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On event-based optical flow
detection
Tobias Brosch, Stephan Tschechne and Heiko Neumann*

Faculty of Engineering and Computer Science, Institute of Neural Information Processing, Ulm University, Ulm, Germany

Event-based sensing, i.e., the asynchronous detection of luminance changes, promises

low-energy, high dynamic range, and sparse sensing. This stands in contrast to

whole image frame-wise acquisition by standard cameras. Here, we systematically

investigate the implications of event-based sensing in the context of visual motion, or

flow, estimation. Starting from a common theoretical foundation, we discuss different

principal approaches for optical flow detection ranging from gradient-based methods

over plane-fitting to filter based methods and identify strengths and weaknesses of each

class. Gradient-based methods for local motion integration are shown to suffer from the

sparse encoding in address-event representations (AER). Approaches exploiting the local

plane like structure of the event cloud, on the other hand, are shown to be well suited.

Within this class, filter based approaches are shown to define a proper detection scheme

which can also deal with the problem of representing multiple motions at a single location

(motion transparency). A novel biologically inspired efficient motion detector is proposed,

analyzed and experimentally validated. Furthermore, a stage of surround normalization is

incorporated. Together with the filtering this defines a canonical circuit for motion feature

detection. The theoretical analysis shows that such an integrated circuit reduces motion

ambiguity in addition to decorrelating the representation of motion related activations.

Keywords: event-based sensor, motion detection, optical flow, address-event representation, motion integration,

velocity representation, spatio-temporal receptive fields

1. Introduction

The initial stages of visual processing extract a vocabulary of relevant feature items related to a
visual scene. Rays of light reach the observer’s eye and are transformed to internal representations.
This can be formalized as sampling the ambient optic array (Gibson, 1978, 1986). Formally, the
plenoptic function P(θ, φ, λ, t,Vx,Vy,Vz) describes the intensity of a light ray of wavelength λ

passing through the center of the pupil of an idealized eye at every possible angle (θ, φ) located
at the position (Vx,Vy,Vz) at time t (Adelson and Bergen, 1991). As a simplification we assume a
single stationary camera sensing a single narrow band of wavelengths in the electromagnetic spec-
trum on its image plane (x, y), reducing the plenoptic function to Pλ,Vx,Vy,Vz (x, y, t) = g(x, y, t)
(the spatio-temporal gray level function). Elemental measurements are necessary to access the
plenoptic structures. Conventional frame-based cameras sample the optic array by reading out
measurements of all light-sensitive pixels at a fixed rate. Since the temporal sampling rate is limited
through reading all pixel values in a fixed time interval, fast local luminance changes are inte-
grated over time and cannot be differentiated in the further processing. When no changes occur
in the intensity function, redundant information is generated that is carried to the subsequent
processing steps. Address-event representations (AER), on the other hand, originate from image
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sensors in which pixel operate at individual rates generating
events based on local decisions to generate an output response,
like in the mammalian retina (Mead, 1990; Liu and Delbruck,
2010).

We will focus on silicon retinas that generate an AER, namely
the dynamic vision sensor (DVS; Delbrück and Liu, 2004).When-
ever the change in the log-luminance function exceeds a prede-
fined threshold ϑ , events ek ∈ {−1, 1} are generated at times
tk that emulate spike sequences of on- and off-contrast cells
in the retina, respectively (Figure 1). We discuss what kind of
information is accessible from the initial stages of event-based
visual sensing and compare different approaches to estimate opti-
cal flow from the stream of on- and off-events visualized in
Figure 1. We identify weaknesses, suggest improvements, pro-
pose a novel biologically inspired motion detector and conduct
experiments to validate the theoretical predictions of flow esti-
mation. The proposed detector is then further extended by incor-
porating an inhibitory pool of activation over a neighborhood
in the space-time-feature domain that leads to contextual mod-
ulation and response normalization. Together with the initial
filtering stage the scheme defines a canonical circuit model as
suggested in Kouh and Poggio (2008); Carandini and Heeger
(2012); Brosch and Neumann (2014a). This competitive mecha-
nism is investigated from an information-theoretic point of view,
shown to accomplish decorrelation, and linked to radial Gaus-
sianization of the input response distribution (Lyu and Simon-
celli, 2009b). Finally, we investigate whethermotion transparency
encoding (Snowden and Verstraten, 1999), i.e., the percept of two
competing motions at a single location, like flocks of birds flying
in front of passing clouds, can be supported.

FIGURE 1 | Top from left to right: Image, operating principle and stimulus

generation of/for an asynchronous event sensor. Luminance changes

exceeding a given threshold evoke ON and OFF events for positive and

negative changes, respectively. The very low latency of the dynamic vision

sensor (15µs) requires analog stimulus generation as illustrated on the right.

Bottom: Visualization of the spatio-temporal event cloud generated by the

rotating stimulus in the upper right. A small volume has been zoomed in. As

can be seen, only few events have been generated at a single location.

2. Materials and Methods

2.1. Theoretical Aspects of Event-Based Visual
Motion Detection
2.1.1. Nomenclature and Principal Problems
We describe the stream of events by the function

e : R
2 × R → {−1, 0, 1} (1)

which is always zero except for tuples (xk, yk; tk) = (pk; tk)
which define the location and time of an event k generated when
the luminance function increases or decreases by a significant
amount. In other words, the function that defines the event gen-
eration e(pk; tk) = ek, generates 1 if the log-luminance changed
more than a threshold ϑ , i.e., an ON event, and −1 if it changed
more than−ϑ , i.e., an OFF event. This sampling of the lightfield
essentially represents the temporal derivative of the luminance
function g

d

dt
g(p; t) = gt(p; t) ≈

ϑ

1t

∑

k: tk ∈ (t−1t,t]

ek , (2)

with ϑ the sensitivity threshold of the event-based sensor.
To estimate local translatory motion we assume through-

out the paper that the gray level function remains constant
within a small neighborhood in space and time, i.e., g(x, y; t) =
g(x + 1x, y + 1y; t + 1t) (gray level constancy; c.f. Horn and
Schunck, 1981). Note that due to the low latency of 15µs of
the event-based sensor (Lichtsteiner et al., 2008), this assump-
tion is more accurate than for conventional frame based sensors.
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Local expansion up to the second order yields the constraint
1xT∇3g + 1/21xTH31x = 0. Here, 1x = (1x,1y,1t)T ,
∇3g = (gx, gy; gt)T is the gradient with the 1st order partial
derivatives of the continuous gray-level function, andH3 denotes
the Hessian with the 2nd order partial derivatives of the contin-
uous gray-level function that is defined in the x–y–t-domain. If
we further assume that the 2nd order derivative terms are neg-
ligible (linear terms dominate) we arrive at the spatio-temporal
constraint equation that has been used for least-squares motion
estimation. The least-squares formulation is based on a set of
local constraint measures over a small neighborhood under the
assumption of locally constant translations (Lucas and Kanade,
1981), i.e., gxu + gyv + gt = 0 given that 1t → 0 and

uT = (u, v) = (1x/1t,1y/1t). Note that this motion con-
straint equation can also be represented in the frequency domain
in which fxu + fyv + ft = 0 holds with f denoting the fre-
quency with subindices referring to the respective cardinal axes
and assuming a non-vanishing energy spectrum for the gray-level
luminance signal, i.e., ‖Ĝ‖ 6= 0. The local image motion u of an
extended contrast can only be measured orthogonal to the con-
trast (normal flow, Wallach, 1935; Barron et al., 1994; Fermüller
and Aloimonos, 1995; Wuerger et al., 1996). For simplicity, we
assume a vertically oriented gray level edge (gy = 0). Then the
motion can be estimated along the horizontal directions (left or
right with respect to the tangent orientation of the contrast edge).
When the edge contrast polarity is known (light-dark, LD, gx < 0
or dark-light, DL, gx > 0) the spatio-temporal movements can be
estimated without ambiguity. For an DL edge if gt < 0 the edge
moves to the right, while for gt > 0 the edge moves to the left
(c.f. Figure 2).

For an LD edge the sign of the temporal derivatives gt
changes for both respective movement directions, i.e., only the
ratio of gray-level derivatives yields a unique direction selector
orthogonal to the oriented luminance contrast. This means that,
sgn(gx/gt) = −1 implies rightward motion while sgn(gx/gt) = 1
implies leftward motion, irrespective of the contrast polarity.
Note, however, that an estimate of gx is not easily accessible from
the stream of events of an asynchronous event sensor. Thus,
a key question is to what extend the required spatio-temporal
derivative information is available and can be estimated.

2.1.2. Moving Gray-Level Edges and the

Spatio-Temporal Contrast Model
We describe the luminance function g for a stationary DL tran-
sition by convolving a step edge H(·) with a parameterized
Gaussian,

gσ (x) =
c√
2πσ

·H(x) ∗ exp
(

− x2

2σ 2

)

+ g0 = c · erfσ (x)+ g0,

(3)

with c denoting the luminance step height, g0 the basic luminance
level, and “∗” denoting the convolution operator (since we only
study the derivatives, we assume g0 = 0). The parameter σ con-
trols the spatial blur of the luminance edge with σ → 0 resulting
in the step-function. Different contrast polarities are defined by
gDLσ (x) = c · erfσ (x) and gLDσ (x) = c · (1 − erfσ (x)), respectively
(Neumann and Ottenberg, 1992).

When this gray-level transition moves through the origin at
time t = 0 it generates a slanted line with normal n in the x–
t-space (c.f. Figure 3). The speed s of the moving contrast edge
is given by s = sin(θ)/ cos(θ), where θ is the angle between n
and the x-axis (this is identical to the angle between the edge
tangent and the t–axis). For a stationary gray-level edge (zero

FIGURE 3 | Rightward moving 1D edge illustrated in the x–t-domain.

The velocity is defined by the direction and the speed of the spatio-temporal

change. In the case depicted here, the direction is to the right and the speed is

encoded by the angle θ between the x-axis and the normal vector n along the

spatio-temporal gradient direction (measured in counter-clockwise rotation).

Alternatively, for a contrast edge of known finite transition width 1x, the speed

can be inferred from the time 1t, it takes the contrast edge to pass a specific

location on the x–axis.

FIGURE 2 | Moving DL (dark-light) and LD (light-dark) edge, either to the left or to the right (denoted by blue arrows), have an associated temporal

on/off signature. Note that without knowledge about the edge type (DL vs. LD), an on/off event alone is insufficient to determine the motion direction.
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speed) we get θ = 0 (i.e., the edge generated by the DL transi-
tion in the x–t-domain is located on the t-axis). Positive angles
θ ∈ (0◦, 90◦) (measured in counterclockwise direction) define
leftward motion, while negative angles define rightward motion.
For illustrative purposes, we consider an DL contrast that is mov-
ing to the right (c.f. Figure 3). The spatio-temporal gradient is
maximal along the normal direction n = (cos θ, sin θ)T . The
function g(x; t) describing the resulting space-time picture of the
movement in the x-t-space is thus given as

gσθ (x; t) =
c√
2πσ

H(x⊥) ∗ exp
(

− x2⊥
2σ 2

)

, (4)

with x⊥ = x · cos θ − t · sin θ . The respective partial temporal and
spatial derivatives are given as

∂

∂t
gσθ (x; t) =

−c√
2πσ

exp

(

− x2⊥
2σ 2

)

· sin θ , (5)

∂

∂x
gσθ (x; t) =

c√
2πσ

exp

(

− x2⊥
2σ 2

)

· cos θ . (6)

Now, recall that the event-based DVS sensor provides an estimate
of gt at a specific location [c.f. Equation (2)]. For a moving con-
trast profile this leads to a changing luminance function along the
t-axis (side graph g(0, t) in Figure 3). The temporal derivative of
this profile is formally denoted in Equation (5). Given a known
velocity specified by θ , we can combine equations (5) and (6) to
determine gx as

∂

∂x
gσθ (x; t) = − ∂

∂t
gσθ (x; t) · tan θ . (7)

In sum, the temporal edge transition can be reconstructed in
principle from a (uniform) event sequence at the edge location
for a specific motion direction, given that

• a reliable speed estimate is available to infer a robust value for
θ , and

• reliable estimates of temporal changes have been generated as
an event cloud over an appropriately scaled temporal integra-
tion window 1wt .

Note, that both parameters, θ and 1wt , need to be precisely esti-
mated to accomplish robust estimates of contrast information of
the luminance edge. In Sections 2.1.4 and 2.1.5, we will briefly
outline the necessary steps in such an estimation process. Alter-
natively, one can try to directly estimate the partial derivatives
used in themotion constraint equation from the stream of events.
The construction of this approach and its related problems are
described in the following Section 2.1.3.

2.1.3. Estimating Spatio-Temporal Continuity using

Event-Sequences
The local spatio-temporal movement of a gray-level function can
be estimated by least-squares optimization from a set of local con-
trast measurements which define intersecting motion constraint

lines in velocity space (Lucas and Kanade, 1981). Given a dense
temporal sampling the spatio-temporal gray-level function can
be reasonably well captured by a first-order approximation (as
summarized in Section 2.1.1). The key question remains how
one could estimate the spatial and temporal derivatives in the
constraint equations, gxu + gyv + gt = 0 from event sequences
generated by the DVS. Events only encode information about the
temporal derivative gt [c.f. Equation (2)]. Thus, without addi-
tional information it is impossible to reliably estimate gx or gy,
as outlined in the previous Section 2.1.2. The derivative of a
translatory moving gray level patch, however, generates a unique
response in h: = gt . Thus, we can apply the motion constraint
equation to the function h and solve hxu+ hyv+ ht = 0, instead.
Using two temporal windows T−2 = (t − 21t, t − 1t] and
T−1 = (t − 1t, t], we can approximate ht , for example, by a
backward temporal difference

ht(p; t) = gtt(p; t) ≈
ϑ

1t2





∑

t′ ∈T−1

e(p; t′)−
∑

t′ ∈T−2

e(p; t′)



 ,

(8)

with p = (x, y)T and ϑ denoting the event-generation threshold.
The spatial derivatives hx and hy can be approximated by central

difference kernels [−1, 0, 1] and [−1, 0, 1]T , respectively. These
can be applied to the function h estimated by integrating over the
temporal window T (e.g., T = T−2 ∪ T−1)

hx(p; t) = gtx(p; t) ≈
∑

t′ ∈T

e(x+ 1, y; t′)−
∑

t′ ∈T

e(x− 1, y; t′) ,

(9)

hy(p; t) = gty(p; t) ≈
∑

t′ ∈T

e(x+ 1, y; t′)−
∑

t′ ∈T

e(x, y− 1; t′) .

(10)

Consequently, the resulting flow computation results in a spar-
sification of responses since stationary edges will not be repre-
sented in h. This approach is similar to that of Benosman et al.
(2012) but consistently employs the second derivative instead of
mixing the first and second derivatives which leads to inconsis-
tencies in general.

Note, however, that this approach has multiple issues regard-
ing any real implementation. The most important observation
is that when a luminance edge passes a pixel’s receptive field of
the DVS sensor, the amount of events is in the range of about
10 events (often even less, depending on the contrast, speed and
luminance conditions; c.f. zoomed display of the event cloud in
Figure 1). Thus, huge approximation errors occur for hx, hy and
especially in ht (since this now represents the second derivative
of the original gray-level function g). Furthermore, we can only
estimate ht accurately, if the temporal windows are small enough
such that the gray-level edge has not already passed through the
receptive field of a target cell at position p. This limits the number
of events to even less and leads to magnifying the outlined prob-
lems even further. Alternatively, one could try to directly approx-
imate the temporal derivative for each event by incorporating the
time-span since the last event, i.e.,
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d

dt
g(p; t) = gt(p; t) ≈

ϑ

1W t
e(p, t) , (11)

with 1W t representing the time that has passed since the last
event generated at p. This assumes a constant intensity change
since the last event. This, however, is certainly not true for the first
event because first nothing happens for a long period and then
occasionally some change occurs that causes the event, i.e., the
estimate will be too small, because 1W t is too big.

2.1.4. Least-Squares Velocity Estimation
The short temporal window in which events of a briefly pass-
ing contrast edge are generated makes it difficult to reliably esti-
mate the derivatives required in the motion constraint equation
(c.f. previous section). An alternative approach is to consider the
distribution of events (the “event cloud”) in a small volume of the
x-y-t-space. The cloud that results from a moving contrast edge
generates a locally plane-like cloud of on- and/or off-events (with
on- and off-events in the case of a line, for example, and only on-
or off-events in the case of a transition from one homogeneous
region to another) to which a velocity tangent plane can be fitted
(Benosman et al., 2014). The thickness of the event cloud orthog-
onal to the velocity tangent plane depends on the sharpness of
the contrast edge, the speed with which the gray-level disconti-
nuity moves through the spatial location of a pixel, and its local
neighborhood (the receptive field, RF, of a cell at this position).
In Benosman et al. (2014) a function 6e : N

2 → R is defined
that maps the location p of an event e to the time 6e(p) = t
when the event was generated. This mapping may be used to
describe the cloud of events. However, care should be taken since
the mapping is non-continous in principle: it is either defined for
each event in which case the mapping is not differentiable, or it
is defined for all events in which case the mapping is not injec-
tive (because for a given t, there are multiple events at different
locations). In any case, the inverse function theorem of calculus
(as employed in Benosman et al., 2014) cannot be applied here
to derive a speed estimate. This insight might explain, why in the
velocity-vector-field of a rotating bar illustrated in Figure 7b of
Benosman et al. (2014) the velocity vectors at the outer parts are
shorter (instead of longer) compared to the velocity vectors at the
inner ones. We suggest an alternative solution in which the speed
is estimated from the regression plane by solving the orthogonal
system of the velocity vector v = (u, v, 1)T (defined in homo-
geneous coordinates), the orientation of the moving luminance
edge l = (lx, ly, 0)T , and the normal vector n = (a, b, c)T of the
plane. These three vectors form an orthogonal system that spans
the x-y-t space:

n ⊥ v ⇒ nT · v = au+ bv+ c = 0 (12)

n ⊥ l ⇒ nT · l = alx + bly = 0 (13)

l ⊥ v ⇒ lT · v = ulx + vly = 0 (14)

(13) · u− (14) · a ⇒ bu− av = 0 (15)

(12) · b− (15) · a ⇒ v · (a2 + b2)+ bc = 0 (16)

(12) · a+ (15) · b ⇒ u · (a2 + b2)+ ac = 0 . (17)

The resulting velocity components u and v are then given as (with
n = (a, b, c)T)

(

u
v

)

= − c

a2 + b2

(

a
b

)

, (18)

with the speed component s =
√
u2 + v2 = c · (a2 + b2)−1/2.

Note, that for slow or moderate velocities, a reliable estimate of
the velocity tangent plane requires a spatial as well as a tem-
poral neighborhood such that the event cloud is fully covered
within the spatio-temporal window (or RF) considered for the LS
regression. In particular, the neighborhood support must cover
the event cloud illustrated in the bottom right of Figure 1. If
this condition is not fulfilled, i.e., if the window is smaller than
the extent of the cloud, then the principal axes are arbitrary and
cannot be estimated reliably.

2.1.5. Direction-Sensitive Filters
As an alternative to considering the LS regression in estimating
the velocity tangent plane from the cloud of events, the uncer-
tainty of the event detection might be incorporated directly.
At each location, detected events define likelihood distributions
p(e|u) given certain velocities of the visual scene (estimated by a
filter bank, for example). Using Bayes’ theorem, we derive that for
each event p(u|e) ∝ p(e|u) · p(u). If each velocity is equally likely
to be observed without a priori knowledge, i.e., p(ui) = p(uj)
(for arbitrary velocities i, j), it holds p(u|e) ∝ p(e|u) and thus,
the velocity uest of the movement that caused event e can be
estimated as

uest = argmaxup(u|e) = argmaxup(e|u) . (19)

Thus, we can estimate the velocity from the responses p(e|ui), i =
1, 2, . . . of a filter bank, for example. In addition, a priori knowl-
edge could be incorporated to reduce noise and to increase
coherency. Current knowledge suggests, that such distributions
are represented by the filter characteristics of the spatio-temporal
receptive fields of cells in area V1 which we use as inspiration for
a novel filter mechanisms described in the following Section 2.2.

2.2. Event-Based Motion Estimation using
Direction-Selective Filters
In this section, we define spatio-temporal filters that are fit-
ted to the physiological findings from De Valois et al. (2000)
summarized in the following Section 2.2.1.

2.2.1. Experimental Evidence
Our filter design essentially reverses the decomposition of
neural responses conducted by De Valois et al. (2000) (also
c.f. Tschechne et al., 2014). Based on physiological findings first
described by DeAngelis et al. (1995), De Valois suggested that
inseparable filters stem from a combination of various sepa-
rable components (De Valois et al., 2000). In De Valois et al.
(2000) cortical V1 cells were tested and strong evidence for
the coexistence of two distinct types of populations of cells
emerged: One population showed spatio-temporally separable
weight functions of either even or odd spatial symmetry. These
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have either temporally mono- or bi-phasic response characteris-
tics which were mainly determined by a single principal compo-
nent in 2D (of a singular value decomposition). The other popu-
lation of cells was spatio-temporally inseparable showing a recep-
tive field distribution of selectivity that were slanted with respect
to the time axis, i.e., motion sensitive (c.f. Figure 3; c.f. also
De Valois and Cottaris, 1998). Response characteristics of these
cells were determined by two strong principal components in 2D.
These two components of the second group were itself spatio-
temporally separable with spatially out-of-phase components and
always composed of pairs of mono- and bi-phasic distributions.

This main observation lead us to propose a family of spatio-
temporally direction selective filters as illustrated in Figure 4,
that are generated by superposed separable filters with quadrature
pairs of spatial weighting profiles (Godd and Geven) and mono-
/bi-phasic temporal profiles (Tmono and Tbi). The details of the
construction process are outlined in the following sections.

2.2.2. Spatial Gabor Filters
To construct the spatial component of the spatio-temporal fil-
ters illustrated in Figure 4 we define Gabor filters that are fitted
to the experimental results of De Valois et al. (2000). To con-
struct multiple spatio-temporally tuned filters of different spatial
orientation selectivity, we employ a filter-bank of kernels as illus-
trated in Figure 5. More precisely, we employ Gabor filters maxi-
mally selective for the spatial frequency ( f 0x , f 0y ) (with a standard
deviation σ in local space) defined by (c.f. Figure 5)

Gσ,f 0x ,f 0y
(x, y) = 2π

σ 2
· exp

[

2π j
(

f 0x x+ f 0y y
)]

·

exp

[

−
2π2 ·

(

x2 + y2
)

σ 2

]

, (20)

in local space. The spatial frequencies selected by this filter can be
seen by visualizing its Fourier transform (Figure 5, bottom left)
which is given as

Ĝ σ̂ ,f 0x ,f 0y
( fx, fy) = exp






−1

2
·

(

fx − f 0x

)2
+
(

fy − f 0y

)2

σ̂ 2






,

(21)

where σ̂ = 1/σ and the filter tuning ( f 0x , f 0y ) defines the shift of
the Gaussian envelope with respect to the origin in the Fourier
domain. This defines the two components Godd = ℑ(Gσ,f 0x ,f 0y

)

and Geven = ℜ(Gσ,f 0x ,f 0y
) to construct the filters as described in

Section 2.2.1 (compare with Daugman, 1985; Marčelja, 1980).

2.2.3. Mono- and Biphasic Temporal Filters
The second component required in the spatio-temporal filter
generation process illustrated in Figure 4 is the definition of
mono- and bi-phasic temporal filters, Tmono and Tbi. To fit
the experimental data of De Valois et al. (2000), we define
(c.f. Figure 6)

Tmono(t) = Gσmono,µmono (t) , (22)

Tbi(t) = −s1 · Gσbi1,µbi1 (t)+ s2 · Gσbi2,µbi2 (t) , (23)

with the unnormalized Gaussian function

Gσ,µ(t) = exp

(

− (t − µ)2

2σ 2

)

. (24)

When the experimental findings are incorporated, it is only nec-
essary to choose a value for µbi1. All other parameters can be
inferred according to the experimental data from De Valois et al.
(2000):

FIGURE 4 | Superposition of spatio-temporally separable filters

creates motion-direction sensitive filter. The proposed

spatio-temporal filter (right) is constructed by using the results of the

singular value decomposition of the receptive field of motion directional

cells by De Valois et al. (2000) (c.f. DeAngelis et al., 1995, their

Figure 3). Two separable filters are superposed to create the final

motion direction selective spatio-temporal filter. Each of the two filters is

separable into a pair of a bi-phasic temporal and an even spatial or a

mono-phasic temporal and an odd spatial filter, respectively (illustrated

by line profile plots to the left and at the top). The red line indicates

the preferred speed selectivity identified by a Fourier analysis of the filter

function (c.f. Section 2.2.4).
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FIGURE 5 | Top row: Example of filter bank of four oriented Gabor filters for

8 = [0◦, 45◦, 90◦, 135◦] (to resemble the spatial receptive field weights; only

even component is shown). Bottom row: Corresponding filter in Fourier

domain and illustration of spatial fitting of analytical (red) and experimental

data (gray) from De Valois et al. (2000). Parameters in all plots have been set

to σ = 25 and f0 = 0.08.

FIGURE 6 | Temporal filters fit experimental data (gray) from

De Valois et al. (2000). Kernels consist of one or two Gaussians which define

a mono- and bi-phasic temporal filter, respectively. The mean of the

mono-phasic kernel has been set to µbi1 = 0.2 with the remaining parameters

fitted to the experimental data (see text for details). Dashed line highlights that

the peak of the mono-phasic kernel (green) is located at the zero-crossing of

the bi-phasic kernel (blue).

• The bi-phasic scaling factors s1 and s2 are adapted to the mini-
mum andmaximum values of the experimental data relative to
the maximum value of the monophasic kernel (which is one),
i.e., s1 = 1/2 and s2 = 3/4.

• A good fit with the experimental data reported in De Valois
et al. (2000) is achieved by setting the relation between the
mean values to µbi2 = 2µbi1.

• The standard deviations σmono and σbi1 are chosen such that
the Gaussians are almost zero for t = 0, i.e., σmono = µmono/3,
σbi1 = µbi1/3 (3σ–rule; 99.7% of the values lie within three
standard deviations of the mean in a normal distribution).

• The standard deviation of the second Gaussian of the bi-phasic
kernel is about 3/2 of that of the first, i.e., σbi2 = 3

2 · σbi1 =
1
2 · µbi1.

• The mean of the mono-phasic kernel µmono is given by
the zero-crossing of the biphasic kernel, i.e., µmono = 1

5 ·
(

1+ µbi1 ·
√

36+ 10 · ln (s1/s2)
)

.

Figure 6 illustrates that these settings result in a good
fit of the temporal filters with the experimental data
reported in De Valois et al. (2000). We will now con-
struct the full spatio-temporal selective filters as outlined in
Figure 4.

2.2.4. Combined Spatio-Temporal Filter
The full spatio-temporal filter F is defined according to the
scheme of Figure 4, i.e., by the sum of two products consisting
of the odd-spatial Godd = ℑ(Gσ,f 0x ,f 0y

), the monophasic tempo-

ral Tmono, the even-spatial Geven = ℜ(Gσ,f 0x ,f 0y
), and the biphasic

temporal filter Tbi (c.f. Figure 7):

F(x, y, t) = ℑ(Gσ,f 0x ,f 0y
(x, y)) · Tmono(t)+ℜ(Gσ,f 0x ,f 0y

(x, y)) · Tbi(t) .

(25)

The preferred speed of the filter can be determined by an anal-
ysis of the Fourier transform F̂( fx, fy, ft) of the filter function

F(x, y, t). From the location ( fmax
t , fmax

x , fmax
y ) where F̂ is max-

imal we can infer the filter’s preferred normal velocity, i.e., the
velocity parallel to the gradient of the luminance edge (n in
Figure 3) with maximal filter response, using the following two
relations:

• The motion constraint equation in the frequency domain:
fxu+ fyv+ ft = 0, i.e., f · u = −ft .
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FIGURE 7 | Filter F in x–t–space (left, center; c.f.
DeAngelis et al. (1995), Their Figure 3F) and in Fourier domain

(right; absolute value) for σ = 25, f0x = f0y ≈ 0.057 ( f0 =
√

( f0x )
2 + ( f0y )

2 = 0.08) and µbi1 = 0.2 (as in Figure 4). Red line

illustrates the velocity component in the x–t-domain (≈ 8.61pixel/s)

inferred from the values maximizing the absolute value of the Fourier

transform |F̂| of the filter F ( fmaxt ≈ 0.965, fmaxx ≈ fmaxy ≈ 0.057). See

text for details.

• (u⊥, v⊥) is orthogonal to the luminance edge, i.e., parallel to
( fmax

x , fmax
y ). Thus, the scalar product of fmax = ( fmax

x , fmax
y )

and u⊥ = (u⊥, v⊥) is equal to f
max · u⊥ = ‖f ‖ · ‖u‖.

Combining both equations, we obtain −fmax
t = ‖fmax‖ · ‖u⊥‖,

i.e., the speed s = ‖u⊥‖ is given as s = ‖u⊥‖ = −fmax
t /‖fmax‖.

The velocity can now be obtained by scaling the normalized

gradient direction fmax/‖fmax‖ with ‖u⊥‖ =
√

u2⊥ + v2⊥ gaining

u⊥ = − ft

( fmax
x )2 + ( fmax

y )2
· fx , (26)

v⊥ = − ft

( fmax
x )2 + ( fmax

y )2
· fy , (27)

in pixel/s. For the parameter values that fit the experimental data
from De Valois et al. (2000), i.e., σ = 25, f 0x = f 0y ≈ 0.057

( f0 =
√

( f 0x )
2 + ( f 0y )

2 = 0.08) and µbi1 = 0.2, we numeri-

cally determined the values as fmax
t = 0.974, fmax

x = fmax
y =

0.057 which maximize |F̂|. Thus, the fitted spatio-temporal selec-
tive filter F is maximally selective for the velocity (u⊥, v⊥) =
(8.61, 8.61)pixel/s, i.e., a speed of 12.2pixel/s.

2.2.5. Response Normalization
The spatio-temporal filter mechanism is combined with a stage
of down-modulating lateral divisive inhibition. Such response
normalization was shown to have a multitude of favorable prop-
erties such as the decrease in response gain and latency observed
at high contrasts, the effects of masking by stimuli that fail
to elicit responses of the target cell when presented alone, the
capability to process a high dynamic range of response activa-
tions (Heeger, 1992; Carandini et al., 1997; Koch, 1999; Sce-
niak et al., 1999; Frégnac et al., 2003; Tsui et al., 2010), and the
ability to resolve ambiguous motion estimates at, for example,

straight contours without knowledge about the edges of the con-
tour (aperture problemWallach, 1935; Nakayama and Silverman,
1988; Wuerger et al., 1996). To account for such nonlinearities
we add a stage of divisive normalization to test whether it is also
suited to enhance flow estimated from the output of DVSs. Based
on our previous modeling (e.g., Raudies et al., 2011; Brosch and
Neumann, 2012, 2014a), we employ a dynamic neuron model
of membrane potentials p and a mean firing rate generated by
the monotonically increasing function 9(p). The full dynamic
equation reads

ṗi = −αppi + (β − pi) · Ii − pi · 9q(qi) , (28)

q̇i = −αqqi +
∑

j∈Ni

cj9I(Ij) , (29)

with Ii denoting the input and cj denote the spatio-temporal
weighting coefficients of the local neighborhoodNi of neuron i in
the space-time-feature domain (see Brosch and Neumann, 2014a
for more details of an even more generalized circuit model). At
equilibrium, the following state equations can be derived

q∞i = 1

α q

∑

j∈N
cj9I(Ij) , (30)

p∞i = βIi

αp + Ii + 9q

(

1
α q

∑

j∈Ni
cj9I(Ij)

) . (31)

Another favorable property of divisive normalization has been
the observation that it can approximate a process dubbed radial
Gaussianization which minimizes the statistical dependency of
coefficients in image coding (Lyu and Simoncelli, 2008b, 2009a):

(pnorm)i =
Ii

(

b+
∑

j cjI
2
j

)1/2
, (32)
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where b is a scalar scaling coefficient and cj denote the weight-
ing coefficients for the activations in the surrounding neighbor-
hood in the space-feature domain [as in Equation (29)]. When
the coefficients are learned from a test set (Lyu and Simoncelli,
2009a), it was shown to approximate optimal minimization of
statistical dependency, i.e., radial Gaussianization. Here, we test
whether this is also true for Gaussian weights (in accordance with
neurophyiological findings Bonin et al., 2005) and a slightly dif-
ferent but biologically inspired normalization scheme as outlined
in Equation (31). Therefore, the normalization scheme adopted
here can only lead to an approximate decorrelation of input
encoding. We will, therefore, demonstrate experimentally the
impact of the divisive normalization of the spatio-temporal input
filtering.

3. Results

In addition to the main part describing the theoretical investi-
gations outlined in the previous sections, we conducted a series
of experiments to validate the modeling approach and its theo-
retical properties. The parameters of the spatio-temporal filters
were chosen such that they fit the experimental data as reported
in De Valois et al. (2000) (up to scaling), namely µbi1 = 0.2
for the temporal filter components, and σ = 25, f0 = 0.08 for
the spatial filter components. The parameters of the normaliza-
tion mechanism in Equation (31) were set to β = 1, αp = 0.1,

αq = 0.002, cj resemble the coefficients of a Gaussian kernel with
σ = 3.6, and 9I(x) = 9q(x) = max(0, x) denotes a rectifying
transfer function.

First, we probed the model using simple and more com-
plex stimuli with translatory and rotational motion to demon-
strate the detection performance and noise characteristics of
the initial (linear and non-linear filtering of the input). Sec-
ond, we studied the impact of the normalization stage on the
initial filter responses. Third, the model was probed by stimuli
with transparent overlaid motion patterns to test the segregation
into multiple motion directions at a single spatial location (see
e.g., Braddick et al., 2002; Edwards andNishida, 1999; Treue et al.,
2000).

3.1. Detection of Translatory and Rotational
Movements
At each location the filter creates a population code of length
N with each entry corresponding to the response of a spatio-
temporal filter with motion direction selectivity θk. For visual-
ization purposes (Figure 8), the velocity components up and vp
are inferred from the initial responses Ip;k, k ∈ {1, . . . ,N} at each
location p by summing them up according to

(

up
vp

)

=
N
∑

k= 1

Ik ·
(

cos(2π(k− 1)/N)
− sin(2π(k− 1)/N)

)

, (33)

FIGURE 8 | Responses to input stimuli with translatory and rotational

motion. From left to right: Test stimulus and vector field of initial motion

estimation using the filter mechanism in Equation (25) and after normalization

(red arrows are not part of stimulus; only two representative stimuli are

shown due to space constraints). First row: Translatory motion stimulus

illustrates that a majority of the responses point into the normal

flow-direction, i.e., orthogonal to the stimulus boundaries. Last row: A

rotational stimulus has been employed to validate that the filter also works for

different speeds (slow motion close to the center and fast motion at the more

distant regions). See Section 3.2 for details about the normalization

mechanism. A comparison of initial and normalized flow estimation

demonstrates that responses within line segments are reduced while

responses at corners or noise are enhanced (that could be compensated by

feedback from higher stages Brosch and Neumann, 2014b).
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effectively implementing a local vector addition of component
estimates. The tests utilize stimuli of translatory and rotational
motion. The visualized results (Figure 8) demonstrate that the
filter based approach robustly computes estimates of contour
motion, i.e., locations of apparently moving contrasts and object
boundaries (Barranco et al., 2014).

3.2. Response Normalization
A well known problem to motion detection is the estima-
tion of ambiguous motion at e.g., straight contours (aperture
problem). Locally only the normal flow direction can be mea-
sured which might not coincide with the true direction because
the motion component parallel to a contrast edge is unknown
(Figure 9, left). As suggested in Tsui et al. (2010), normal-
ization can help to suppress responses at ambiguous parts of
a contour (i.e., the inner parts of an extended contrast or
line) and to enhance responses at line ends or sharp corners

(c.f. Figure 9B). Figure 9 shows motion histograms of the tilted
bar in Figure 8 (top) as a result of the initial filtering in the
model (left) and with normalization (right). These results indi-
cate that normalization significantly improves the histograms
to better represent the true motion direction (Figure 9A; blue
lines).

In Section 2.2.5, we point out that divisive normalization can
effectively approximate radial Gaussianization, i.e., a reduction
of the dependency between components within a population
code. Here, we empirically validate that the divisive normaliza-
tion described in Equation (31) indeed reduces the dependency
within the population of motion selective cells. We quantify the
statistical dependency of the multivariate representation by using
multi-information (MI) (Studený and Vejnarová, 1998), which is
defined as the Kullback-Leibler divergence (Cover and Thomas,
2006; Lyu and Simoncelli, 2009a) between the joint distribution
p(x1, x2, . . . , xd) and the product of its marginals

FIGURE 9 | Effect of normalization on initial flow estimation of two

oblique bars moved with 45◦ difference to their orientation. (A),

Left: Initial estimates elicit maximum response for normal flow direction

(blue line; blue areas indicates standard deviation). Right: Surround

inhibition enhances responses at the corners, effectively biasing the

estimate toward the true motion direction. The circles on the elongated

bar stimulus show the size of kernel weighting functions. (B)

Normalization suppresses responses “within” the line and enhances

responses at its endings (line ends, corners) that encode the true

motion direction (c.f. Guo et al., 2006; Tsui et al., 2010).
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MI(I) = DKL

(

p(I)
∥

∥

∥

∏

k

p(Ik)

)

=





d
∑

k= 1

H(Ik)



−H(I) (34)

=
∑

xi∈I1

∑

xi∈I2

. . .
∑

xi∈Id

p(x1, x2, . . . , xd)

· log p(x1, x2, . . . , xd)

p(x1)p(x2) · · · p(xd)
, (35)

where H(I) =
∫

p(I) log(p(I)) dI is the differential entropy of the
representation I, and H(Ik) denotes the differential entropy of
the kth component of I (Lyu and Simoncelli, 2009a). To calcu-
late the required probability estimates, we employ binary vari-
ables indicating motion for d = 4 movement directions. As
theoretically predicted by the connection to radial Gaussianiza-
tion, the MI for the stimulus shown in Figure 9 is reduced from
MI(I) = 0.042 (0.090 for the second example) before normaliza-
tion to MI(Inorm) = 0.028 (0.027 for the second example) after
the normalization stage. Thus, divisive normalization employed
here does not entirely decorrelate the movement representation
(which would implyMI(Inorm) = 0) but significantly reduces it.

3.3. Spatio-Temporal Filtering and Transparent
Motion
Unlike the motion of opaque surfaces transparent motion is per-
ceived when multiple motions are presented in the same part
of visual space. Few computational model mechanisms have
been proposed in the literature that allow to segregate mul-
tiple motions (see e.g., Raudies and Neumann, 2010; Raudies
et al., 2011 which include recent overviews). All such model
approaches are based on frame-based inputs. For that rea-
son, we investigate how transparent motion induced by ran-
dom dot patterns moving in different directions is represented
in event-clouds originating from DVSs. In general, filter-based
mechanisms are able to encode estimated motions for multiple
directions at a single location. In contrast, it is not possible to fit

a plane at positions where two (or multiple) event clouds gener-
ated by, for example, two crossing pedestrians intersect without
applying additional knowledge. The filter mechanisms proposed
in this work naturally encodemotion directions within the uncer-
tainty of the integration fields (c.f. Figures 10A,B). In order to
build such a filter bank, the frequency space in Figure 10B needs
to be sampled properly in accordance with the theoretical analysis
outlined in Section 2 (c.f. Table 1).

To test the encoding of motion transparency, we probed the
model by using simulated event-based sensor outputs of two
superimposed random-dot patterns moving in orthogonal direc-
tions with the same speed. The spatio-temporal event-cloud
generated by the moving dots is rather noisy and the compo-
nent motions appear rather indistinguishable by eye. Figure 10C
shows such events for individual dots and integrated over a small
temporal window (directions are indicated by the blue and red
arrows for illustrative purposes). As can be seen in Figure 10D

the filter response clearly encodes both movement directions
which could not be achieved by a plane-fitting approach with-
out incorporating knowledge about the number of movement
directions.

4. Discussion

This paper investigates mechanisms for motion estimation given
event-based input generation and representation. The proposed
mechanism has been motivated from the perspective of sampling
the plenoptic function such that specific temporal changes in the
optic array are registered by the sensory device. The temporal
sampling is based on significant changes in the (log) luminance
distribution at individual sensory elements (pixels). These oper-
ate at a very low latency by generating events whenever the
local luminance function has undergone a super-threshold incre-
ment or decrement. This is fundamentally different from com-
mon frame-based approaches of image acquisition where a full
image is recorded at fixed intervals leading to a largely redundant

FIGURE 10 | Encoding of motion transparency in the proposed

model. (A) Illustration of a single spatio-temporal filter (surfaces indicate

that F = ±0.0005 for red/blue). Note that this filter resembles

measurements of, for example, the cat’s striate cortex (e.g.,

DeAngelis et al., 1995, Their Figure 2B). (B) Illustration of the preferred

frequencies (surfaces indicate that |F̂| = 0.1) of four filters of a filter

bank in the Fourier domain [red pair of ellipsoids corresponds to Fourier

spectrum of the filter shown in (A)]. Note that the combined ellipsoids

sample the frequency space, with each pair responding to a certain

speed and motion direction. (C) Stimulus consisting of a random dot

pattern of dots moving to the right or to the top with equal speeds.

(D) Motion histogram of filter responses. While it is not possible to fit a

plane to the resulting event cloud, the proposed filter based approach

encodes both movement directions.
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TABLE 1 | Effect of different settings of parameters f0 and µbi on the speed selectivity (in pixel/s), i.e., f0
t
/f0x , with f0x and f0

t
maximizing |F̂| for σ = 25.

f0\µbi 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0.04 100.65 50.33 33.55 25.16 20.13 16.78 14.38 12.58 11.18

0.05 78.76 39.38 26.26 19.69 15.75 13.13 11.25 9.85 8.75

0.06 65.10 32.55 21.70 16.28 13.02 10.85 9.30 8.14 7.23

0.07 55.67 27.84 18.56 13.92 11.13 9.28 7.95 6.96 6.18

0.08 48.69 24.34 16.23 12.17 9.74 8.11 6.96 6.09 5.41

0.09 43.28 21.64 14.42 10.82 8.66 7.21 6.18 5.41 4.81

0.10 38.95 19.48 12.98 9.74 7.79 6.49 5.56 4.87 4.33

0.11 35.41 17.70 11.80 8.85 7.08 5.90 5.06 4.43 3.93

0.12 32.46 16.23 10.82 8.11 6.49 5.41 4.64 4.06 3.61

The different parameter configurations allow to realize filter banks selective for a wide range of different speeds. If, for example, motion with a speed of about 10pixels/s needs to be

detected, the table reveals that the parameters can be chosen as ( f0, µbi ) = (0.10,0.20) or as (0.05,0.40), for example. Further adaptation of the standard deviations of the spatial and

temporal kernels according to our theoretical results allows to realize optimal sampling of the Fourier-domain. For large enough σ (as for this table), the speed-selectivity does hardly

depend on the parameter σ . For small σ , however, we noticed a strong impact which needs to be considered in the creation of a properly tuned filter bank.

signal representations. Our focus is on motion computation and
the proposed approach is different from previous approaches
in several respects. In a nutshell, our paper makes three main
contributions:

• We first investigate fundamental aspects of the local structure
of lightfields for stationary observers and local contrast motion
of the spatio-temporal luminance function. In particular, we
emphasize the structure of local contrast information in the
space-time domain and their encoding by events to build up
an address-event representation (AER).

• Based on these results we derive several constraints on the kind
of information that can be extracted from event-based sensory
acquisition using the AER principle. This allows us to chal-
lenge several previous approaches and to develop a unified
formulation in a common framework of event-based motion
detection.

• We have shown that response normalization as part of a
canonical microcircuit for motion detection is also applicable
for event-based flow for which it reduces motion ambiguity
and contributes to making the localized measures of filtering
statistically more independent.

These different findings will be discussed in more detail in the
following sections.

4.1. Previous Related Computational Models
So far, only relatively few investigations have been published that
report on how classical approaches developed in computer vision
can be adapted to event-based sensory input and how the quality
of the results changes depending on the new data representation
framework. Examples are Benosman et al. (2012, 2014) for opti-
cal flow computation and (Rogister et al., 2012; Piatkowska et al.,
2013; Camuñas Mesa et al., 2014) for stereo vision. Furthermore,
other authors show future applications of this new sensor tech-
nology that have the potential to provide fast, robust and highly
efficient sensory processing in various domains and challeng-
ing scenarios (e.g., Fu et al., 2008; Drazen et al., 2011). Even
further, most recent work has elucidated how fast event-based
sensing technology can be utilized to improve the performance of

computer vision motion estimation approaches and how frame-
based imagery may help stabilizing the raw event-based motion
processing (Barranco et al., 2014).

We here focus on the detection of flow from spatio-temporal
motion on the basis of event-based sensor input. We utilize the
dynamic-vision sensor (DVS) that emulates the major processing
cascade of the retina from sensors to ganglion cells (Lichtsteiner
et al., 2008; Liu and Delbruck, 2010). Based on the formulation of
a local spatio-temporal surface patch at a significant luminance
transition that moves along either direction, we have first cat-
egorized event-based flow estimation models. This allows us to
provide a more systematic overview and to identify rather prin-
cipled approaches. Based in these prerequisites, we have shown
that gradient-basedmethods like (Benosman et al., 2012) are gen-
erally not stable in terms of their input feature estimation. The
main reason is rooted in the potentially very small number of
events generated at a single location (c.f. Figure 1). Based on
these investigations we have further shown that the numerical
approximation of the gradients, like in Benosman et al. (2012),
has methodological deficiencies that may lead to inconclusive
motion estimates. On formal grounds, we have demonstrated
that a gradient-based motion detection and integration scheme,
using the scheme of Lucas and Kanade (1981), can be utilized to
numerically estimate second-order spatio-temporal derivatives
on a function that represents the temporal derivative of the lumi-
nance distribution. This requires to employ proper numerical
difference schemes which also demonstrates the disadvantage of
increased noise sensitivity (Section 2.1.3).

In contrast, methods exploiting the local structure of the cloud
of events are more robust in general. Here, we compared different
approaches. First, we reviewed methods fitting an oriented plane
to the event cloud. We derived equations which demonstrate
that the orientation parameters of the plane directly encode the
velocity [see Equation (18)]. The benefit of such an approach
against the above-mentioned numerical derivative scheme is that
it works even in the case of only a few generated events. Of course,
the goodness of fit depends on the size of the spatio-temporal
neighborhood. However, if we consider a neighborhood that is
too small then the plane fit may eventually become arbitrary and
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thus instable. If the neighborhood is too large then the chances
increase that the event cloud contains structure that is not well
approximated by a local plane. This also applies to the case of
multiple motions, such as in the case of, e.g., occlusions due
to opposite motions, limp motion in articulations, or in case of
transparent motion stimuli.

Based on these insights we suggest a novel filter that samples
the event-cloud along different spatio-temporal orientations. Its
construction “reverses” the singular-value decomposition con-
ducted of V1 receptive fields to construct direction-selective
cells with spatio-temporally inseparable receptive fields (De Val-
ois and Cottaris, 1998; De Valois et al., 2000). The conducted
theoretical analysis allows to realize a spatio-temporally selec-
tive filter bank. Our investigation is similar to Escobar et al.
(2009) who seek to specify the spatio-temporal selectivity. In
contrast, our mechanism is directly derived from physiologi-
cal findings. Perhaps the most similar scheme in comparison to
our model is the one proposed by Adelson and Bergen (1985)
which also suggests to derive spatio-temporally selective kernels
by superposing different receptive fields. In their work, a spa-
tial quadrature pair and two bi-phasic temporal kernels (in con-
trast to the mono- and bi-phasic kernels employed in our work)
are combined (Adelson and Bergen, 1985) (compare also the
review Emerson et al., 1992 and Borst and Egelhaaf, 1993). This
scheme was motivated to resemble the spatio-temporal correla-
tion scheme for motion detection (Hassenstein and Reichardt,
1956; Reichardt, 1957). In contrast to their approach, we rely
upon the superposition of space-time separable filters with out-
of-phase temporal modulation filter-responses. In addition to the
main analysis, our test applications of the model implemen-
tation successfully demonstrate the functionality of such ini-
tial filtering for motion detection from spatio-temporal event
clouds.

Compared to plane-fitting models (as suggested by,
e.g., Benosman et al., 2014) we have shown that our model
has the advantage that it can encode multiple motion directions
at a single location, such as, e.g., (semi-) transparent motion
(Figure 10; compare, e.g., Snowden et al., 1991; Treue et al.,
2000; see e.g., Raudies and Neumann, 2010; Raudies et al., 2011
for a detailed discussion of motion transparency computation).

4.2. Non-Linear Response Normalization by
Divisive Inhibition
In order to account for non-linearities in the response properties
of cortical cells (Carandini et al., 1997) several models have been
proposed to arrive at a neural circuit to define canonical com-
putational mechanism (e.g., Kouh and Poggio, 2008; Carandini
and Heeger, 2012). These and other models employ a mecha-
nism of divisive inhibition of the surround activity (also used
here) that has been suggested to explain findings ranging from
gain control (Ayaz and Chance, 2009; Louie et al., 2011) over
attention effects (Reynolds and Heeger, 2009; Lee and Maun-
sell, 2009; Montijn et al., 2012) to normalization in multi-sensory
integration (Ohshiro et al., 2011). Tsui et al. (2010) have demon-
strated that cells in the motion-sensitive area MT can properly
respond to motion directions even for tilted bars although the
normal flow directions signaled by component sensitive V1 cells

should bias the motion selectivity in a direction orthogonal to
the tilt direction. These authors suggest a divisive normalization
that operates upon the static filters of oriented contrast filter-
ing before the separate temporal filter. Such a scheme is rather
implausible mechanistically. We therefore developed a scheme
that employs the pool normalization after the stage of spatio-
temporal event-input filtering (c.f. Brosch andNeumann, 2014b).
The simulation results using oriented bar stimuli further confirm
findings of Guo et al. (2006) in which enhanced responses were
shown at the bar ends while the responses along the extended
boundary of the bar are significantly reduced [consistent with
earlier investigations Bolz and Gilbert, 1986]. While Escobar
et al. (2008) showed that such a reduction of uncertainty can
be achieved by using subtractive surround inhibition the pro-
posal by Bayerl and Neumann (2004) suggests that feedback can
reduce such redundant aperture responses. Taken together, the
proposed model not only demonstrates that response normaliza-
tion of initial motion detection successfully operates for event-
based representations but suggests a reasonably simple account
for the recent experimental observations (Tsui et al., 2010) using
lateral interactions.

Based on statistical investigations, a decorrelation of the
responses of a group of cells into rather independent compo-
nents has been suggested in Lyu and Simoncelli (2008a, 2009a),
dubbed radial Gaussianization to account for the broadening
of the tuning curves. Since we showed certain similarities but
also deviations from the model proposed here, we employed an
information theoretic measure which confirms that the normal-
ization scheme decorrelates input representations by decreasing
the multi-information even without special parameter learning
from a test set (Studený andVejnarová, 1998; Lyu and Simoncelli,
2009a,b). This might be beneficial in light of coding principles
(to support a sparse coding mechanism, Olshausen and Field,
2004) and to better deal with the variability of the overall motion
stimulus configuration. For example, most model mechanisms
have been employed by assuming (implicitly or explicitly) that
the motion can be approximated locally by translatory motion.
However, for cases of rotations, the intersection-of-constraints
mechanism (Adelson and Movshon, 1982) fails as there is no
common point of intersection from local estimates (Caplovitz
et al., 2006). We suggest that such a stage of normalization in
real-world motions reduces the response to ambiguous parts of a
stimulus, like the center of an extended contrast. At the same time
due to the reduced mutual dependency of individual responses
in a population the rotation components can be combined into
a more global configuration more easily. This is exemplified by
demonstrating the effective pushing of the motion response his-
togram toward the true motion direction (Figure 9) similar to
Tsui et al. (2010) (see Pack and Born, 2001 for a discussion of
an account to solve the aperture problem in area MT).

4.3. Summary
Motion estimation from the output of an asynchronous
event-based vision sensor requires adapted methods. Here, we
conducted for the first time a theoretical investigation that sys-
tematically categorizes event-based flow estimation models with
respect to their underlying methods, namely gradient-based
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methods and algorithms exploiting the locally approximated
plane-like structure of the cloud of events. In addition to analyz-
ing existing gradient-based methods inconsistently mixing first
and second order derivatives we proposed a novel consistent
gradient-based algorithm. Even further, we showed that gradient-
based methods in general suffer from strong noise originating
from the limited number of events occurring at a single location.
Methods exploiting the local plane-like shape of the event-cloud,
on the other hand, were shown to be suitable for motion orig-
inating from a single object. In addition, we derived an explicit
formula to derive the velocity from the parameters of the plane.
For filter-based approaches, we proposed and analyzed a novel
biologically inspired algorithm and demonstrated that it can also
deal with motion transparency, i.e., it can represent different
motion directions at a single location. Finally, we analyzed the
impact of a stage of response normalization. We demonstrated
that it is applicable to flow originating from event-based vision
sensors, that it reduces motion ambiguity, and that it improves
statistical independence of motion responses. All the theoretical

findings were underpinned by simulation results which confirm
that the model robustly estimates flow from event-based vision
sensors.
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Marčelja, S. (1980). Mathematical description of the responses of simple cortical
cells. J. Opt. Soc. Am. 70, 1297–1300. doi: 10.1364/JOSA.70.001297

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636. doi:
10.1109/5.58356

Montijn, J. S., Klink, P. C., and van Wezel, R. J. A. (2012). Divisive nor-
malization and neuronal oscillations in a single hierarchical framework of
selective visual attention. Font. Neural Circ. 6, 1–17. doi: 10.3389/fncir.2012.
00022

Nakayama, K., and Silverman, G. H. (1988). The aperture Problem–I. perception
of nonrigidity and motion direction in translating sinusoidal lines. Vis. Res. 28,
739–746. doi: 10.1016/0042-6989(88)90052-1

Neumann, H., and Ottenberg, K. (1992). “Estimating Ramp–Edge Attributes
from Scale–Space,” in Signal Processing VI: Theories and Applications, Vol. 1

(Elsevier), 603–606.
Ohshiro, T., Angelaki, D. E., and DeAngelis, G. C. (2011). A normalization model

of multisensory integration. Nat. Neurosci. 14, 775–782. doi: 10.1038/nn.2815
Olshausen, B. A., and Field, D. J. (2004). Sparse coding of sensory inputs. Curr.

Opin. Neurobiol. 14, 481–487. doi: 10.1016/j.conb.2004.07.007
Pack, C. C., and Born, R. T. (2001). Temporal dynamics of a neural solution to the

aperture problem in visual area MT of macaque brain. Nature 409, 1040–1042.
doi: 10.1038/35059085

Piatkowska, E., Belbachir, A. N., and Gelautz, M. (2013). “Asynchronous stereo
vision for event-driven dynamic stereo sensor using an adaptive cooperative
approach,” in International Conference on Computer VisionWorkshops (Sydney:
IEEE), 45–50. doi: 10.1109/ICCVW.2013.13

Raudies, F., Mingolla, E., and Neumann, H. (2011). A model of motion trans-
parency processing with local center–surround interactions and feedback.
Neural Comput. 23, 2868–2914. doi: 10.1162/NECO_a_00193

Raudies, F., and Neumann, H. (2010). A model of neural mechanisms in
monocular transparent motion perception. J. Physiol. Paris 104, 71–83. doi:
10.1016/j.jphysparis.2009.11.010

Reichardt, W. (1957). Autokorrelations–Auswertung als Funktionsprinzip des
Zentralnervensystems (bei der optischen Bewegungswahrnehmung eines
Insektes). Z. Naturforschg. 12b, 448–457.

Reynolds, J. H., and Heeger, D. J. (2009). The normalization model of attention.
Neuron 61, 168–185. doi: 10.1016/j.neuron.2009.01.002

Rogister, P., Benosman, R., Ieng, S.-H., Lichtsteiner, P., and Delbruck, T. (2012).
Asynchronous event–based binocular stereo matching.Neural Netw. Learn. 23,
347–353. doi: 10.1109/TNNLS.2011.2180025

Sceniak, M. P., Ringach, D. L., Hawken, M. J., and Shapley, R. (1999). Con-
trast’s effect on spatial summation by Macaque V1 Neurons. Nat. Neurosci. 2,
733–739. doi: 10.1038/11197

Snowden, R. J., Treue, S., Erickson, R. G., and Andersen, R. A. (1991). The response
of area MT and VI neurons to transparent motion. J. Neurosci. 11, 2768–2785.

Snowden, R. J., and Verstraten, F. A. J. (1999). Motion transparency making
models of motion perception transparent. Trends Cogn. Sci. 3, 369–377. doi:
10.1016/S1364-6613(99)01381-9

Studený, M., and Vejnarová, J. (1998). “The Multiinformation Function as a
Tool for Measuring stochastic Dependence,” in Learning in Graphical Mod-

els (Kluwer Academic Publishers), Proceedings of the NATO Advanced Study

Institute on Learning in graphical models, 261–97. doi: 10.1007/978-94-011-
5014-9_10

Treue, S., Hol, K., and Rauber, H.-J. (2000). Seeing multiple directions of motion–
physiology and psychophysics. Nat. Neurosci. 3, 270–276. doi: 10.1038/72985

Tschechne, S., Brosch, T., Sailer, R., von Egloffstein, N., Abdul-Kreem, L. I., and
Neumann, H. (2014). “On event-based motion detection and integration,” in
8th International Conference on Bio–inspired Information and Communications

Technologies (ACM) (Boston), 298–305.
Tsui, J. M. G., Hunter, J. N., Born, R. T., and Pack, C. C. (2010). The role of V1 sur-

round suppression in MTmotion integration. J. Neurophysiol. 103, 3123–3138.
doi: 10.1152/jn.00654.2009

Wallach, H. (1935). Über visuell wahrgenommene Bewegungsrichtung. Psychol.
Forschung 20, 325–380. doi: 10.1007/BF02409790

Wuerger, S., Shapley, R., and Rubin, N. (1996). “On the Visually Perceived Direc-
tion of Motion” by Hans Wallach: 60 Years Later. Perception 25, 1317–1367.
doi: 10.1068/p251317

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2015 Brosch, Tschechne and Neumann. This is an open-access arti-

cle distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 15 April 2015 | Volume 9 | Article 137

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	On event-based optical flow detection
	1. Introduction
	2. Materials and Methods
	2.1. Theoretical Aspects of Event-Based Visual Motion Detection
	2.1.1. Nomenclature and Principal Problems
	2.1.2. Moving Gray-Level Edges and the Spatio-Temporal Contrast Model
	2.1.3. Estimating Spatio-Temporal Continuity using Event-Sequences
	2.1.4. Least-Squares Velocity Estimation
	2.1.5. Direction-Sensitive Filters

	2.2. Event-Based Motion Estimation using Direction-Selective Filters
	2.2.1. Experimental Evidence
	2.2.2. Spatial Gabor Filters
	2.2.3. Mono- and Biphasic Temporal Filters
	2.2.4. Combined Spatio-Temporal Filter
	2.2.5. Response Normalization


	3. Results
	3.1. Detection of Translatory and Rotational Movements
	3.2. Response Normalization
	3.3. Spatio-Temporal Filtering and Transparent Motion

	4. Discussion
	4.1. Previous Related Computational Models
	4.2. Non-Linear Response Normalization by Divisive Inhibition
	4.3. Summary

	Author Contributions
	Acknowledgments
	References


