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Introduction

The central question of this Frontiers Research Topic is: What can we learn from brain and other
physiological signals about an individual’s cognitive and affective state and how can we use this
information? This question reflects three important issues which are addressed by the 22 articles
in this volume: (1) the combination of central and peripheral neurophysiological measures; (2) the
diversity of cognitive and affective processes reflected by these measures; and (3) how to apply these
measures in real world applications.

Neurophysiological Measures and Real World Applications

Let us first look at the last issue as it is an important driver of the current research and dictates
choices related to the first two, for instance when a specific application requires sensor technology
to be portable and easy to set up with little calibration time (Gerjets et al., 2014; Huang et al.,
2014; Estepp and Christensen, 2015). The authors of this Research Topic describe a wide variety of
applications. Many studies follow a so-called passive Brain-Computer Interface approach (Zander
andKothe, 2011): assessing typically covert aspects of the user state without interfering with the task
the user is doing. Applications addressed in this volume include improved learning and training
environments (Gerjets et al., 2014; Stikic et al., 2014), adaptive vehicle interfaces (Dijksterhuis et al.,
2013; Touryan et al., 2014; Wang et al., 2014), classifying concealed information (Farwell et al.,
2014), identifying sleep stages (Huang et al., 2014), and non-verbal communication for patients
(Kashihara, 2014). Making these applications viable is not trivial. It requires experiments outside
a well-controlled lab environment as initiated in several studies here (Dijksterhuis et al., 2013;
Betella et al., 2014; Huang et al., 2014; Lin et al., 2014; Stuiver and Mulder, 2014) and knowledge
and technological advancements in the area of classification algorithms that require little training
data, are robust against environmental and physiological artifacts in the recorded signal, are able
to work in real-time and on single trial data, and generalize over tasks. Unlike a lab experiment
where participants are usually instructed to sit still and to perform one single task, users in real
world situations will usually be in motion, subject to changing cognitive load or emotional state,
and/or be multitasking (Van Erp et al., 2012). Several authors focus on developing methods able
to cope with these added complexities in life-like situations. For example, Betella et al. (2014)
assesses the reliability of psychophysiological signals reflecting emotional state when people are
walking and gesticulating. Mühl et al. (2014) look into the effect of emotional state on workload
measures, and show that cross-context classifier training is able to compensate for accuracy
decline caused by changes in emotional state (especially so for indices in the frequency domain).
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Touryan et al. (2014) are able to model the time-on-
task decrements in performance by analyzing neural activity.
Chavarriaga et al. (2014), Vijgh et al. (2014) and Wang et al.
(2014) give examples of real time classification. Vijgh et al. (2014)
aim to asses stress state and adjust stressor intensity in a gaming
environment in real time, Wang et al. (2014) are able to detect
the effectiveness of a drowsiness warning system and continuous
signatures of fatigue, Chavarriaga et al. (2014) develop single-trial
error-related potential recognition in order to improve human-
computer interaction, and Estepp andChristensen (2015) present
initial proof that electrodes can be removed and replaced between
sessions without dramatic loss in performance. Gerjets et al.
(2014), Stikic et al. (2014), Stuiver and Mulder (2014) and
Touryan et al. (2014) tackle the question about generalizability
over tasks. This is an important issue because if the models
and algorithms are highly task-specific, it would mean that each
application has to start from scratch in choosing the optimal
parameters, gathering data and building classification algorithms.
Generic classifiers can possibly shorten the calibration time,
increasing the usability and applicability. Stuiver and Mulder
(2014) investigate and try to grasp differences in the physiological
patterns of an ambulance dispatcher task and driving. Stikic et al.
(2014) and Touryan et al. (2014) focus on the validity of their
algorithms for different tasks: marksmanship and golf (Stikic
et al., 2014), and driving and perceptual discrimination (Touryan
et al., 2014). It is not surprising that many authors look at ways to
further improve signal processing and classification techniques
including neural networks (Casson, 2014; Stikic et al., 2014),
feature fusion (Putze et al., 2014), and elastic nets (Hogervorst
et al., 2014).

Constructs of Interest

The wide range of foreseen applications also illustrate the
broadness of the constructs of interest. Workload, stress, and
emotion are classic examples, but there is also an increasing
interest in the ability to determine what information the
brain is processing (Pineda et al., 2013; Lin et al., 2014)
and for instance whether this is visual or auditory (Putze
et al., 2014), which in turn links to the multitasking challenge
of real world applications. Additional contributions to this
area come from studies into new paradigms to evoke specific
states as discussed by Gerjets et al. (2014). For instance,
Vijgh et al. (2014) describe an automated stress induction
and control application and Brouwer and Hogervorst (2014)
describe an elegant, simple and ethically acceptable way of
inducing mental stress that results in physiological responses
comparable to those induced by the Trier Social Stress
Test.

Combining Central and Peripheral

Neurophysiological Measures

The complexity of the constructs to be measured, and the fact
that (neuro-) physiological indices only provide indirect access
to them forces this field to explore and combine measures from
different sources. Quite novel are particular combinations of
central and peripheral measures and combinations of different

central sensors (more specifically EEG and NIRS). Strait and
Scheutz (2014) start with an interesting analysis of what we can
and cannot (yet) do with fNIRS and Putze et al. (2014) provide
an example that fusing EEG and fNIRS features can increase the
accuracy of classification. Stikic et al. (2014) combine ECG and
EEG derived measures to correlate physiological changes with
training progress, and Hogervorst et al. (2014) determine the
workload classification accuracy of EEG, ECG, skin conductance
and eye-based measures, alone and in combination. This study
contributes to the long-lasting dispute about the best workload
measures in favor of EEG-derived indices. More particular,
information derived from a single electrode location (Pz) turns
out to be an adequate workload predictor. Finally, papers also
demonstrate the use of a wide variety of indices from a single
source, for instance EEG is analyzed both in the time domain
(P3 event related potentials, Farwell et al., 2014 and error-related
potentials, Chavarriaga et al., 2014) and the frequency domain (as
workload index, Mühl et al., 2014 or in both, Hogervorst et al.,
2014). Finally, Gerjets et al. (2014) and Zander and Jatzev (2012)
argue that contextual information can be a useful addition to
neurophysiological measures.

Concluding Remarks

The papers in this special issue show that the field of applied
(neuro-) physiology is progressing in many aspects, especially
in EEG-based passive Brain-Computer Interfaces. This is not to
say that there are no remaining issues, but the field seems to be
well-aware of the challenges it is facing (Gerjets et al., 2014; Strait
and Scheutz, 2014; Brouwer et al., 2015) and the knowledge and
technological breakthroughs it requires on the way to real-world
applications. Also in order here is a word of caution: there are
many potential pitfalls in using neurophysiological measures as
listed by (Gerjets et al., 2014; Brouwer et al., 2015). However,
and as also indicated, there are ways around them. The steps
currently taken in applied neurophysiology also touch on other
issues, such as ethics, acceptance of the technology by the general
public, privacy of users, and the possible effects that these kinds
of applications may have on society as a whole. These are not
covered in this issue, but should also be borne in mind (Van Erp
et al., 2012).
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