% BSA
in PBS for 1 h at room temperature. Sections were incubated
with primary antibodies (Table 1) diluted in blocking solution
for 3–4 h at room temperature or overnight at 4◦C. After sev-
eral washes with PBS, sections were incubated with appropri-
ate secondary antibodies for 1–2 h. Citiflour R© solution (Citifluor
Limited) was used as a mounting medium in most of immuno-
histochemistry for cryosections and paraffin sections. In this
case, cell nuclei were visualized with Hoechst 33258 (2.5µg/ml
final concentration). Stained section and whole mount CPs were
visualized and digitally scanned using an Axiophot 2 (Zeiss)
with Hamamatsu ORCA-ER digital camera or by confocal laser
scanning microscopy using an LSM 710 (Zeiss). Image analysis
was performed using ImageJ software (Rasband, 1997-2009).

Organotypic Culture of Chick CPs
E12 chick embryo CPs were used to set up organotypic cul-
tures. CPs from lateral and third ventricles were dissected and
grown onto a 0.4-µM-Millipore R©-CM culture plate insert in
MEM (minimal essential medium) containing Glutamax, 5%
Earle’s balanced salt solution (EBSS), 36mMD-glucose, 1% peni-
cillin/streptomycin and 25% horse serum.

MTT Assay and PI Staining of Organotypic Chick
CP Cultures
Propidium iodide (PI) was used to identify cell death in
organotypic CP cultures. Briefly, the cultures were incubated
with culture medium containing 5µg/ml PI for 1 h at 37◦C in
an atmosphere of 95% O2 and 5% CO2. Organotypic cultures
were incubated with 0.5mg/ml MTT [3-(4,5-Dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide] solution for 1 h at 37◦C
to assess cell viability. The appearance of blue/purple for-
mazan crystals is indicative of cell viability and structural
integrity.
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BrdU Incorporation in Organotypic Chick CP
Cultures
Organotypic CP preparations were treated with 10µM BrdU for
3 days and then processed for BrdU detection and immunohis-
tochemistry. CPs were incubated in 1N HCl for 10min on ice,
followed by incubation in 2N HCl for 10min at room temper-
ature, and then for 20min at 37◦C. The CPs were then washed
three times in 0.1M borate buffer at room temperature, once in
PBS, and immunostained as described above.

Polymerase Chain Reaction (RT-qPCR)
RNA was extracted from chick lateral ventricle CP and midbrain
at different developmental stages (see Results) using Tri-Reagent
(Life Technologies) according to the manufacturer’s instructions.
RNA was retro-transcribed with Moloney murine leukemia virus
reverse transciptase (Promega, Madison, WI). The annealing
temperature for RT-PCR was 54◦C for Sox2 and Otx2 (30 cycles)
and 66◦C for GAPDH (25 cycles). Real time quantitative poly-
merase chain reaction (RT-qPCR) was preformed with ABI Prism
7500 sequence detection system (Applied Biosystems) using the
QuantiTect SYBR Green PCR kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Gene expression
data were normalized using GAPDH housekeeping gene as a ref-
erence using the 2-11Ct method. The primers used for RT-PCR
and RT-qPCR are listed in Table 2.

Statistical Analysis
Data are presented as mean ±SEM. The statistical analysis was
performed using GraphPad Prism version 5.00 forWindows. Sta-
tistical significance was evaluated by One-Way ANOVA. A p-
value equal to or less than 0.05 was considered as statistically
significant.

TABLE 2 | Primers used for analysis of gene expression in chick choroid

plexus and midbrain by RT-PCR and RT-qPCR.

Gene Primers (5′-3′)

GAPDH For CCAGGTTGTCTCCTGTGACT

Rev CACAACACGGTTGCTGTAT

Transitin For CTGGAGCAGGAGAAGCAGAG

Rev CTGTTGGCCAGCTTGAACTC

GFAP For CCAGGTTGTCTCCTGTGACT

Rev CACAACACGGTTGCTGTAT

Doublecortin (Dcx) For CCCATTCGTTTGAGCAAG TT

Rev CCTGTGCATAGCGGAATTTT

ß3-tubulin For TCTCACAAGTACGTGCCTCG

Rev CCCCGCTCTGACCGAAAATG

Sox2 For AGGCTATGGGATGATGCAAG

Rev GTAGGTAGGCGATCCGTTCA

Otx2 For CCACCTCAACCAGTCTCCAG

Rev TTCCATGAGGATGTCTGGTC

Results

Expression of Neural Markers in the Developing
Choroid Plexus (CP)
Expression of markers of neural stem/progenitor cells, such
as Sox2 and nestin, in the CP was first studied by fluores-
cent immunohistochemistry in sections from E12 chick brains
(Figure 1 and Table 3). In the E12 CP, cells positive for the neural
progenitor marker, Sox2, were detected in the CP epithelium of
both lateral and 3rd ventricles (Figure 1A). The staining intensity
in the CP was lower than in the neuroepithelium and a gradi-
ent of Sox2 expression, from high, in the neuroepithelium, to
low, in the CP epithelium, was apparent (Figure 1A, Table 3).
Interestingly, Sox2 expression in cells located at presumed CP
branching points was stronger than in adjacent cells (see insert
Figure 1A). The early CP epithelium was also positive for Otx2
and Pax6, and for several other markers that have been reported
to be expressed in neural stem cells (Table 3). In contrast to the
CP epithelium, the CP stroma was Sox2-negative. However, the
CP mesenchyme contained cell expressing other neural mark-
ers, transitin, the chick nestin-like protein, and GFAP, a marker
of astrocytes, radial glia and neural stem cells (Figures 1B,C).
Expression of neural progenitor-associated proteins in the chick
CP was consistent with expression of their transcripts detected by
RT-PCR (Figure 2).

In order to establish whether neural progenitor-like cells were
present only in the chick or also in mammals, we studied their
expression in mouse CP at embryonic day 12.5 (E12.5) and in
the Cs23 (56 days of gestation) human CP. Nestin and GFAP
protein expression was found in the stromal compartment of the
mouse CP paralleling that in the chick (Figures 1D,E). Proliferat-
ing nestin-positive cells were observed in the CP as well as in the
neuroepithelium (Figure 1D). Expression of nestin and GFAP
appeared to be mutually exclusive (Figure 1F), but some overlap
of nestin immunoreactivity with an endothelial marker, the von
Willebrand factor, was observed suggesting expression of nestin
in some endothelial cells (Figure 1E). The developing human CP
at Cs23 also displayed a gradient of SOX2 staining, as observed
in the chick, and was also positive for vimentin and nestin
(Figures 1G,H). Nestin staining in the human CP appeared to
be sub-epithelial and vimentin expression was very high in the
CP epithelium but not restricted to it (Figure 1H). This paral-
leled the vimentin pattern of expression observed in the chick
CP (Table 3). In mouse CP at comparable stages of development,
vimentin was detected in the CP stroma (not shown).

Analysis of Neurogenesis in the Developing
Chick Choroid Plexus (CP)
Given the expression of several neural markers observed in the
CP, we investigated whether neurons were generated within the
CP focusing on the chick CP.

E12 chick lateral ventricle CPs were immunostained for
the neuroblast marker, doublecourtin (Dcx), and the neuronal
marker, β3-tubulin. Extensive Dcx reactivity was detected even
at a low magnification within the CP mesenchyme. Some scat-
tered β3-tubulin reactivity was observed in the E12 CP sec-
tions (Figures 3A,B). Both Dcx and β3-tubulin transcripts were
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FIGURE 1 | Neural progenitor markers are expressed in the

developing choroid plexus (CP), in different species. Unless otherwise

indicated, micrographs show the CP of lateral ventricles. (A–C) E12 Chick

CP stained for Sox2, transitin, and GFAP. III CP: third ventricle CP. (D–F)

E12.5 mouse CP stained for pH3 (phosphorylated-histone 3), nestin, von

Willebrand factor, and GFAP, either alone or in combination. Arrowheads in

(D) point at proliferating cells in the CP and in the neuropepithelium (insert);

only the CP is shown in (F). (G,H) Human CP at 8 weeks of gestation (CS23)

stained for Sox2, nestin, and vimentin. The CP is outlined and some of the

brighter SOX2-positve cells in the CP are indicated by arrowheads; note the

gradient of SOX2 staining in the CP; ne, neuroepithelium. Nuclei are

counterstained with Hoechst dye (blue). Scale bars are: (A) = 50µm; (B,C)

(same magnification) = 100µm; (D,E) (same magnification) = 100µm; (F) =
100µm; (G) = 100µm; (H) = 50µm.

detected in the CP (Figure 2). The presence of cells double-
labeled for Dcx and β3-tubulin was also consistent with birth of
neurons within the CP (Supplementary Figure 1). As it was diffi-
cult to visualize what the anti-β3-tubulin antibody staining in CP
sections, particularly at later stages of development when the CPs
are highly branched, most of the subsequent analysis was carried
out in whole mount CP preparations. Analysis of whole mount

E12 CPs stained for β3-tubulin clearly showed the presence of
β3-tubulin-positive cells with extensive branching and a variety
of neuronal morphologies (Figures 3 C–F,Movie 1).

We then wished to establish when these neurons first appeared
in the CP and whether they were a transient or a stable feature
of the CP. Hence we stained chick CPs for β3-tubulin at E6, E8,
E10, E18, E19, and E20 (Figures 4–6, Supplementary Figure 1).
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TABLE 3 | Summary of protein expression in the developing chick choroid

plexus.

Stroma Epithelium

E12 E19/20 E12 E19/20

NEURAL STEM/PROGENITOR CELL

Sox2 – nd X nd

Otx2 – – X X

Vimentin* X(low) X(low) X(high) X(high)

Transitin X
√

– –

GFAP X X – –

Cytokeratin - nd X nd

Doublecortin X X – –

NEURONAL

ß3-tubulin X X – –

Neurofilament X X – –

Synaptic vesicles (SV2) X X – –

Tyrosine hydroxylase X nd – nd

TIGHT JUNCTION PROTEINS

ZO-1 – – X X

ASPP2 X X X X

Connexin-34 – – X X

OTHERS

Laminin X nd – nd

Aquaporin-1 – nd X nd

Clusterin* X(low) X(low) X(high) X(high)

–, negative; nd, not done; *particularly low levels of expression in the CP stroma and high

levels of expression in the CP epithelium are indicated.

Wewere unable to identify the CP at E6, but at E8 a small CP was
clearly visible, and it was found to contain neurons as indicated
by β3-tubulin staining andmorphological appearance (Figure 4).
At this stage β3-tubulin staining was observed also in some cells
spanning the CP epithelium and contacting the CSF; some thin
β3-tubulin fibers that appeared to project into the CSF were also
observed at E8 as well as at later stages when double-labeling for
ß3-tubulin and the tight junction marker, ZO-1, was carried out
(Figure 4, Movie 2). Furthermore, nerve fibers that appeared to
be entering the CP mesenchyme were observed at E8 as well as at
E12 (Figures 4, 5).

The morphology of the CP neurons became more complex
with development. At E8 neurons were mainly bipolar, at E10
some were bipolar, some tripolar and other had several branches,
and from E12 the neuronal processes appeared to be longer
and more convoluted (Figures 3C–F, 4, Movie 1). Staining for
tyrosine-hydroxylase at E12 indicated that at least some of the
neurons present in the developing CPs are catecholaminergic
(Figure 3G, Supplementary Figure 2A). Themorphology of some
of these neurons resembles the drawing by Clark (1928) shown
in Supplementary Figure 2B, though this author interpreted the
bulbous structures as nerve terminals.

Nerves coursing the length of the CPs were detected at all
stages studied and in all CPs, with dense clusters of neurons or
fibers located at the base of the lateral ventricle CP and at branch-
ing points, where groups of neurons with highly convoluted

FIGURE 2 | Expression of neural transcripts in the chick lateral

ventricle choroid plexus (CP) at E10, E12, and E17 detected by RT-PCR

and RT-qPCR. (A) Detection of Sox2 and Otx2 by RT-PCR in the CP and

midbrain (MB, positive control). (B) Detection of transitin, GFAP, Dcx, and

β3-tubulin by RT-qPCR. Fold changes in individual CPs or MB normalized

against GAPDH are shown. Note that transitin, GFAP, Dcx, and β3-tubulin

transcripts are detected in the CP at all developmental stages examined; no

statistically significant differences in expression levels are observed.

morphology could be observed (Figures 4, 5, 6A,B). The CP
neural fibers did not appear to be myelinated, as staining for
myelin basic protein was only detected in the nerve bundle
at the base of the CP stalk (Supplementary Figure 3). Dcx-
positive cells were still present at late developmental stages, con-
sistent with detection of Dcx mRNA by RT-qPCR (Figure 6C).
A high density of nerve terminals/fibers was observed in close
proximity to blood vessels, as indicated by staining with the
SV2 (synaptic vesicle protein 2) antibody that detects a gly-
coprotein important for synaptic vesicle function, and NF200;
close correspondence between SV2 and NF200 staining could
be observed, notwithstanding some background with the NF200
antibody in whole mount CPs (Figure 6D) (Xu and Bajjalieh,
2001).

Whole mount analysis of E20 pineal gland, 3rd and lateral
ventricle CPs isolated together revealed an interesting neural
network between these structures (Figure 6B). Interconnecting
nerve fibers were clearly observed between the pineal gland and
the 3rdV CP and between the 3rd and lateral ventricle CPs.
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FIGURE 3 | Identification of neuroblasts and neurons in the developing

chick CP. (A,B) E12 lateral CP section stained for doublecortin (Dcx) and

ß3-tubulin in E12 chick CP. Note Dcx reactivity in the CP stroma (insert in A) as

well as in the brain; only some punctuated staining is observed in the CP with

the anti-ß3-tubulin antibody whereas the brain tissue is strongly labeled. The

approximate boundary between brain and CP is indicated by the dotted line.

CPe, CP epithelium. (C–F) Examples of extensive branching (individual

neurons in (C) are shown in different colors for ease of visualization) and

neuronal morphologies detected by ß3-tubulin staining. (G) Staining of the E12

CP for tyrosine-hydroxylase (TH), ß3-tubulin and Hoechst dye (nuclei) and

merged image; note the presence of a positive TH neuron in proximity of the

CP epithelium. Scale bars: (A,B) (same magnification) = 200µm; (C)= 200µm;

(D–F) (same magnification) = 30µm; (G) = 20µm.

Analysis of Choroid Plexus (CP) Organotypic
Cultures
Although expression of neural progenitor markers within the CP
suggested that the Dcx-positive cells are born within the CP, it
could not be ruled out that post-mitotic Dcx-positive neuroblasts
hadmigrated into the CP from other brain regions. In vivo exper-
iments cannot address this issue as BrdU would label both neural
precursor cells born andmatured in the CP and neuroblasts origi-
nating from adjacent brain regions that hadmigrated into the CP.
Hence to address this issue, we set up CP organotypic cultures
from E12 chick embryo that allow one to specifically study events
occurring within the CP. As indicated by MTT metabolic assay,
PI (Figures 7A–C) and Otx2 (not shown), the E12 organotypic
CP cultures showed very good viability and maintenance of the

FIGURE 4 | Expression of β3-tubulin in E8 chick CP. Sections

double-labeled for ß3-tubulin and Otx2, a marker of the CP epithelium. High

magnification images are shown in the right panels. Note the presence of

nerves and neurons (some indicated by arrows) in the CP as well as of cells

spanning across the CP epithelium (arrowhead). Nuclei are counterstained

with Hoechst (blue). The bottom right panel is at the same magnification as the

one at its left.

CP phenotype over 7 days in culture. After 3 days labeling with
BrdU, the CPs were stained either for BrdU and Dcx or BrdU and
NF200 (Figures 7D–E). BrdU-positive cells were observed in the
CP stroma, and some were found to be Dcx-positive; also a few
BrdU and NF200 positive cells were observed. This suggests that
the neuroblasts had been born within the CP.

Discussion

This study shows that neurons are present from early stages of CP
development and that they appear to originate from progenitor
cells within the CP. Furthermore, it challenges the view that the
CPs become innervated only postnatally, by clearly demonstrat-
ing innervation of the CP at early developmental stages.

Proteins Normally Associated with Neural
Progenitors are Expressed in the Immature
Developing CP
We have shown that the developing chick CPs express markers
that are found in the neuroepithelium and/or radial glial cells of
the developing central nervous system. Markers expressed in the
neuroepithelium at early stages of development, including Sox2,
vimentin, and ASPP2 (Bennett and Dilullo, 1985; Uwanogho
et al., 1995; Sottocornola et al., 2010), have been found to be
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FIGURE 5 | Expression of β3-tubulin in whole mount E12 chick CP. The nerve bundle in the CP stalk is indicated by the arrow and some neurons within the CP

are boxed. Scale bars = 500µm.

expressed in the epithelium of chick CPs. Expression of Sox2
in the prenatal mouse CP epithelium as well as in a subset
of CP epithelial cells in the adult mouse has been previously
reported (Ferri et al., 2004). This, together with our observations
in chick and human CPs, indicates that expression of Sox2 in the
CP is a feature conserved across species. Interestingly, whereas
Sox2 staining intensity in both chick and human embryonic
CPs is overall lower than in the neuroepithelium, some strongly
Sox2-positive cells, mainly localized at CP branching points, are
present. Differences in Sox2 levels have also been observed in the
developing mouse telencephalon, with “high Sox2” radial glial
cells displaying higher neurosphere forming ability, growth rate,
and self-renewal capability than “low Sox2” intermediate pro-
genitor cells (Hutton and Pevny, 2011). To establish whether the
“high-Sox2” cells within the CPs are landmarks important for CP
branching morphogenesis, and/or represent a neural stem cells
population from which nestin and/or GFAP-positive cells in the
stroma originate is an important and challenging question that
will require extensive investigation.

In contrast to Sox2 and vimentin, the chick nestin-like protein,
transitin, expressed in early radial glial cells that have neuronal
differentiation potential (Kriegstein and Alvarez-Buylla, 2009),
was not detected in the chick CP epithelium, but only in the mes-
enchyme. This was the case also for nestin in mouse and human
CPs, where the nestin positive cells were located just beneath the

CP epithelium as reported in neonatal rats (Huang et al., 2011).
Cells expressing GFAP, another protein expressed in neural stem
cells as well as in astrocytes, were found in the mesenchymal
compartment of the chick CPs. Because of antibody species of
origin, we could not double stain the chick CP for transitin and
GFAP. However, double-staining of mouse E12.5 CPs for nestin
and GFAP indicated that at least in this species the developing CP
contains two distinct populations of “neural” cells in the stroma,
identified by nestin and GFAP reactivity. Consistent with pop-
ulation(s) of neural progenitors within the CP was the presence
of cells expressing the neuroblast marker, Dcx. The finding that
BrdU incorporation inDcx-positive cells was observed in isolated
CPs, supports the view that the neurons present in the CP are
born within the CP itself and originate from neural progenitors,
rather than having migrated from the neighboring neuroepithe-
lium. This is consistent with previous studies suggesting that cells
isolated from the CP have neural potential, as they could form
neurosphere-like structures and differentiated into neuronal-like
cells (Itokazu et al., 2006).

The presence of subsets of highly Sox2-positive cells in the CP
epithelium, that is also vimentin-positive, and of nestin-positive
cells beneath it, raises the possibility, summarized in Figure 8,
that the CP may be akin to the neurovascular niche in the sub-
ventricular region, where the neural stem cells reside close to
the ependyma, in contact with blood vessels and extend their
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FIGURE 6 | Expression of neuronal proteins in chick CPs. (A,B)

Examples of β3-tubulin staining in whole mount E20 CPs; note the extensive

network connecting lateral ventricle CP, 3rd ventricle CP and pineal gland.

The arrows point at some of the neurons observed at high magnification. (C)

E19 CP stained for doublecortin (Dcx) and ß3-tubulin; nuclei are

counterstained with Hoechst dye. (D–D′′) Whole mount E19 chick CP

double-labeled for the synaptic vesicle 2 marker, SV2, and NF200 and

corresponding bright field image; nuclei are counterstained with Hoechst

dye. The dotted line indicates a blood vessel (bv). Scale bars: (A) = 200µm;

(B) = 500µm; (C,D) = 25µm.

primary cilia into the CSF of the brain ventricles (Doetsch et al.,
1997).

Neurogenesis Occurs within the Developing CP
We have demonstrated for the first time that single neurons
reside within the chick CP stroma from early stages of devel-
opment. We have also shown that at least some of the neurons

present in the developing CPs are catecholaminergic as indicated
by co-expression of tyrosine-hydroxylase and β3-tubulin. This is
consistent with the presence of dopamine receptors in the epithe-
lium and smooth muscle cells of the blood vessels of the adult rat
CP (Mignini et al., 2000).

Because of the difficulties in carrying out accurate quantifica-
tion on neurons in whole mounts and variability among animals,
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FIGURE 7 | Analysis of survival, proliferation, and doublecortin (Dcx)

expression in organotypic cultures of E12 lateral CP. (A) Phase image

of CP after 7 days in culture. (B) MTT staining of live CP after 7 days in

culture; extensive staining is indicative cell viability. (C) Propidium iodide

staining of live CP after 7 days in culture to detect dead cells; only very

limited staining is observed. (D,D’) CP organotypic culture treated with BrdU

for 3 days and double-stained for BrdU and doublecortin (Dcx). Some

double-labeled cells are observed. (E) Detection of NF200 and BrdU in an

organotypic culture. Scale bars: (A–C) = 200µm (B and C are at the same

magnification); (D,E) = 50µm.

FIGURE 8 | Schematic representation of the CP neural

components (innervation from ganglia outside the CP and

neurons within the CP) and of the model proposing the existence

of a neurovascular niche within the developing chick CP. It is not

currently known whether nestin-like-positive cells reflect a transition from

high-Sox2/vimentin-positive cells to neuroblasts (black dotted arrows) nor

whether some of the CP neurons are born from neuroblasts migrating

into the CP from the brain rather than having been generated within it

(blue dotted arrow). Please note that only the subset of highly

Sox2-positive putative progenitors in the CP epithelium is indicated in

the cartoon. The two sources are not mutually exclusive. bv, blood

vessel.

we cannot be sure when neurons stop being born in the CP. Anal-
ysis of neurons in several preparations, and the fact that Dcx
staining was more widespread around E12, would suggest that
most neurons are born around this stage of development. How-
ever, some neurogenesis appeared to occur also at later stages, as
some Dcx-BrdU labeled cells were observed after in vivo BrdU
labeling at E15 (not shown).

The morphology of the CP neurons appears to change with
development and the complexity of their branching appears to
increase with embryonic age. CSF secretion is crucial for brain
development and its production is at least in part controlled
by the nervous system (Edvinsson and Lindvall, 1978; Lindvall
and Owman, 1981). Projection into the CSF of fibers from indi-
vidual neurons could be detected in some of the chick whole
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mount preparations, and fibers in very close proximity to the
CP epithelium have been detected by light and transmission elec-
tronmicroscopy in adult CPs (Clark, 1928; Edvinsson et al., 1975;
Nakamura and Milhorat, 1978). It is conceivable that these neu-
rons act as sensory or autonomic neurons that integrate signals
between the CP/CSF and the nerves entering the CP. The pres-
ence of numerous CSF-contacting axons has been reported in
the ependyma and periventricular organs (Tramu et al., 1983;
Michaloudi and Papadopoulos, 1996) and a mechanism for non-
synaptic signal transmission in the brain has been proposed (Vigh
et al., 2004).

Innervation of the CP Occurs Pre-Natally
The presence of nerves in adult CPs has been described in various
species includingmice, rats, hedgehogs, guinea-pigs, rabbits, cats,
cows, and monkeys; differences in density of innervation were
reported in different CPs, with the 3rd ventricle CP being the
most densely innervated, and across species, with the lowest den-
sity of innervation observed in the mouse CP (Edvinsson et al.,
1973; Lindvall et al., 1977a,b, 1978c; Lindvall, 1979). Notwith-
standing its complexity, innervation of the CP was believed to
occur postnatally (Tsuker, 1947; Lindvall and Owman, 1978).
Our data clearly demonstrate that in the chick the nerves enter
the CP before birth, apparently as early as at E8. The previously
reported lack of evidence for prenatal innervation of the CP is
likely due to the fact that it is very difficult to detect nerves,
as well as neurons, in CP sections; apart from very early stages
of development, clear visualization of CP innervation can be
achieved only by using whole mount CP preparations and con-
focal microscopy; furthermore, nerves are easily pulled out of
the CP during dissection, hence this step requires very careful
handling. Expression of synaptic vesicle proteins involved in the
release of neurotransmitters is indicative of neural activity within
the CP well before birth, consistent with a role for innervation in
the developing CP. Hence, innervation of the CP during devel-
opment is in line with that of other secretory structures, such as
the salivary glands that become innervated by parasympathetic
nerves during organogenesis (Knox et al., 2010). As intestinal
epithelial stem/progenitor cells in the crypts are controlled by
mucosal afferent nerves (Lundgren et al., 2011), it is conceivable
that the nerves might play a role in proliferation and branching of
the CP. However, whether during development the nerves’ main
role is in controlling CSF secretion or also in CP growth remains
to be established.

The nerves in the E20 CP did not appear to be myelinated, as
indicated by lack of staining for myelin basic protein, and this is
consistent with a transmission electronmicroscopy study of adult
rat CP (Edvinsson et al., 1975; Nakamura and Milhorat, 1978).

The nature of CP innervation has been examined in a vari-
ety of species including adult rat, guinea-pig, hedgehog, rab-
bit, cat, and man; noradrenergic and cholinergic innervation,
as well as substance P-positive fibers, have been described in
adult CPs from different species, whereas the presence of sero-
toninergic fibers has so far been reported only in the rat and
hedgehog CPs (Napoleone et al., 1982; Edvinsson et al., 1983;
Nilsson et al., 1990; Michaloudi and Papadopoulos, 1996). How-
ever, most of these studies have not investigated comprehensively

the presence of different types of fibers and their localization
within the same CP. Hence, it will be important to carry out
systematic comparative studies on the type of fibers present in
developing and adult CP and innervation using whole mount
preparations.

Another important finding that has emerged from staining
whole mount preparations for β3-tubulin concerns the identifi-
cation of a neural network between pineal gland, 3rd ventricle
CP and lateral ventricle CP. This neural network may be impor-
tant for development and maintenance of the CP throughout
life as suggested in other organs, such as the developing teeth
(Luukko et al., 1997), kidney (Tiniakos et al., 2004), pancreas
(Burris and Hebrok, 2007), and heart (Hildreth et al., 2009). It
is also tempting to speculate that in the developing chick, the
neuron cluster between the 3rd and lateral ventricle CPs may
serve as a relay station for integrating signals from the CSF
and co-ordinating secretory activity throughout the ventricular
system.

Together, as schematically summarized in Figure 8, the pres-
ence of innervation and of neurons adjacent to blood vessels,
or projecting into the ventricles, is consistent with the hypoth-
esis that the ventricular system contains a neural network that
resembles to some extent the enteric nervous system and is
important for CP development and homeostasis.
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Movie 1 | Neuron detected by ß3tubulin staining (red) in an E12 whole

mount chick CP. Nuclei are counterstained with Hoechst dye (blue). Scale bar =
100µm.

Movie 2 | Neuron detected by ß3tubulin staining (red) coursing across the

CP epithelium stained by the tight junction protein, ZO-1 (green), in an E12

whole mount chick CP. Nuclei are counterstained with Hoechst dye (blue). Scale

bar = 20µm.
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