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Dora Sumislawska and Giacomo Indiveri*

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland

Implementing compact, low-power artificial neural processing systems with real-time
on-line learning abilities is still an open challenge. In this paper we present a
full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the
biophysics of real spiking neurons and dynamic synapses for exploring the properties of
computational neuroscience models and for building brain-inspired computing systems.
The proposed architecture allows the on-chip configuration of a wide range of network
connectivities, including recurrent and deep networks, with short-term and long-term
plasticity. The device comprises 128K analog synapse and 256 neuron circuits with
biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that
endow it with on-line learning abilities. In addition to the analog circuits, the device
comprises also asynchronous digital logic circuits for setting different synapse and neuron
properties as well as different network configurations. This prototype device, fabricated
using a 180nm 1P6M CMOS process, occupies an area of 51.4 mm?2, and consumes
approximately 4 mW for typical experiments, for example involving attractor networks.
Here we describe the details of the overall architecture and of the individual circuits and
present experimental results that showcase its potential. By supporting a wide range
of cortical-like computational modules comprising plasticity mechanisms, this device will
enable the realization of intelligent autonomous systems with on-line learning capabilities.

Keywords: spike-based learning, Spike-Timing Dependent Plasticity (STDP), real-time, analog VLSI,
Winner-Take-All (WTA), attractor network, asynchronous, brain-inspired computing

1. Introduction

Recent advances in neural network modeling and theory, combined with advances in
technology and computing power, are producing impressive results in a wide range of
application domains. For example, large-scale deep-belief neural networks and convolutional
networks now represent the state-of-the-art for speech recognition and image segmentation
applications (Mohamed et al., 2012; Farabet et al., 2013). However, the mostly sequential and
synchronous clocked nature of conventional computing platforms is not optimally suited for
the implementation of these types of massively parallel neural network architectures. For this
reason a new generation of custom neuro-computing hardware systems started to emerge. These
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systems are typically composed of custom Very Large
Scale Integration (VLSI) chips that either contain digital
processing cores with dedicated memory structures and
communication schemes optimized for spiking neural networks
architectures (Wang et al., 2013; Furber et al., 2014; Neil and Liu,
2014), or full-custom digital circuit solutions that implement
large arrays of spiking neurons with programmable synaptic
connections (Merolla et al., 2014). While these devices and
systems have high potential for solving machine learning tasks
and applied research problems, they do not emulate directly the
dynamics of real neural systems.

At the other end of the spectrum, neuromorphic engineering
researchers have been developing hardware implementations
of detailed neural models, using mixed signal analog-digital
circuits to reproduce faithfully neural and synaptic dynamics,
in a basic research effort to understand the principles of neural
computation in physical hardware systems (Douglas et al., 1995;
Liu et al., 2002; Chicca et al., 2014). By studying the physics of
computation of neural systems, and reproducing it through the
physics of transistors biased in the subthreshold regime (Liu et al.,
2002), neuromorphic engineering seeks to emulate biological
neural computing systems efficiently, using the least amount of
power and silicon real-estate possible. Examples of biophysically
realistic neural electronic circuits built following this approach
range from models of single neurons (Mahowald and Douglas,
1991; Farquhar and Hasler, 2005; Hynna and Boahen, 2007; van
Schaik et al., 2010), to models of synaptic dynamics (Liu, 2003;
Bartolozzi and Indiveri, 2007a; Xu et al., 2007), to auditory/visual
sensory systems (Sarpeshkar et al., 1996; van Schaik and Meddis,
1999; Zaghloul and Boahen, 2004; Costas-Santos et al., 2007; Liu
and Delbruck, 2010), to reconfigurable spiking neural network
architectures with learning and plasticity (Giulioni et al., 2008;
Hsieh and Tang, 2012; Ramakrishnan et al., 2012; Yu et al., 2012;
Chicca et al., 2014).

In this paper we propose to combine the basic research efforts
with the applied research ones, by presenting a VLSI architecture
that can be used to both carry out research experiments
in computational neuroscience, and to develop application
solutions for practical tasks. The architecture proposed
comprises electronic neuromorphic circuits that directly emulate
the physics of real neurons and synapses to faithfully reproduce
their adaptive and dynamic behavior, together with digital logic
circuits that can set both the properties of the individual synapse
and neuron elements as well as the topology of the neural
network. In particular, this architecture has been developed to
implement spike-based adaptation and plasticity mechanisms,
and to carry out on-chip on-line learning for tasks that require
the system to adapt to the changes in the environment it
interacts with. Given these characteristics, including the ability
to arbitrarily reconfigure the network topology also at run-time,
we named this device the Reconfigurable On-line Learning
Spiking Neuromorphic Processor (ROLLS neuromorphic
processor).

The main novelty of the work proposed, compared to previous
analogous approaches (Indiveri et al., 2006; Giulioni et al., 2008;
Ramakrishnan et al,, 2012; Yu et al., 2012) consists in the
integration of analog bi-stable learning synapse circuits with

asynchronous digital logic cells and in the embedding of these
mixed-signal blocks in a large multi-neuron architecture. The
combination of analog and digital circuits, with both analog and
digital memory elements, within the same block provides the
device with an important set of programmable features, including
the ability to configure arbitrary network connectivity schemes.
At the analog circuit design level, we present improvements in
the neuron and spike-based learning synapses over previously
proposed ones (Indiveri et al., 2011; Chicca et al, 2014),
which extend their range of behaviors and significantly reduce
device mismatch effects. At the system application level we
demonstrate, for the first time, both computational neuroscience
models of attractor networks and image classification neural
networks implemented exclusively on custom mixed-signal
analog-digital neuromorphic hardware, with no extra pre- or
post-processing done in software. In the next section we describe
the ROLLS neuromorphic processor system-level block diagram,
highlighting its dynamic and spike-based learning features.
In Section 2.2 we describe in detail the circuits that are
present in each building block, and in Section 3 we present
system level experimental results showcasing examples of both
computational neuroscience models and machine vision pattern
recognition tasks. Finally, in Sections 4, 5 we discuss the results
obtained and summarize our contribution with concluding
remarks.

2. Materials and Methods

2.1. The Neuromorphic Processor Architecture
The block-diagram of the ROLLS neuromorphic processor
architecture is shown in Figure 1. The device comprises a
configurable array of synapse circuits that produce biologically
realistic response properties and spiking neurons that can exhibit
a wide range of realistic behaviors. Specifically, this device
comprises a row of 256x1 silicon neuron circuits, an array
of 256x256 learning synapse circuits for modeling long-term
plasticity mechanisms, an array of 256x256 programmable
synapses with short-term plasticity circuits, a 256x2 row
of linear integrator filters denoted as “virtual synapses” for
modeling excitatory and inhibitory synapses that have shared
synaptic weights and time constants, and additional peripheral
analog/digital Input/Output (I/O) circuits for both receiving and
transmitting spikes in real-time off-chip.

The ROLLS neuromorphic processor was fabricated using a
standard 180 nm Complementary Metal-Oxide-Semiconductor
(CMOS) 1P6M process. It occupies an areas of 51.4mm? and
has approximately 12.2 million transistors. The die photo of
the chip is shown in Figure 2. The area distribution of main
circuit blocks is shown in Table 1. The silicon neurons contain
circuits that implement a model of the adaptive exponential
Integrate-and-Fire (I&F) neuron (Brette and Gerstner, 2005),
post-synaptic learning circuits used to implement the spike-based
weight-update/plasticity mechanism in the array of long-term
plasticity synapses, and analog circuits that model homeostatic
synaptic scaling mechanisms operating on very long time
scales (Rovere et al, 2014). The array of long-term plasticity
synapses comprises pre-synaptic spike-based learning circuits

Frontiers in Neuroscience | www.frontiersin.org

April 2015 | Volume 9 | Article 141


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Qiao et al.

A learning neuromorphic processor

A
[ AER Input
. ¥ v v
SeEEa | GHEGLE | M, B

@ @ ‘@ @ e E E E {4 g ﬁ l: *@ Short-Term Plasticity Synapse
§ {S'] {s'; {S] ‘@ ‘E ‘E ‘E zj _A ‘é ‘E Long-Term PlasticitySynapse
é ™ BEEEE | &4 z ﬂb_* é Virtual Synapse
R EE B E-E-E-D I T O coms
{S'] E {S; -1'_-?] | -E-E-E;HE ) i - Configuration logic

Test Structures ’t\ \ \ \ \ [ 7

FIGURE 1 | Architecture of ROLLS neuromorphic processor. (A) Block
diagram of the architecture, showing two distinct synapse arrays (short-term
plasticity and long-term plasticity synapses), an additional row of synapses
(virtual synapses) and a row of neurons (somas). A synapse de-multiplexer

block is used to connect the rows from the synapse arrays to the neurons
(see main text for details). Peripheral circuits include asynchronous digital
AER logic blocks, an Analog-to-Digital converter, and a programmable
on-chip bias-generator. (B) Block-diagram legend.

SYNAPSE

TABLE 1 | Circuits area distribution.

ARRAY

FIGURE 2 | Micro-photograph of the ROLLS neuromorphic processor.
The chip was fabricated using a 180 nm CMOS process and occupies an area
of 51.4mm?, comprising 12.2 million transistors.

Circuit Dimensions Number Total (mm?) (%)
(wm x um) area:

Neuron 55.69x16.48 256 0.235 0.47
Post-synaptic learning 39.09x16.48 256 0.165 0.32
LTP synapse 15.3x16.48 64k 16.147  31.41
STP synapse 16.24x16.48 64k 17129  33.32
Virtual synapse 35.6x16.48 512 0.300 0.58
Synapse de-mux 49.56x4389.4 1 0.218 0.42
AER in (columns) 8770x154 1 0.135 0.26
AER in (rows) 112x4357 1 0.488 0.95
AER out 166.2x4274.9 1 0.710 1.38
BiasGen 539.5x1973 1 1.064 2.07

with bi-stable synaptic weights, that can undergo either Long-
Term Potentiation (LTP) or Long-Term Depression (LTD), (see
Section 2.1.2 for details). The array of Short-Term Plasticity
(STP) synapses comprises synapses with programmable weights
and STP circuits that reproduce short-term adaptation dynamics.
Both arrays contain analog integrator circuits that implement
faithful models of synaptic temporal dynamics (see Section 2.1.1).
Digital configuration logic in each of the synapse and neuron
circuits allows the user to program the properties of the
synapses, the topology of the network, and the properties of the
neurons.

The architecture comprises also a “synapse de-multiplexer”
static logic circuit, which allows the user to choose how many
rows of plastic synapses should be connected to the neurons. It is
a programmable switch-matrix that configures the connectivity
between the synapse rows and the neuron columns. By default,
each of the 256 rows of 1x512 synapses is connected to its
corresponding neuron. By changing the circuit control bits it is

The remaining area used in the chip is occupied by the pads and additional test structures.

possible to allocate multiple synapse rows to the neurons, thereby
disconnecting and sacrificing the unused neurons. In the extreme
case all 256 x 512 synapses are assigned to a single neuron, and the
remaining 255 neurons remain unused.

An on-chip programmable bias generator, optimized for
subthreshold circuits (Delbruck et al., 2010) is used to set all of
the bias currents that control the parameters of the synapses and
neurons (such as time constants, leak currents, etc.).

An Analog to Digital Converter (ADC) circuit converts the
subthreshold currents produced by selected synapse and neuron
circuits into a stream of voltage pulses, using a linear pulse-
frequency-modulation scheme, and transmits them off-chip as
digital signals.

Finally, peripheral asynchronous I/O logic circuits are used
for receiving input spikes and transmitting output ones,
using the Address-Event Representation (AER) communication
protocol (Deiss et al., 1998; Boahen, 2000).
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2.1.1. Synapse Temporal Dynamics

In the ROLLS neuromorphic processor all synapses process
input spikes in real-time, as they arrive. Similarly the neurons
transmit the spikes they produce immediately, as they are
generated. In these types of architectures time represents itself
and input data is processed instantaneously. There is no
virtualization of time and no mechanism for storing partial
results in memory banks. As a consequence, the circuits must
operate with time-constants that are well-matched to those of
the signals they are designed to process. Since this device is
intended to be used in behaving systems that interact with the
environment in natural real-world scenarios, it is important
to design circuits that can implement a wide range of time
constants, including very slow, biologically plausible, ones. To
achieve this, and to model neural dynamics with biologically
plausible time constants, we used the Differential Pair Integrator
(DPI) (Bartolozzi and Indiveri, 2007b). This is a current-mode
log-domain integrator. When biased in the subthreshold regime,
this circuit can obtain long time constants, even with relatively
small and compact capacitors. For example, in the 180nm
technology used, with a capacitor of 1pF, we could obtain
time constants of the order of tens of milliseconds without
resorting to any advanced design techniques. However, to realize
even longer time constants (e.g., of the order of hundreds
of milliseconds), we used a shifted-source biasing technique,
as described in Linares-Barranco and Serrano-Gotarredona
(2003).

The synapse circuits in the two synapse arrays of the ROLLS
neuromorphic processor convert input voltage spikes into output
currents which have non-linear dynamics, due to their adaptation
or learning features. In addition, to model the synapse temporal
dynamics, the currents produced by the circuit elements in
the array are further integrated by a linear temporal filter. If
we assume that all the synapses in an array have the same
temporal dynamics (i.e., share the same time constants), then
we can exploit Kirchhoff’s current law and sum the output
currents of all synapses in a row into a single DPI circuit.
This allows us to save a significant amount of silicon real-
estate, as we can use only one DPI per row, in each array. In
particular, we use one excitatory DPI in the long-term plasticity
array configured to produce time constants of the order of
hundreds of milliseconds, to model the dynamics of N-Methyl-
D-Aspartate (NMDA) receptors, and two DPI circuits (one for
excitatory and one for inhibitory synaptic dynamics) in the
STP array, configured with time constants of the order of tens
of milliseconds, to model the dynamics of AMPA and GABA
receptors, respectively.

We use the same principle for the 256 x2 “virtual synapse”
integrators in the architecture. These circuits comprise two DPI
integrators per row (one for the excitatory synapse and one for
the inhibitory one) with fixed sets of weights and shared time-
constant parameters, biased to operate in their linear operating
range. By time-multiplexing input spikes to a single virtual
synapse we can model the effect of multiple independent inputs
to the targeted neuron. For example, by stimulating the DPI with
a single 10 KHz spike train, we can model the effect of 1000
synapses receiving a 10 Hz input spike train.

2.1.2. The Spike-Based Learning Algorithm

Many models of Spike-Timing Dependent Plasticity (STDP)
have been proposed in the computational neuroscience
literature (Abbott and Nelson, 2000; Markram et al., 2012).
However, a growing body of evidence is revealing that learning
algorithms based on spike-timing alone cannot account
for all of the phenomenology observed neurophysiological
experiments (Lisman and Spruston, 2010), have poor memory
retention performance (Billings and van Rossum, 2009),
and require additional mechanisms to learn both spike-time
correlations and mean firing rates in the input patterns (Senn,
2002).

For this reason, we chose to implement the spike-driven
synaptic plasticity rule proposed by Brader et al. (2007),
which has been shown to reproduce many of the behaviors
observed in biology, and has performance characteristics that
make it competitive with the state-of-the-art machine learning
methods (Brader et al., 2007). This algorithm does not rely on
spike-timing alone. It updates the synaptic weights according to
the timing of the pre-synaptic spike, the state of the post-synaptic
neuron’s membrane potential, and its recent spiking activity. It
assumes that the synaptic weights are bounded, and that, on
long time-scales, they converge to either a high state, or a low
one. However, in order to avoid updating all synapses in exactly
the same way, this algorithm requires a stochastic weight update
mechanism (see Brader et al., 2007 for details).

The requirements and features of this algorithm make
it particularly well-suited for neuromorphic hardware
implementation: the bi-stability feature removes the problematic
need of storing precise analog variables on long-time scales, while
the probabilistic weight update requirement can be obtained
by simply exploiting the variability in the input spike trains
(typically produced by a Poisson process) and the variability in
the post-synaptic neuron’s membrane potential (typically driven
by noisy sensory inputs).

The weight-update rule for a given synapse i is governed by
the following equations, which are evaluated upon the arrival of
each pre-synaptic spike:

wi = wi + Aw if Vipe(tpre) > Omem and
01 < Caltpre) < 63
if Vmem(tpre) < Omem and
01 < Caltpre) < 02

(1)

wi = w; — Aw™

where w; represents an internal variable that encodes the bi-
stale synaptic weight; the terms Aw™ and Aw™ determine the
amplitude of the variable instantaneous increases and decreases;
Vinem(tpre) represents the post-synaptic neuron’s membrane
potential at the time of arrival of the pre-synaptic spike, and 0
is a threshold term that determines whether the weight should
be increased or decreased; the term Ca(tre) represents the post-
synaptic neuron’s Calcium concentration, which is proportional
to the neuron’s recent spiking activity, at the time of the pre-
synaptic spike, while the terms 61, 8, and 65 are three thresholds
that determine in which conditions the weights are allowed to
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be increased, decreased, or should not be updated. These “stop-
learning” conditions are useful for normalizing the weights of all
synapses afferent to the same neuron. They have been shown to
be effective in extending the memory lifetime of recurrent spiking
neural networks, and in increasing their capacity (Senn and Fusi,
2005).

In parallel to the instantaneous weight updates, the internal
variable of the synapse w; is constantly being driven toward one
of two stable states, depending whether it is above or below a
given threshold 6,,:

d

Wi = +Caip  ifwi > 6, and w; < gy 2
%wi = —Carift if w; <60, and w; > Wi

where Cgyf; represents the rate at which the synapse is driven
to its bounds, and Wy and wy,;, represent the high and low
bounds, respectively. The actual weight J; of the synapse i is a
thresholded version of the internal variable w; that is used to
produce the Excitatory Post-Synaptic Current (EPSC) upon the
arrival of the pre-synaptic spike:

Ji =]maxf(Wi, 9]) (3)

where f(x, 67) can be a sigmoidal or hard-threshold function with
threshold 6y, and Jy,4y is the maximum synaptic efficacy.

We will show in Section 2.2.3 experimental results that
demonstrate how the circuits integrated in the ROLLS
neuromorphic processor chip faithfully implement this learning
algorithm.

2.2. The Neuromorphic Processor Building
Blocks

Here we present the main building blocks used in the ROLLS
neuromorphic processor chip, describing the circuit schematics
and explaining their behavior.

2.2.1. The Silicon Neuron Block

The neuron circuit integrated in this chip is derived from the
adaptive exponential I&F circuit proposed in Indiveri et al.
(2011), which can exhibit a wide range of neural behaviors,
such as spike-frequency adaptation properties, refractory period
mechanism and adjustable spiking threshold mechanism. The
circuit schematic is shown in Figure 3. It comprises an NMDA
block (Mn1,n2), which implements the NMDA voltage gating
function, a LEAK DPI circuit (Mp;_z7) which models the
neuron’s leak conductance, an AHP DPI circuit (Maj_47) in
negative feedback mode, which implements a spike-frequency
adaptation behavior, an Na™ positive feedback block (Mny1—nNas)
which models the effect of Sodium activation and inactivation
channels for producing the spike, and a K™ block (Mk;_k7)
which models the effect of the Potassium conductance, resetting
the neuron and implementing a refractory period mechanism.
The negative feedback mechanism of the AHP block, and the
tunable reset potential of the K* block introduce two extra
variables in the dynamic equation of the neuron that can endow
it with a wide variety of dynamical behaviors (Izhikevich, 2003).
As the neuron circuit equations are essentially the same of the
adaptive I&F neuron model, we refer to the work of Brette and
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FIGURE 3 | Silicon neuron schematics. The NMDA block implements a

voltage gating mechanism; the LEAK block models the neuron’s leak
conductance; the spike-frequency adaptation block AHP models the
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models the Potassium conductance functionality.
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Gerstner (2005) for an extensive analysis of the repertoire of
behaviors that this neuron model can reproduce, in comparison
to, e.g., the Izhikevich neuron model.

All voltage bias variables in Figure3 ending with an
exclamation mark represent global tunable parameters which can
be precisely set by the on chip Bias Generator (BG). There are
a total of 13 tunable parameters, which provide the user with
high flexibility for configuring all neurons to produce different
sets of behaviors. In addition, by setting the appropriate bits of
the relative latches in each neuron, it is possible to configure two
different leak time constants (if taul!/if tau2!) and refractory
period settings (if_rfrl!/if rfr2!). This gives the user the
opportunity to model up to four different types/populations
of neurons within the same chip, that have different leak
conductances and/or refractory periods.

An example of the possible behaviors that can be expressed by
the silicon neuron are shown in Figure 4. The top-left quadrant
shows measured data from the chip representing the neuron
membrane potential in response to a constant current injection
for different values of reset voltage. The top-right quadrant
shows the neuron response to a constant current injection
for different settings of its refractory period. The bottom-left
quadrant demonstrates the spike-frequency adaptation behavior,
obtained by appropriately tuning the relevant parameters in
the AHP block of Figure 3 and stimulating the neuron with a
constant injection current. By further increasing the gain of the
AHP negative feedback block the neuron can produce bursting
behavior (see bottom-right quadrant of Figure 4).

Figure 5 shows the F-I curve of all neurons in the ROLLS
neuromorphic processor (i.e., their firing rate as a function of
the input injection current). The plot shows their average firing
rate in solid line, and their standard deviation in the shaded
area. The overall mismatch in the circuit, responsible for these
deviations, is extremely small, if compared to other analog VLSI

implementations of neural systems (Indiveri et al., 2006; Petrovici
et al., 2014; Schmuker et al., 2014). The average value obtained
from the measurement results of Figure5 is only 9.4%. The
reason for this improvement lies in the increased size of some
critical transistors in the soma circuit—major contributor to
neuron’s mismatch. For example, the M4 and M5 Field-Effect
Transistors (FETs) that set the neuron’s leak time constants
are of (W/L) size of (2 um/4um) , while My,3 and Mpyg,
responsible for the firing threshold are of size (4 £m/0.4 yum) and
(1 pm/4 pm), respectively.

In addition to the neuron soma circuit, this block contains
also post-synaptic plasticity circuits that are necessary for
evaluating the weight update and “stop-learning” conditions
described in Section 2.1.2. In particular these circuits integrate
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FIGURE 5 | Population response of all neurons in the array to constant
injection currents. The variance in the measurements is due to device
mismatch effects in the analog circuits.
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neuron’s spike-frequency adaptation behavior: the top trace
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Frontiers in Neuroscience | www.frontiersin.org

April 2015 | Volume 9 | Article 141


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Qiao et al.

A learning neuromorphic processor

the spikes produced by the neuron into a current that models
the neuron’s Calcium concentration, and compare this current
to three threshold currents that correspond to 6y, 6,, and 63 of
Equation (1). In parallel, the neuron’s membrane current (which
is equivalent to the membrane potential in the theoretical model)
is compared to an additional threshold equivalent to 6, of
Equation (1). The schematic diagram of this circuit is shown in
Figure 6. The post-synaptic neuron’s Calcium concentration is
computed using the DPI Mp;_ps; the comparisons with the fixed
thresholds are made using three current-mode Winner-Take-
All (WTA) circuits Mwi1—w9, Mwui—wuiz, and Mwpi—wpi2-
The digital outcomes of these comparisons set the signals slnup
and sldn which are then buffered and transmitted in parallel to
all synapses afferent to this neuron belonging to the long-term
plasticity array.

2.2.2. The Long-Term Plasticity Synapse Array

Each of the 256 x256 synapse circuits in the long-term plasticity
array comprises event-based programmable logic circuits for
configuring both synapse and network properties, as well as
analog/digital circuits for implementing the learning algorithm
of Section 2.1.2. Figure 7 shows both digital and analog circuit
blocks. The digital logic part, shown in Figure 7A has an pulse
generator circuit that manages the handshaking signals required
by the AER protocol, and three one-bit configurable latches:
one latch sets/resets the MON_EN signal, which enables/disables

the synapse monitor circuit, which buffers the synapse weight
V, signal for off-chip reading. The remaining two latches are
used to set the BC_EN and REC_EN signals, which control
the activation modes of the synapse. There are three different
activation modes can be configured: direct activation, broadcast
activation and recurrent activation. Figure 7B shows a timing
diagram in which the relative latches for enabling broadcast and
recurrent activation modes are configured in a synapse, using a
4-phase handshaking protocol. In the direct activation mode the
synapse is stimulated by an AER event that has the matching
row and column address. In the broadcast activation mode the
synapse is stimulated by an AER broadcast event (that has a
dedicated address word) which targets the matching column
address. All synapses belonging to the same column that have
the BC_EN bit set high get stimulated in parallel, when the
matching broadcast event is received. In the recurrent activation
mode the synapse of column j is stimulated when the on-chip
post-synaptic neuron of row j spikes. Therefore, it is possible to
connect, internally, neuron i to neuron j by setting the REC_EN
bit high of the synapse in row i and column j. In addition to these
circuits, there is a pulse extender circuit which can increase the
duration of the input pulse from nano-seconds to hundreds of
micro-seconds.

The schematic diagram of the analog/digital weight update
circuits is shown in Figure 7C. These circuits are subdivided
into four sub-blocks: the SET block can be used to set/reset

DPI Vdd WTA vdd vdd vdd
|
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vdd vdd vdd
L+ o slhup ,__{>O_osldn
|
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FIGURE 6 | Post-synaptic learning circuits for evaluating the
algorithm’s weight update and “stop-learning” conditions. The DPI
circuit Mp1_5 integrates the post-synaptic neuron spikes and produces a
current proportional to the neuron’s Calcium concentration. Three
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current-mode winner-take-all circuits WTA, WTAUP, and WTADN compare
the Calcium concentration current to three set thresholds sl_thmin! , d_thdn!,
and d_thup!, while the neuron’s membrane current is compared to the
threshold sl_memthr!.
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FIGURE 7 | Long-term plasticity synapse array element. (A) Plastic protocol. Dashed red lines show the sequence between signals. (C)
synapse configuration logic block diagram. (B) Timing diagram for broadcast Schematic diagram of the bi-stable weight update and current generator
and recurrent activation modes in one synapse using 4-phase handshaking blocks.

the bistable state of the synaptic weight by sending an AER
event with the matching address and properly asserting the
configuration signals set_hi and set_low. The JUMP block
increases or decreases the synaptic weight internal variable
(i.e., the voltage V,,) depending on the digital signals up and
dn, that are buffered copies of the ones generated in the
silicon neuron stop-learning block (see Section 2.2.1). The
heights of the up and down jumps can be set by changing the
delta_up! and delta_dn! signals. The BIST block consists of a
wide-range transconductance amplifier configured in positive
feedback mode, to constantly compare the V,, node with the
threshold bi_thr!: if V), > bi_thr! then the amplifier slowly
drives the V,, node, drifting toward the positive rail, otherwise
it actively drives it toward the ground. The drift rates to the
two states can be tuned by biases drift up! and drift_dn!,
respectively. The current converter (CC) block converts the V,,
voltage into a thresholded EPSC with maximum amplitude set by
pa_wht!.

Figure 8 shows experimental results that highlight the features
of both synapse and neuron learning circuits in action: weight
updates are triggered when the pre-synaptic spikes arrive, and
when the post-synaptic neuron’s Calcium concentration is in
the appropriate range. Depending on the value of the Calcium

concentration signal, the digital up and dn signal turn on
or off. The weight internal variable is increased or decreased
depending on where the membrane potential is with respect to
the membrane threshold (see highlighted weight updates at t =
273 and t = 405). This variable is actively driven to the low
or high bounds, depending if it is below or above the weight
hreshold.

2.2.3. The Short-Term Plasticity Synaptic Array

The array of STP synapses contains circuits that allow users to
program the synaptic weights, rather than changing them with a
fixed on-chip learning algorithm. Specifically, each synapse has
a two-bit programmable latch that can be used to set one of
four possible weight values. In addition, it has an extra latch
that can set the type of synapse (excitatory or inhibitory). In the
excitatory mode, the synapse has additional circuits for modeling
Short-Term Depression (STD) dynamics (Rasche and Hahnloser,
2001; Boegerhausen et al., 2003) whereby the magnitude of the
EPSC decreases with every input spike, and recovers slowly in
absence of inputs. Figure 9 shows both a block diagram of all
synapse components, and the schematic diagram of the synapse
analog circuits. In addition to the latches for setting the weight,
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determine whether to increase (red shaded area), decrease (blue shaded
area) or leave Vy unchanged (no shaded area). The horizontal lines
represent the thresholds used in the learning algorithm (see

Section 2.1.2), while the vertical lines at t = 273s (blue line) and t = 405s
(red line) are visual guides to show where the membrane potential is, with
respect to its threshold, for down and up jumps in Vi respectively.

there are two extra latches for configuring the synapse activation
mode. As for the long-term-plasticity synapses, there are three
possible activation modes: direct, broadcast, and recurrent (see
Section 2.2.2).

The left panel of Figure 9B shows the excitatory CC and
the STD circuit. The CC at the top generates a current that is
proportional to the 2-bit weight. The proportionality constant
is controlled through analog biases. This current charges up the
Cstp capacitor through the diode connected p-FET Mg3 so that
at steady state, the gate voltages of Mg; and My, are equal.
A pre-synaptic pulse on the PW port activates the I, current
branch, and produces a current that initially is proportional to
the 2-bit weight original current. At the same time, the PW pulse
activates also the STD branch through transistor Mgs and an
amount of positive charge that is controlled by the bias STD is
removed from the capacitor Csrp. The gate voltage of My, is
now momentarily lower than that of Mg;, and recovers slowly
through the diode connected p-FET Mgs. Pulses that arrive before
the capacitor voltage has recovered completely will generate a
current that is smaller than the original one, and will further
depress the effective synaptic weight through the STD branch.
The excitatory block is only active if the E/I voltage is high. If E/I
is low, the inhibitory current DAC in the right panel of Figure 9B
is active and generates a weight-proportional inhibitory current
on PW pulses.

Figure 10 illustrates how the STD behavior in the synapse:
a spike burst was used to activate a programmable synapse.
This resulted in a drop in synaptic efficacy during the later part

of the burst. During a period of no stimulation the synapse
recovered and responded with large Excitatory Post-Synaptic
Potentials (EPSPs) to the initial part of the following burst,
before depressing again. The responses to the two bursts are not
identical in Figure 10 as the state of the neuron, synapse, and DPI
circuits are not exactly the same at the onset of each burst.

2.2.4. The Peripheral Input/Output Blocks

The peripheral digital circuits are used to transmit signals into
and out of the chip. Given the real-time nature of our system,
we use asynchronous digital circuits and quasi-delay-insensitive
circuit design techniques (Manohar, 2006) to avoid discretization
or virtualization of time. The AER communication protocol used
encodes signals as the address of the destination synapse or as a
control word for the input side, and as the address of the sender
neuron in the output circuits.

2.2.4.1. AER input circuits

Input spike events as well as chip configuration events are sent
through a common input interface that uses a 21-bit address
space. Input addresses are decoded into a total of 1,249,553
possible patterns subdivided into three categories: Addressing,
Local configuration, and Global configuration. Addressing inputs
are decoded into a row and column address and are interpreted
as a spike Address-Event (AE), which are sent to the desired
target synapse of a target neuron. Local configuration AEs contain
the row and column address of the target element as well as
extra configuration bits that are written to the local latches
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FIGURE 9 | Short-term plasticity synapse array element. (A) Block diagram of the synapse element. (B) Transistor level schematic diagram of the excitatory and
inhibitory pulse-to-current converters.

of the addressed element. Local configuration patterns include
commands for setting the type of synapse, programming its
weight, or enabling broadcast or recurrent connections. Finally,
the Global configuration inputs are decoded into configuration
signals that represent global variables, stored onto registers
in the periphery (rather than within the synapse or neuron
elements). For example, the signals used to set the state of
the synapse de-multiplexer are Global configuration signals.
See the Supplementary Material for additional details on these
circuits.

2.2.4.2. AER output

Each of the 256 neurons is assigned an 8-bit address for the
output bus. When a neuron spikes, its address is instantaneously
sent to the output AER circuits using the common four-phase
handshaking scheme. Although neurons operate in a fully parallel

fashion, their AEs can only access the shared output bus in a
serial fashion. To manage possible simultaneous spike collisions
the output AER circuits include an arbiter circuit that only grants
access to the external bus to one neuron at a time. Details of these
circuits are provided in the Supplementary Material.

3. Results

Here we demonstrate the capabilities of the ROLLS
neuromorphic processor device with examples of hardware
emulation of computational neuroscience models and pattern
recognition in a machine vision task.

3.1. Attractor Networks
In this experiment we explored the collective dynamics of
multiple populations of spiking silicon neurons that emulate
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FIGURE 10 | The effect of short-term depression on EPSC magnitudes.
Two bursts separated by 100 ms were sent to a programmable synapse. Each
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and the magnitude of the EPSCs it generates decreases. After the first burst,
the synapse efficacy recovers as can be seen in the response to the second
burst. The figure inset shows the derivative of the membrane potential which is
equivalent to the synaptic EPSCs (minus the neuron leak).

the biophysics of cortical neurons organized in attractor
networks (Amit, 1992). These types of networks are considered
a basic computational primitive of neural processing systems.
Their ability to exhibit self sustained activity is thought to be
one of the basic requirements for exhibiting multiple types of
cognitive processes and functions. Their collective dynamics
represents the neural correlates of processes involved in working
memory, perceptual decision making and attention.

We implemented the hardware attractor networks following
the theories and methods proposed in Amit (1992); Wang (1999);
Amit and Mongillo (2003); Del Giudice et al. (2003); Giulioni
etal. (2012). We constructed an architecture comprising six pools
of neurons recurrently connected. Specifically, there are three
pools of 64 excitatory neurons and three pools of 10 inhibitory
neurons. Neurons in each pool receive local excitation via
recurrent connections implemented via the on-chip long-term
synaptic plasticity circuits. In Figure 11 each point represents
a synaptic contact (i.e., an active synapse in the corresponding
STP or LTP synaptic matrix). The recurrent connectivity via
the LTP synapses is set to have a probability of 70% for the
excitatory connections and 40% for the inhibitory ones, i.e., they
have connectivity parameters ¢;, = 0.7, ¢}, = 0.4, respectively
(see dots in Figure 11A). We further configured the connectivity
matrix of the STP synapses such that every excitatory pools of
neurons is homogeneously connected with all other excitatory
pools with excitatory connectivity parameter cg, 0.2 and
inhibitory connectivity parameter ci, = 0.2. Inhibitory pools of
neurons are connected to their corresponding excitatory pools
(e.g., inhibitory pool #1 is connected to excitatory pool #1) via
inhibitory synapses, with a connectivity parameter ci; 0.4.
Excitatory pools of neurons are connected to their respective
inhibitory pools of neurons via the STP excitatory synapses,
with a connectivity parameter ¢, = 0.7. The behavior of the
network when stimulated by a external transient stimuli is shown
in Figure 11B. The profile of the external stimuli is depicted by

the square waves below the plot of Figure 11B. The different
colors indicate inputs to the different corresponding populations.
The input stimuli are a series of Poisson spike trains, generated
artificially and sent via the AER protocol to the chip virtual
synapses. The mean rate of the input spike trains is v;, = 100 Hz
and their duration is t = 0.5s. When the attractor networks are
being driven by external stimuli their activity reaches a mean
rate of approximately 50 Hz and, after the removal of these
stimuli, the pools of neurons relax to a sustained state of activity
of about 15Hz, indicating that the neurons settled into their
attractor states. This persistent activity is the neural correlate
of working memory and can be exploited as an asynchronous
distributed memory state that has peculiar dynamical properties
of error correction, pattern completion, and stability against
distractors (Amit, 1992).

If a population is in an attractor state, a transient stimulus
to a different pool of neurons shuts down its activity via direct
inhibitory connections (on the STP synaptic matrix), and brings
the newly stimulated pool of neurons into a new attractor state.
If we inhibit an active pool of neurons directly, with an external
stimulus the population is reset and becomes inactive. This is
evident in Figure 11B at ¢ 3s, when a Poisson stimulus of
mean rate v = 200 Hz is used to inhibit all attractor networks.
This experiment demonstrates how it is possible to implement
robust state dependent computation and reliable memory storage
using sets of 64 slow and imprecise silicon neurons. A similar,
but more elaborate experiment showing how these types of
circuits can be used to synthesize context-dependent behavior in
neuromorphic agents, in the context of cognitive computation
was recently presented in Neftci et al. (2013), using the same types
of circuits and principles. The implementation of plausible neural
collective dynamics in neuromorphic substrates is an important
step also for future nano-technologies that are likely to be affected
by device mismatch and unreliability characteristics.

3.2. Multi-Perceptron Network

Neuromorphic systems are an ideal electronic substrate for real-
time, low-latency machine vision (Serrano-Gotarredona et al,
2008; Delbruck and Lang, 2013; O’Connor et al., 2013). Here
we present a feasibility study which demonstrates how the
ROLLS neuromorphic processor can be used in conjunction
with a spiking vision sensor for learning to solve an image
classification task. In this experiment (see Figure 12), we used a
DVS, interfaced to our chip via a commercially available digital
board, used to route signals from the vision sensor to the chip. We
implemented a two-layer spiking neural network which processes
the visual stimuli by extracting sparse random features in real-
time. The network is composed of 128 VLSI hidden neurons
and 128 VLSI output neurons on the ROLLS neuromorphic
processor. We trained 64 of the VLSI output neurons of the
network to become selective to one of two image classes, and
the other 64 to become selective to the other class, via supervised
learning protocol.

The experimental protocol consists of showing a sequence of
static images of objects from the Caltech 101 dataset coupled
with a teacher signal to steer the activity of the output neurons.
The DVS is put in front of a screen where the images are
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displayed. During the presentation, the images are flashed with
a small jitter around the center of the visual field to simulate
microsaccadic eye movements. The movement causes the DVS
retina to continuously stream spike trains corresponding to the
edges of the objects in the image. The spike trains are then routed
to the STP synapse array, stimulating a population of neurons
corresponding to the hidden layer of the neural network. The
spikes from the hidden layer neurons are internally routed to
the LTP plastic synapse array, thus activating the neurons of the
output layer. With every training image, a corresponding teacher
signal is provided to one of the two subgroups of the output
layer neurons, depending on the image class, to associate stimulus
with class. To remove artifacts generated during the transition
from one presentation of an image to the next, we gated the DVS
spikes, simulating a saccadic suppression mechanism analogous
to the one observed in biology (Ross et al., 1996).

The performance of this experiment strongly depends on
the right choice of parameters for the neural and synaptic
dynamics. For this particular demonstration we chose to
disable most of the complex aspects of the neural dynamics
and optimized neuron and synapse parameters to obtain
reasonable activity patterns in the hidden layer neurons. The
activity in this layer is indeed the most important since it
drives the plastic synapses that belong to the output layer
neurons.

After training, our classification system was able to respond
selectively to natural images of cars and motorbikes taken from
the Caltech 101 database. Although an extensive characterization
of the system’s ability to perform object recognition is out of the
scope of this work, we draw the following conclusions from our
experiment:

e The choice of fixed, random projections from the input layer
was surprisingly effective, though certainly not optimal for the
task at hand.

e A better solution would be to include an unsupervised learning
stage in the training protocol to optimize the weights of
the convolution layer as in traditional machine learning

approaches (LeCun et al., 1998; Le et al., 2012) and in neural
systems (Olshausen and Field, 1997; Masquelier et al., 2009;
Nessler et al., 2009). However, this stage would require the
presentation of a large number of patterns and sophisticated
synaptic plasticity rules.

Our network of randomly connected neurons projects the
input stimuli into a high-dimensional space where they can
be classified by linear models but with far less parameter
optimization (Barak and Rigotti, 2011). This strategy is related
to some of the state-of-the-art machine learning algorithms
for pattern classifications, such as Support Vector Machines
(SVMs) (Vapnik, 1995). Clearly, the generalization properties of
our system are not comparable to standard machine learning
approaches but they are also expected to scale with the number
of randomly connected neurons in the hidden layer (Rigotti
et al,, 2010; Barak et al., 2013). Notice also that we haven’t
exploited any temporal structure of the input data, though
we recently demonstrated that our hardware supports this
functionality (Sheik et al., 2012a,b, 2013). For cases in which
the temporal structure of the input stimuli is relevant, it would
be possible to follow alternative approaches, for example by
interconnecting the neurons in the hidden layer to form a Liquid
State Machine (LSM) (Maass et al., 2002). This solution would be
particularly interesting in situations where information hidden in
the fine temporal structure is expected to impact the performance
of the recognition system. Also for this approach, it would be
sufficient to provide an output layer analogous to the one used
in our experiment, that could be trained in an analogous way. In
our example we used multiple neurons clustered into two distinct
pools in the output layer for our simple two-class discrimination
problem, (e.g., instead of using just two output neuron units).
The rationale behind this choice is that, given the many sources
of noise in the system (the micro-saccadic movements, the DVS
spiking output, the stochastic plasticity mechanism, the hardware
mismatch), each neuron taken singularly is not expected to
perform well on the task (i.e., it will implement a “weak” classifier,
showing low class specificity). However, the performance of the
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FIGURE 12 | (A) Image classification example using inputs from a DVS.
(A) Top: neural network architecture. Two different classes of images
(here motorbikes or cars) are displayed on a screen with a small jitter
applied at 10Hz. A random subset of the spikes emitted by the DVS
are mapped to 128 hidden layer neurons. Specifically, each of the 128
neurons is connected to 64 randomly selected pixels with either positive
or negative weights, also set at random. The output neurons in the last
layer receive spikes from all the 128 hidden layer neurons, via plastic
synapses. The output layer neurons are also driven by an external
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“teacher” signal which is correlated with one of the image classes. (A)
Bottom: diagram of the experimental protocol timeline. Notice the
presence of a saccade inhibition mechanism which electronically
suppresses DVS input during a virtual saccade, i.e., when the displayed
image is replaced with the next one. (B) Synaptic matrices of the
ROLLS neuromorphic processor showing the hardware configuration of
the classification neural network. The STP synapses represent the
synapses of the hidden layer; the LTP synapses represent the synapses
of the output layer.

overall system improves as responses aggregated from multiple
neurons are considered. This can be visually appreciated from
the raster plots of Figure 13 where only population-level firing

rates are selective for the input classes, but not the single neuron
activities. This phenomenon is directly related to a notorious
machine learning technique that uses “boosting” to improve the
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FIGURE 13 | Spiking activity of the hardware neurons during the
training (upper panel) and testing phase (middle and lower panels).
Left column: examples of raw images from the Caltech 101 database.
Middle column: heat map of the DVS spiking activity, where each pixel color
represents the pixel’s mean firing rate. Right column: raster plots of the
ROLLS neuromorphic processor neurons. The star on the top panel label
indicates that during the training phase an additional excitatory “teacher”
signal was used to stimulate the “car” output neurons to induce plasticity.
During testing no teacher signal is provided and only the excitatory currents
from the input synapses drive the classifier activities. The average firing rates of
the output layer for “motorbike” and “car” neuron pools are 6.0 Hz and

80.9 Hz during training. During testing with a “car” image they are 7.1 Hz and
11.1 Hz. During testing with a “motorbike” image they are 7.4 Hz and 4.9 Hz.

performance of weak-classifiers (Breiman, 2001; Schapire and
Freund, 2012).

4. Discussion

Unlike conventional von Neumann processors that carry out
bit-precise processing and access and store data in a physically
separate memory block, the ROLLS neuromorphic processor
uses elements in which memory and computation are co-
localized. The computing paradigm implemented by these types
of neuromorphic processors does not allow for the virtualization
of time, with the transfer of partial results back and forth between
the computing units and physically separate memory banks at
high speeds. Instead, their synapse and neuron circuits process
input spikes on demand as they arrive, and produce their output
responses in real-time. Consequently, the time constants of the
synapses and neurons present in these devices need to be well-
matched to the signals the system is designed to process. For the
case of real-time behaving systems that must interact with the
environment, while processing natural signals in real-time, these
time constants turn out to be compatible with the biologically
plausible ones that we designed into the ROLLS neuromorphic
processor. As we implemented non-linear operations in each
synapse (such as short-term depression or long-term plasticity),
it is not possible to time-multiplex linear circuits to reduce the
area occupied by the synaptic matrix array. As a consequence,
our device is essentially a large memory chip with dedicated
circuits for each synapse that act both as memory elements and

computing ones. This approach is complementary to other recent
ones that focus on accelerated neural simulations (Bruederle
et al, 2011), or that target the real-time emulation of large
populations of neurons but with no on-chip learning or adaptive
behaviors at the synapse level (Benjamin et al., 2014).

The device we describe here is ideal for processing sensory
signals produced by neuromorphic sensors (Liu and Delbruck,
2010) and building autonomous behaving agents. The system
level examples demonstrated in Section 3 show how this can be
achieved in practice: the hardware attractor network experiment
focuses on the idea that the functional units of the cortex are
subset of neurons that are repeatedly active together and shows
that such units have the capability of storing state-dependent
information; the pattern classification experiment demonstrates
how it is possible to implement relatively complex sensory
processing tasks using event-based neuromorphic sensors.

Our results demonstrate the high-degree of programmability
of our device as well as its usability in typical application
domains. Its properties make it an ideal tool for exploring
computational principles of spiking systems consisting of both
spiking sensors and cortical-like processing units. This type
of tools are an essential resource for understanding how to
leverage the physical properties of the electronic substrate
as well as the most robust theories of neural computation
in light of the design of a new generation of cortex-like
processors for real-world applications. The multi-chip system is
supported by the use of a newly developed software front-end,
PyNCS, which allows rapid integration of heterogeneous spiking
neuromorphic devices in unique hardware infrastructure and
continuous online monitoring and interaction with the system
during execution (Stefanini et al., 2014). In order to integrate
the DVS and ROLLS in the existing software and hardware
infrastructure, it was necessary to list the address specifications
for the spiking events and for the configuration events in
Neuromorphic Hardware Mark-up Language (NHML) files, the
neuromorphic mark-up language used by PyNCS to control the
neuromorphic system.

The potential of the approach proposed in this work for
building intelligent autonomous systems is extremely high, as
we develop brain-inspired computing devices embedded with
learning capabilities that can interact with the environment in
real time. Substantial progress has already been made in the
theoretical domain (Schoner, 2007; Rutishauser and Douglas,
2009), and preliminary results have already been demonstrated
also with neuromorphic cognitive systems (Neftci et al., 2013)
synthesized by the user. The ROLLS neuromorphic processor
described in this work can therefore contribute to extending
the current state-of-the-art by providing also adaptation and
learning mechanisms that could allow these systems to learn
the appropriate network properties to implement autonomous
cognitive systems.

5. Conclusions

We presented a mixed-signal analog/digital VLSI device
for implementing on-line learning spiking neural network
architectures with biophysically realistic neuromorphic circuits
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such as STP synapses, LTP synapses and low-power, low-
mismatch adaptive I&F silicon neurons. The proposed
architecture exploits digital configuration latches in each
synapse and neuron element to guarantee a highly flexible
infrastructure for programming, with the same device, diverse
spiking neural network architectures.

All the operations of the chip are achieved via asynchronous
AE streams. These operations include sending events to the
chip, configuring the topology of the neuron network, probing
internal variables, as well as programming internal properties
of synapse and neurons. The parameters for different synapse
and neuron behaviors can be fine tuned by programming the
temperature-compensated on-chip BG.

The ROLLS neuromorphic processor can be used to carry
out basic research in computational neuroscience and can be
exploited for developing application solutions for practical tasks.
In particular, this architecture has been developed to study spike-
based adaptation and plasticity mechanism and to use its ability
to carry out on-chip on-line learning for solving tasks that require
the system to adapt to the changes in its input signals and in the
environment it interacts with.
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