
ORIGINAL RESEARCH
published: 08 June 2015

doi: 10.3389/fnins.2015.00206

Frontiers in Neuroscience | www.frontiersin.org 1 June 2015 | Volume 9 | Article 206

Edited by:

Themis Prodromakis,

University of Southampton, UK

Reviewed by:

Omid Kavehei,

University of Melbourne, Australia

Konstantin Nikolic,

Imperial College London, UK

*Correspondence:

Xavier Lagorce,

Centre National de la Recherche

Scientifique UMR 7210, UMR S968

Inserm, Vision Institute, CHNO des

Quinze-Vingts, Université Pierre et

Marie Curie, 17 Rue Moreau,

75012 Paris, France

xavier.lagorce@upmc.fr

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 20 March 2015

Accepted: 23 May 2015

Published: 08 June 2015

Citation:

Lagorce X, Stromatias E, Galluppi F,

Plana LA, Liu S-C, Furber SB and

Benosman RB (2015) Breaking the

millisecond barrier on SpiNNaker:

implementing asynchronous

event-based plastic models with

microsecond resolution.

Front. Neurosci. 9:206.

doi: 10.3389/fnins.2015.00206

Breaking the millisecond barrier on
SpiNNaker: implementing
asynchronous event-based plastic
models with microsecond resolution
Xavier Lagorce 1*, Evangelos Stromatias 2, Francesco Galluppi 1, Luis A. Plana 2,

Shih-Chii Liu 3, Steve B. Furber 2 and Ryad B. Benosman 1

1 Equipe de Vision et Calcul Naturel, Centre National de la Recherche Scientifique UMR 7210, UMR S968 Inserm, Vision

Institute, CHNO des Quinze-Vingts, Université Pierre et Marie Curie, Paris, France, 2 Advanced Processors Technologies

Research Group, School of Computer Science, University of Manchester, Manchester, UK, 3 Institute of Neuroinformatics,

University of Zürich and ETH Zürich, Zürich, Switzerland

Spike-based neuromorphic sensors such as retinas and cochleas, change the way in

which the world is sampled. Instead of producing data sampled at a constant rate,

these sensors output spikes that are asynchronous and event driven. The event-based

nature of neuromorphic sensors implies a complete paradigm shift in current perception

algorithms toward those that emphasize the importance of precise timing. The spikes

produced by these sensors usually have a time resolution in the order of microseconds.

This high temporal resolution is a crucial factor in learning tasks. It is also widely used in

the field of biological neural networks. Sound localization for instance relies on detecting

time lags between the two ears which, in the barn owl, reaches a temporal resolution of

5 µs. Current available neuromorphic computation platforms such as SpiNNaker often

limit their users to a time resolution in the order of milliseconds that is not compatible

with the asynchronous outputs of neuromorphic sensors. To overcome these limitations

and allow for the exploration of new types of neuromorphic computing architectures,

we introduce a novel software framework on the SpiNNaker platform. This framework

allows for simulations of spiking networks and plasticity mechanisms using a completely

asynchronous and event-based scheme running with a microsecond time resolution.

Results on two example networks using this new implementation are presented.

Keywords: SpiNNaker, neuromorphic, event-based models, microsecond, asynchronous, plasticity

1. Introduction

The ability of neurons to fire stereotypical action potentials with a very high temporal resolution,
observed both in vivo (Chang et al., 2000; Tetko and Villa, 2001) or in vitro (Mao et al., 2001),
points at the importance of temporal precision in neural coding. Bair and Koch (1996) analyzed
the temporal properties of neurons in the medial temporal (MT) area of monkeys by using single-
cell recordings. They demonstrated that 80% of the cells in area MT are capable of responding
with a jitter of less than 10 ms, while the most precise cells have a jitter of less than 2 ms. At the
sensory end, ganglion cells are known to emit action potentials with a time resolution in the range
of milliseconds (Berry et al., 1997; Gollisch andMeister, 2008). However, some neurons can encode

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00206
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:xavier.lagorce@upmc.fr
http://dx.doi.org/10.3389/fnins.2015.00206
http://journal.frontiersin.org/article/10.3389/fnins.2015.00206/abstract
http://community.frontiersin.org/people/u/173095
http://community.frontiersin.org/people/u/173788
http://community.frontiersin.org/people/u/125050
http://community.frontiersin.org/people/u/185595
http://community.frontiersin.org/people/u/14463
http://community.frontiersin.org/people/u/71641
http://community.frontiersin.org/people/u/94237

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

signals which are even faster than their own dynamics. Softky
(1994) suggests that dendritic trees can be responsible for high-
temporal coincidence detection with time constants faster than
the ones of their neural membrane. Gerstner et al. (1996) have
addressed this apparent paradox by using as an example the
auditory system of the barn owl. They can locate a target sound
with a precision of a couple of degrees, corresponding to a
resolution of 5 µs. They show how neurons, which have synaptic
and membrane time constants orders of magnitude larger, can
phase-lock and respond to signals arriving coherently in a short
time window. Learning plays a crucial role in shaping such
connectivity, and in tuning cells to preferential input phases.
Plasticity also mediates cross-modal interactions to give rise to
the precise sound localization system in the owl (Gutfreund
et al., 2002; Knudsen, 2002), where visual and auditory inputs
are combined together to shape the neural circuitry responsible
of such great temporal precision.

As the extent of the precision needed by models of spiking
neural networks is still a matter of debate, having neural
platforms capable of rapidly acquiring and generating sensory
data at high temporal resolution becomes a valuable asset
for scientific research. While mixed-mode VLSI multi-neuron
chips can support high temporal resolutions by processing
continuous analog signals (Indiveri et al., 2006; Brink et al.,
2013; Benjamin et al., 2014), time-stepped digital platforms
are bounded by the operating frequency of the global clock
(Furber and Temple, 2007; Merolla et al., 2014). In order to
investigate questions about required temporal precision in neural
networks, we introduce a novel programming framework for
SpiNNaker (Furber et al., 2014), a digital parallel architecture
oriented to the simulation of large scale models of neural tissue.
The approach introduced in this work leverages the event-
driven nature of the platform to perform simulations with
increased temporal resolution. We introduce a new collection
of tools (spike sources and monitors, neural and plasticity
models) oriented to sub-millisecond event-driven simulations
and characterize the temporal behavior of the platform at
different levels.

The paper is organized as follows: Section 2 describes
the hardware and software architecture of SpiNNaker and its
current limitations. Section 3 introduces our novel programming
framework and the components provided for sub-millisecond
simulation. Section 4 reports the time characterization of the
platform using a new method for measuring latencies. It also
present results from two example network models (sound
localization and learning of temporal patterns) which require
sub-millisecond precision. The networks are implemented in
real-time on a 48-chip SpiNNaker board using the novel set
of tools presented in this work. Finally the Conclusion Section
summarizes the key temporal aspects of the software and models
introduced in this paper.

2. The SpiNNaker Platform

This section describes the hardware and software aspects of the
SpiNNaker platform and the current limitations of the software
implementation related to time resolution.

2.1. Hardware
The SpiNNaker chip is an application specific integrated
circuit (ASIC) designed to realize large-scale simulations of
heterogeneous models of spiking neural networks in biological
real-time (Furber et al., 2014). Each SpiNNaker chip, Figure 1A,
comprises 18 identical ARM968 cores each with its own local
tightly-coupled memory (TCM) for storing data (64 kilobytes)
and instructions (32 kilobytes). All cores have access to a shared
off-die 128 megabytes SDRAM, where the relevant synaptic
information is stored, through a self-timed system network-on-
chip (NoC).

At the center of the chip lies a packet-switched multi-
cast (MC) router (Wu and Furber, 2010) responsible for
communicating the spikes to the local cores or to neighboring
chips through 6 asynchronous bi-directional links. The router
is capable of handling one-to-many communications efficiently,
while its novel interconnection fabric allows it to cope with
very large numbers of very small packets. Spikes are transmitted
as 40 or 72 bit MC packets implementing the Address-Event
Representation (AER) (Mahowald, 1994) scheme, where the
information transmitted is the address of the firing neuron.
Each packet consists of an 8 bit packet header, a 32 bit routing
key identifying the neuron that fired and an optional 32 bit
payload which is not normally used for neural applications
(Wu and Furber, 2010). Every core within a SpiNNaker chip
includes a communications controller which is responsible for
generating and receiving packets to and from the router through
an asynchronous communications NoC.

By combining multiple SpiNNaker chips together larger
systems are formed. The SpiNNaker board with 48 chips
(SpiNN-4), Figure 1B, is the largest prototype system available
to-date and is currently being used as the building block
for forming larger SpiNNaker machines. The SpiNN-4 board
has 864 ARM9 cores, 768 of which can be used for neural
applications, while 1 core per chip is dedicated for monitoring
purposes and an additional one for fault-tolerant purposes
(Furber et al., 2013). Additionally, there are 3 Xilinx Spartan-
6 field programmable gate arrays (FPGA) chips that are used
for inter-board communication purposes through the 6 high-
speed SATA links. A previous study (Stromatias et al., 2013)
demonstrated that a SpiNN-4 board is capable of handling up
to a quarter of a million neurons (with millisecond update),
with millions of current-based exponential synapses generating
an activity of over a billion synaptic events per second, while
each chip dissipating less than 1 Watt. The final SpiNNaker
machine will utilize approximately 1000 SpiNN-4 boards and it
aims at simulating a billion neurons with trillions of synapses in
biological real-time.

2.2. Software
The SpiNNaker software can be divided into two parts, the
software running on the chips and on the host. Each SpiNNaker
chip runs an event-based Application Run-time Kernel (SARK)
that has two threads, the scheduler and the dispatcher. The
scheduler is responsible for queuing tasks based on a user-
defined priority, while the dispatcher de-queues and executes
them starting with the highest-priority task. Tasks with priorities

Frontiers in Neuroscience | www.frontiersin.org 2 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

FIGURE 1 | System overview: (A) shows a plot of the SpiNNaker chip die, while (B) shows the largest prototype which consists of 48 SpiNNaker chips.

set to minus one are pre-emptive, zero task priorities are non-
queueable and are executed directly from the scheduler, while
tasks with priorities set to one and above are queueable (Sharp
et al., 2011).

The SpiNNaker application programming interface (API) is
built on top of SARK and allows users to write sequential C code
to describe event-based neuron and synapse models by assigning
callback functions that respond to particular system events. Some
example events are:

• Timer Event: A user-defined periodic event, usually set to 1
ms, which is used to solve the neural equations and update the
synaptic currents.

• Packet Received Event: An event is triggered every time a
core receives a spike (MC packet). It initiates a Direct Memory
Access (DMA) transfer in order to fetch the pre-synaptic
information from the SDRAM to the local memory. This DMA
operation is autonomous, the ARM core may handle pending
events or enter into a power-saving sleep mode.

• DMA Done Event: This event is generated by the DMA
controller to inform the core that a DMA transfer has been
completed. Each synaptic weight and conductance delay gets
updated.

If there are no pending tasks the cores enter a low-power “sleep”
mode.

On the host side PyNN (Davison et al., 2009), a high-level
simulator-independent neural specification language, is used that
allows users to described neural topologies and parameters using
abstractions such as populations and projections. A tool named
partition and configuration management (PACMAN) (Galluppi
et al., 2012b) is responsible for mapping a PyNN description
to a SpiNNaker machine based on the available resources,
generating and uploading the relevant binary files, initiating

a simulation and fetching the results to the host for further
analysis.

2.3. Limitations of the Current Implementation
In the SpiNNaker software available at the time of this work,
neural models are implemented in a time-driven fashion. These
models use the Timer event (see Section 2.2) to periodically
update the state of the simulated neurons with a given
timestep. Parallel to that update process, incoming spikes to
the implemented neural population are processed through the
Packet Received Event (see Section 2.2). This event looks
up the different synaptic weights and delays relative to each
connection. When the synaptic delay has been retrieved, the
future contribution of the spike to the membrane potential of a
given neuron is stored in its associated Post-Synaptic Potential
buffer (PSP buffer). To implement the actual delay, the PSP
buffers are ring buffers comprising one cell per simulation
timestep. The periodic update process can then read this value at
the timestep they need to be applied. This process is represented
in Figure 2.

This implementation implies a trade-off between time
resolution andmemory usage. Thememory space required by the
PSP buffers is proportional to :

• the number of neurons simulated by the core (one buffer per
neuron),

• the maximum synaptic delay allowed
• the resolution of the timestep

The standard implementation uses a maximum delay of 16 ms
with a time resolution of 1 ms to simulate 100 neurons per core.

These values have been chosen taking into account spike
propagation delays and the memory footprints of the synaptic
buffers. Spike propagation in large SpiNNaker machines is

Frontiers in Neuroscience | www.frontiersin.org 3 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

FIGURE 2 | Working principle of the PSP buffers: (A) a MC packet is

received, carrying an incoming spike. It triggers a DMA transfer. (B) As a

result, the DMA Done event is triggered when the synaptic data associated

with the spike is retrieved from SDRAM. (C) Synapses related to this spike

are processed and their contributions are stored in the PSP buffers of the

targeted neurons in the cell of the buffer corresponding to the synaptic

delays. (D) When the next Timer Event is issued, the update process reads

the contributions of previously received spikes for the current timestep and

adds them to the neurons’ membrane potential after updating its value

(according to the used neural model).

guaranteed to happen within 1 ms. Original time-driven neural
models on SpiNNaker therefore have a 1 ms time resolution.

If we want to introduce a time resolution of 1 µs and to
keep the same maximum delay, the memory requirements of
the PSP buffers increase a thousand times. Moreover, increasing
the time resolution means that the periodic update process will
be executed more often and thus will have less time to update
the state of the population. Going from a millisecond to a
microsecond resolution will reduce the time available for state
update by a factor of 1000.

It is possible to consider these trade-offs but this results
in an dramatic decrease of the number of neurons which can
be simulated on a core, going from 100 neurons to only a
handful of neurons. Implementing huge neural networks with
microseconds resolution is thus not practical with the current
available implementation.

3. Going Beyond the Millisecond

This section describes the changes to the standard SpiNNaker
software package we implemented to allow simulation with

microsecond precision. The changes to the base tools are first
discussed, then new neural models are introduced.

3.1. Tools and Support
3.1.1. SpiNNaker API
Applications written for the SpiNNaker cores rely on an
Application Programming Interface (API) provided by
SpiNNaker’s builders. This API provides a set of support
functions and a framework allowing the use of the different
resources offered by the hardware platform.

Firstly, measuring time with microsecond resolution had to
be added to the API which normally measures time with a
resolution corresponding to the timestep of the simulation (1 ms
by default). This can be easily implemented by using the more
precise value of the hardware counter already used by the API to
deduce the number of microseconds which have elapsed since the
last simulation timestep. This allows precise time measurements
without an extra cost in resources.

Secondly, all SpiNNaker events related to timings are based on
the simulation clock and thus inherit the timestep resolution. To
solve this problem, we use the second hardware timer available in

Frontiers in Neuroscience | www.frontiersin.org 4 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

the SpiNNaker cores to generate interrupts with a user settable
number of microseconds delay. This allows the scheduling of
events which will be triggered with microsecond resolution using
the existing framework.

3.1.2. Monitoring Spikes
To record spikes from a neural simulation in SpiNNaker, a
monitoring core runs a special application which collects spikes
from the populations selected for recording by the user and
sends them to a host computer, in charge of collecting simulation
results, while the simulation is running. This is done using a
special type of packet which can carry a payload of 256 bytes.

The current implementation of this monitoring application
sends a packet of spikes every millisecond. The timestamps of
the spikes are indicated in the header of the packet which can
then carry a total of 64 spikes. The same scheme cannot be used
for microsecond resolution: it would require sending up to a
packet every microsecond, potentially containing only one spike.
This would dramatically increase the overhead due to the packet
headers and would require the emission of too many packets.

To overcome this problem, we implemented a new
monitoring application. This core now stores incoming events
as a pair of values: (key, timestamp). The key corresponds to the
ID of the neuron which spiked and the timestamp indicates the
time, in microseconds, when this spike has been received. These
pairs are stored in buffers of 256 bytes (32 spikes), which are
sent to the shared SDRAM of the chip when full, using DMA.
Another process then reads these buffers from SDRAM and
sends packet containing the events to the host computer when
needed.

This allows more events to be recorded per millisecond
than the previous implementation, while allowing microsecond
resolution in their time of arrival. Moreover, the events can
be stored in SDRAM quicker than they are sent to the host
computer, allowing to increase the total amount of data which can
be acquired during the simulation (The user will just have to wait
for the data to be completely transferred to the host computer
after the end of the simulation). This scheme of pairing addresses
and timestamps is also used in other programs such as the jAER
program (jAER, 2007) and thus facilitates integration with such
tools for real-time software implementation.

3.1.3. Generating Input Spikes
A dedicated application exists to generate input spike trains
which appear to come for another population of neurons. The
application provided in the standard SpiNNaker implementation
uses a particular format to store this information. Spikes are
stored in bitmaps. For every simulation timestep, a chunk of
memory is read. In this memory portion, each bit codes for
one neuron of the source population. If the bit is set to 1, this
particular neuron has to produce a spike in the current timestep.
If the bit is set to 0, it has to remain silent.

Considering the usual sparseness of spike data, it would be
really inefficient to use the same scheme with microsecond
resolution. This would require an enormous amount of memory
directly proportional to the number of microseconds in the
simulation. To improve this process, we implemented a new

spike source application. This application represents spikes as
pairs of values: (ID, timestamp). The information is stored in
SDRAM by the host computer before the start of the simulation
and read via DMA throughout the simulation. When a spike is
produced, the application reads the time when the next spike
should be produced. This allows us to compute the wait time
before producing this next spike. An event is then scheduled in
the API to happen after this delay. This process goes on during
the whole simulation time until the end of the spike data. A
pipelined process using a double buffer technique allows one to
read the spike data from memory using DMA without adding
delays in the replay process sending them to the other neural
models of the simulation.

3.2. Neural Models
3.2.1. Dendritic Delays
As we can see from the standard implementation provided with
SpiNNaker, managing synaptic delays when simulating neurons
can lead to an important memory usage. To solve this problem,
we chose to implement these delays independently from the rest
of the neural simulation.

One dendritic delay core implements one particular delay
value. When a packet containing a spike is received, it is stored
in a ring buffer in DTCM (local memory of the core). Then, a
second process schedules events to dispatch these spikes after the
given delay of the core has elapsed. This allows very compact and
efficient code because events are output in their order of arrival.

Because there are a large number of cores available in a
typical SpiNNaker machine, using one core per delay value
is not troublesome. Moreover, one could configure a network
where a spike goes several times through the same delay core to
implement multiples of a base delay: if one core implements a
delay of 100 µs, it can be used to realize a delay of 300 µs by
routing events three times through the core before delivering the
spike to its target neuron.

3.2.2. Synchrony Detectors
Detecting temporal coincidence between two spikes is a widely
used feature in spiking neural networks (Carr and Konishi,
1988; Coath et al., 2013). As a consequence we decided to
implement a dedicated core for this task instead of using standard
integrate and fire neurons which would introduce an unnecessary
overhead.

Each neuron simulated by this core has two types of synaptic
input and a time window. When an incoming spike is received
on one input, the core will output a spike if another spike was
received on its second input in the given time window.We added
a refractory period to this process to limit the maximum firing
rate of the neurons if required.

3.2.3. Leaky Integrate and Fire Neurons
While an ad hoc solution can be introduced in the case of
synchrony detection, for the rest of the network simulation we
need to simulate standard neural models. This is done through a
new core which implements leaky integrate and fire models with
exponential kernels. These neurons are completely event-driven
and have microsecond resolution.

Frontiers in Neuroscience | www.frontiersin.org 5 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

As in the standard models, incoming packets carrying input
spikes are received and queued in memory for processing (this
process has to be done as soon as possible to ensure no back-
pressure signal is propagated to the SpiNNaker router by not
reading packets, as described in the next section). In addition to
this standard processing, we also timestamp the spike on arrival
to be sure to it is processed correctly even if events are queued
for a variable amount of time. When such a spike is processed,
a DMA call is issued to get the associated synaptic information
from SDRAM.

Upon receiving the synaptic data from memory, the
membrane potential of the post-synaptic neuron is updated with
the exponential kernel and the spike’s contribution is added to
this potential. Its value is then tested for an output spike which is
immediately produced if necessary.

It is worth noting that an output spike can only be produced
at the time of an input spike which is compatible with an
exponential kernel andwith the absence of synapse dynamics (the
contribution of a spike is an instantaneous addition/subtraction
to the membrane potential according to the synaptic weight).

To optimize the process, the exponential kernels are
precomputed by the core before the beginning of the simulation
via two look-up tables. When we update the membrane potential,
we need to compute the kernel decay over the time 1t which has
elapsed from its last update:

e−1t/τ = e−(1ms
t +1

µs
t)/τ

= e−1ms
t /τ e−1

µs
t /τ , (1)

where 1ms
t is the maximum multiple of milliseconds contained

in 1t , 1
µs
t is the remaining number of microseconds and τ

is the time constant of the neuron. To reduce the memory
footprint required by the look-up table, we compute one table

with microsecond resolution for the e−1
µs
t /τ part over a timespan

of 1 ms and a second one with millisecond resolution for the
e−1ms

t /τ part over a timespan which can be configured in the code
depending on the available local memory and time constant τ .

3.2.4. Plasticity
Implementing plasticity on the SpiNNaker system is not a trivial
task, due to its peculiar set of constraints and architectural
characteristics. Rules that rely on spike timing can be triggered
by the arrival of a pre-synaptic spike, inducing depotentiation,
or the emission of a post-synaptic spike signaling depotentiation.
This is for instance the case for spike timing-dependent plasticity
(STDP) (Bi and Poo, 1998). On SpiNNaker, weights from
SDRAM are only available in the local memory of an ARM
core upon the receipt of a MC packet. This triggers a lookup in
memory fetching all the weights associated with the incoming
spike. Weights are therefore available in memory only when a
packet is received. Due to the nature of how delays are normally
implemented on the SpiNNaker architecture (see Section 2.3),
this time does not correspond to the time the spike arrives
at the post-synaptic neuron, as the delay is reintroduced post-
synaptically. Moreover, when a post-synaptic spike is produced
weights are in SDRAM, with no local pointer to them; retrieving

them selectively would be difficult as they are indexed by pre-
synaptic neuron, hence scattered when considering post, leading
to unoptimized memory transfers.

The deferred event-drive model (DED) (Jin et al., 2009) was
introduced to circumvent these problems. The approach consists
in gathering information about spike timing and deferring
plasticity into the future, once all the information required is
available. In our implementation, we decided to use the voltage-
gated STDP variant introduced by Brader et al. (2007). This
rule is particularly appealing for neuromorphic implementation
(see for example Mitra et al., 2009) because it is only triggered
on the arrival of a pre-synaptic spike, solving the first of the
two problems associated with plasticity implementation. Our
novel delay cores take care of solving the second problem, the
reintroduction of the delay at the post-synaptic end. By using
these cores, the time of arrival of a MC packet corresponds to
the time when a spike needs to be computed at the post-synaptic
end. This rule depends on a post-synaptic trace C(t) representing
the calcium concentration and which evolves accordingly to the
firing activity of the neuron:

dC(t)

dt
= −

C(t)

τC
+ JC

∑

i

δ(t − ti) , (2)

where ti are the post-synaptic spike times. C(t) triggers
potentiation and depression as follows: if C(t) is in an interval
[θh

down
, θhup] potentiation is triggered; otherwise if C(t) is between

[θ l
down

, θ lup] depression is triggered. This variable is computed
using an exponential LUT in a similar way as done with the
membrane potential. The plasticity rule depends also on the post-
synaptic membrane depolarization V(t) according to a threshold
value θV , sampled at the time of arrival of a pre-synaptic spike
(tpre). Weight dynamics w(t) can then be summarized as follows:

w = w+ a if V(tpre) > θV & θhdown ≤ C(tpre) < θhup

(3)

w = w− b if V(tpre) ≤ θV & θ ldown ≤ C(tpre) < θ lup,

(4)

where a and b represent the constant weight increase and
decrease values, respectively.

The plasticity rule provides relaxation toward two stable states,
if none of the conditions in Equation (3, 4) are fulfilled. The
weight w drifts linearly with rate α toward wmax if its value is
greater than a threshold θW ; conversely it drifts linearly toward
wmin with rate β leading to the additional dynamics:

dw(t)

dt
= α if w(t) > θW (5)

dw(t)

dt
= −β if w(t) ≤ θW (6)

Using this system we can efficiently compute weight updates
upon the arrival of a pre-synaptic spike, as all the information
required by the algorithm are locally available in the neural core.

Frontiers in Neuroscience | www.frontiersin.org 6 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

4. Results

This section presents the time characterization of the platform
and of the novel software infrastructure introduced. The section
concludes by showing two simple experiments which use the new
features: a binaural model for sound localization and a plastic
model capable of learning precise temporal relationships in spike
trains.

4.1. Intra- and Inter-Chip MC Packet Latencies
The MC router is responsible for communicating the spikes to
its internal cores or to other chips through six asynchronous
bi-directional links. Its pipelined implementation enables it to
route one packet per clock cycle to all or a desired number of
output links in an uncongested network. If any of the output
links is busy, the router will retry to route the packet at every
clock cycle until it reaches a predefined number of clock cycles
after which it will attempt emergency routing via the link which is
rotated one link clockwise from the blocked link (not applicable
for destinations internal to a SpiNNaker chip). Similarly, if the
emergency route fails the router will retry emergency routing at
every clock cycle until it reaches a second user-defined number of
cycles when it finally drops the packet.

This section describes a series of experiments conducted
in order to investigate the intra- and inter-chip MC packet
latencies as a function of the router’s waiting time and
synthetic traffic going through a link. For these experiments,
a parameterized software was developed using the SpiNNaker
API. The packet received callback priorities were set to minus
one (pre-emptive) in order to ensure that packets were cleared
from the communications controller immediately upon receipt.
The timer tick callback priority, which was used by the cores
for terminating the simulation after 60 s, was set to zero (non-
queueable priority). Finally, the priority of the callback function
developed to generate MC packets was set to two (lowest
queueable priority). The processor clocks were set to 200MHz,
routers and system buses to 100MHz, while the off-die memory
clocks to 133MHz.

4.1.1. Intra-Chip MC Packet Latency
The first experiment was aimed at demonstrating the core-
to-core packet latency within a SpiNNaker chip as a function
of a congested internal link and the wait time of the router
before dropping a packet. Congested link means that a core
has received more packets than it can process on time and a
back-pressure signal will propagate to the router through that
link. For this experiment, 17 cores were used. One core was
dedicated to measuring the core-to-core MC packet latency
within a SpiNNaker chip. By sending a packet to the router every
500ms using the “timer tick” callback function and receiving it
back. The second hardware timer, available on each core, was
used to count the clock cycles between sending and receiving the
MC packet (with nanosecond resolution). Each of the remaining
15 cores would generate approximately 1.7 million packets per
second, which would be routed to one particular consumer
core (C) whose sole task was to count the received packets,
Figure 3. The logged MC packet latencies during the simulation,

FIGURE 3 | Block diagram showing the topology used to measure the

intra-chip packet latency as a function of a congested link and the

router’s waiting time before dropping a packet. Cores 1–15 were used to

generate synthetic MC packets and the router would redirect these packets to

a consumer core (C). An additional core was used to measure the MC packet

latency (L) by sending a packet to the router periodically and receiving it back.

A hardware timer was used to measure the time passed from sending a MC

packet to receiving it back.

the values of the software counters and additional diagnostic
information from the router were uploaded to the SDRAMwhen
the simulation was over and fetched by the host for further
analysis.

Figure 4 shows the mean and standard deviation of the intra-
chip MC packet round-trip delay time (RTD) as a function of the
total number of MC packets per second the router has issued
to the consumer core (C) and for various router wait times.
What can be observed from this figure is that in an uncongested
network, the intra-chip RTD time is constant at 0.825 µs,
Figure 4A. Within this time is included the software overhead
of the SpiNNaker API required to write the MC packet to the
communication controller, the time needed for the packet to
traverse through the internal link to the router, the time required
for the packet to go through the router and again through the
internal link to the communication controller of the target core
and finally the software overhead of receiving the packet from
the communication controller. The aforementioned times can be
expressed as:

tIntraRTD = tSWSend + 2 · tlocalLink + tR + tSWReceive , (7)

where tSW
Send

is the software overhead of the API required to write

the key of a MC packet to the communication controller, tSWReceive
is the time passed from handling the interrupt raised by the
communication controller to branching to the callback function
assigned to handle the packet received events, tR is the time
required by the router to process a single MC packet, and finally
tlocal
Link

is the time a single MC packet needs to go through the local
links.

The mean tSW
Send

and tSWReceive times (averaged over 4 trials) were
found to be 0.415 µs and 0.13 µs, respectively, by utilizing the

Frontiers in Neuroscience | www.frontiersin.org 7 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

FIGURE 4 | (A) Shows the mean intra-chip MC packet round-trip delay

time as a function of the total number of packets per second the

router issued to the consumer core (C), for different router wait times

(default value is 240 cycles). (B) Shows the total number of packets

per second the router dropped as a function of the number of cores

participating in the simulation and for different router wait times. (C)

Shows the total number of packets per second that were successfully

generated by the communication controller as a function of the number

of cores participating in the experiment and for different wait times.

Finally, (D) shows the total number of packets per second the

communications controller was not able to send to the router due to

the back-pressure of a congested link, for different wait times. Each

core attempted to inject 1.7 million packets per second to the

consumer core through the router.

second hardware timer. Assuming that the time consumed by a
MC packet to traverse through the local links is much smaller
than the time spent by the router to process a packet, the tlocal

Link
can

be ignored. Solving Equation 7 for tR, the time the router requires
to process a single MC packet is 0.28 µs.

As soon as congestion occurs, which for this experiment
happens when the consumer core (C) receives more than 3.6
million packets per second, the communication controller of the
consumer core (C) starts adding back-pressure on the router,
which attempts to resend the packet at every clock cycle until
it reaches a predefined number of cycles (240 default) at which
point the packet is finally dropped, Figure 4B. This back-pressure
signal propagates back along the pipeline and the router stops
receiving new packets until back pressure has been released
(Wu and Furber, 2010). As a consequence, the MC packet
latency increases and the hardware buffers of the communication

controllers of the cores generating the MC packets are not
emptied; this explains why the total number of generated packets
plateaus, as seen in Figure 4C, while failed packets increase
(software buffer full), see Figure 4D. For the router’s default
waiting time (240 cycles) and for waiting 60 cycles no packets
were dropped in any of the trials but the worst-case RTD time
went up to 6.5 µs. For router wait times of 20 cycles and below,
the worst-case RTD time drops below 4 µs but the total number
of dropped packets per second increases dramatically. This trade-
off between intra-chip MC packet latency, packets being dropped
or not being sent to the router at all, requires further investigation
as it depends on the requirements of a particular application.

4.1.2. Inter-Chip MC Packet Latency
The router of a SpiNNaker chip can communicate packets to
neighboring chips through six self-timed bi-directional links. The

Frontiers in Neuroscience | www.frontiersin.org 8 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

average bandwidth (transmit/receive) of each link is 6 million
packets per second (240 gigabits per second) and this may
vary with the temperature, voltage or silicon properties. An
experiment was conducted to determine the inter-chip RTD of a
MC packet transmitted through one of the 6 bi-directional links
as a function of the link’s outgoing and incoming traffic. For this
experiment a core (L1) generates a MC packet every 500 ms and
the router routes it to a neighboring chip through one of the
six bi-directional self-timed links. Upon receiving the packet the
second router would route it to a particular core (L2), whose sole
task was to change the key of the packet and retransmit it back
to the router which had an appropriate routing entry to route it
back to the originating core, Figure 5.

Seven cores on each chip were used to generate packets which
were routed to seven consumer cores (C) on the adjacent chip
following a one-to-one mapping. This way the total number of
packets per second a consumer core receives remains below 3.6
million packets per second, (which is the maximum number of
packets a core can receive) ensuring that no additional pressure
is added to the routers.

The generated packets were controlled by an inter-packet
interval (IPI) parameter, which is a delay in microseconds before
transmitting the next MC packet. Results are presented as the
percentage of the utilization of the incoming and outgoing
packets going through a link per second, with 100% utilization
meaning 6 million packets per second.

The mean and standard deviation of the RTD times of MC
packets are presented in Figure 6. When there is no traffic
the RTD time of a MC packet is 2.535 µs. Within this time
is embedded the time required for the packet to go through
each router twice, twice through the external link, and also
two software processing overheads of sending and receiving the
packet back to the router. This can be expressed as:

tInterRTD = 2 · tSWSend + 4 · tlocalLink + 4 · tR

+2 · tSWReceive + 2 · texternalLink (8)

where texternal
Link

is the time a MC packet requires to traverse
through an external link to a neighboring chip. Solving for an

RTD time of 2.535 µs and by using the results of Equation (7) for
tR and by ignoring the time of tlocal

Link
, the time a MC packet needs

to go through an external bi-directional link is 0.1625 µs.
For a link utilization of 60%, for both outgoing and incoming

traffic, there is a 3% increase in the RTD time. When both the
incoming and outgoing link utilization reaches 80% a very small
number of packets were dropped as both routers attempted to
reroute the packets for the default wait times (240 cycles), hence
the dramatic increase in the RTD times. Results are summarized
in Table 1.

4.2. Time Characterization
To test latencies in the systemwe build and simulate a very simple
network composed of three populations:

• a spike source, producing spikes with microsecond resolution,
• a dendritic delay population which delays spikes with a tunable

delay,
• a population of integrate and fire neurons in which synaptic

plasticity is enabled or not in the implementation.

We add to the global architecture the monitoring application
which records spikes from these 3 populations. All these
applications run on the same SpiNNaker chip. From here, we
can characterize timings and latencies by either looking at
timestamps generated by the monitoring core which gives us a
common clock for all of the activity on the chip or by keeping
track of the timings directly in the different cores by adding debug
instructions to their processing.

We start by characterizing the spike source application. By
adding debug instructions in the code, we can output the
time at which spikes would be sent without this debugging
overhead and compare them to what is asked from the core.
Our measurements show that every spike is reliably emitted with
a 2 µs delay after the timestamp set in the simulation script
in conditions where no delays are introduced by congestion
due to too much activity in the chip. Looking at the same
events in the output of the monitoring application, we can see
that they are consistently timestamped with a 3 µs. The 1 µs
difference between the two numbers is due to the overhead of

FIGURE 5 | Block diagram showing the topology used to measure the inter-chip MC packet latency as a function of synthetic traffic going through a

link.

Frontiers in Neuroscience | www.frontiersin.org 9 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

FIGURE 6 | Mean and standard deviation of round-trip delay times of

MC packets as a function of the percentage of a link utilization. Top

figure shows the mean round-trip delay time, while bottom figure shows the

standard deviation in microseconds. 100% utilization means 6 million

outgoing/incoming packets per seconds going through a bi-directional link.

the API when sending a spike, that is, the time it needs to
travel from one core of the chip to another one (which has been
characterized in the previous subsection) and the time needed
by the receiving core to timestamp the spike. From the results
of the previous subsection (4.1.1), we can consider than under
normal operational conditions (no excessive load of events in the
system), this time will be constant for every population on the
same chip because they use the same code to send packets to the
system. Thus, from now on, we can use the timestamps from the
monitoring application to know when spikes are emitted by each
core recorded during our simulations.

We then look at the dendritic delay population. This
population directly receives input from the spike source and the
delayed output is recorded by the monitoring application. By
comparing the timestamps of the spikes received from the spike
source and the ones received from the dendritic delay core, we
can compute the actual delay introduced by this population. By
removing its set delay, we obtain the overhead introduced by

TABLE 1 | Experimental results of the SpiNNaker latencies.

Parameters Values Units

tSW
Send

0.415 µs

tSWReceive 0.13 µs

tR 0.28 µs

texternalLink 0.1625 µs

the implementation. For different delays and input spikes, we
reliably get an overhead of 2 µs which can be compensated when
specifying a desired delay in a simulation.

This delay population is then connected to a population of
integrate and fire neurons implementing plasticity as described
in the previous section. The connection between these two
populations is an all-to-all connection. This allows us to vary the
size of the synaptic data fetched from memory, which directly
depends on the number of post-synaptic neurons associated to
each pre-synaptic one. This enables us to vary the amount of
processing each incoming spike requires (more post-synaptic
neurons means more neurons to update when receiving a spike),
thus allowing easy characterization of the following latencies:

• the initial latency, corresponding to the time required to
receive the spike and fetch the synaptic data from memory.
This time has been measured to be 4 µs,

• the time required to update each post-synaptic neuron
targeted by the incoming spike. This time has been measured
to be 1.6 µs,

• the time required to send a spike which has been measured to
be 0.4 µs.

These timings allow to compute the required update time Tu

required by a spike for a given network topology with the
following formula:

Tu = 4+ 2 · N
post
max µs, (9)

in the worst case scenario where every pre-synaptic spike produce

a spike in each one of its post-synaptic neurons and where N
post
max

is the maximum number of post-synaptic neurons a pre-synaptic
one connects to.

If we remove the plasticity computation from the model, the
initial latency and the time needed to produce a spike stay the
same. The only modification can be found, as expected, in the
time needed to process a spike which drops to 0.5 µs.

4.3. Detecting Sub-Millisecond Spike Synchrony
in a Model of Sound Localization
To test the dendritic delay and synchrony detector models, we
simulate a standard network used for sound localization. This
model is presented in Figure 7 and results are presented in
Figure 8. For each ear, we consider a population of neurons
representing 10 different frequency channels (Figure 8A). We
start by generating spike trains with an interspike interval (ISI)
of 100 µs for each of these channels and we feed them in the
right ear (red dots). Then, this simulated sound is shifted in
time according to the input interaural time differences (ITDs)

Frontiers in Neuroscience | www.frontiersin.org 10 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

corresponding to values compatible with human hearing: -30
[phase (1)], 0 [phase (2)] and 30 µs [phase (3)] to generate
the input spikes for the left ear (blue dots). Some noise is

FIGURE 7 | Model used to detect sub-millisecond spike synchrony for

sound localization. The model consists of three synchrony detectors where

each is activated by a different input interaural time difference (ITD). To achieve

this result, each detector is directly connected to one ear whereas the second

input comes from a dendritic delay population. For positive ITDs, spikes from

the right ear are delayed. For negative ITDs, spikes from the left ear are

delayed. In this experiment, spike trains from the two ears are simulated for

three sound sources localized at positions producing expected ITDs.

then added independently to spikes from each ear and each
channel by jittering each spike randomly between -5 and 5 µs
to get the actual input presented in Figure 8A. Each ear is then
input in delay lines and synchrony detectors such as to detect
the corresponding ITDs, synchrony detectors are, because of
their associated delay lines, centered around -30, 0, and 30 µs
with a window of 15 µs. These detectors are color coded in
Figure 8B with detectors for ITDs -30, 0, and 30 µs, respectively
corresponding to red, blue, and green dots. We can see that the
different input ITDs are correctly extracted by the architecture
for each phase of the input pattern.

4.4. Learning Temporal Patterns with
Sub-millisecond Precision
The model presented in the previous section describes how
synchrony detection can be exploited through delay lines to
localize the source of a sound. In this section, we use the
model introduced by Coath et al. (2013) to learn spatio-temporal
patterns with sub-millisecond precision. The model shown in
Figure 9A, can be described as tonotopically organized channels,
as it is in the auditory system. Each frequency channel consists
of three neurons (A, B1, B2) interconnected through delay lines
C. Within a channel, neuron A, representing inputs from a
channel of a silicon cochlea for e.g., (Liu et al., 2014), connects
to both neurons B1 and B2 through excitatory synapses while
neuron B1 is connected to B2 through an inhibitory synapse
and neuron B2 receives excitatory plastic input connections from
the neighboring B1 neurons. These connections are mediated by
the delay populations, implemented with the model described in
Section 3, so as to have a delay proportional to the tonotopic

FIGURE 8 | (A) Shows the input spikes to the system. It is comprised

of the spikes (5 channels, red dots) from the right ear and the spikes

(5 channels, blue dots) from the left ear. They correspond to a sound

source positioned at ITD −30 µs for the first third [phase (1)] of the

input stimulus, then ITD 0 µs for the second third [phase (2)], and 30

µs for the last part [phase (3)]. (B) presents the outputs of the three

synchrony detectors of the network configured to respond to ITDs −30

µs (red), 0 µs (blue), and 30 µs (green). We can see that for each

channel, the detector with its preset ITD fired correctly in each phase of

the experiment.

Frontiers in Neuroscience | www.frontiersin.org 11 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

FIGURE 9 | Learning sub-millisecond time patterns. (A) Network

structure: input spikes are produced by neurons A, which represent

frequency channels of a simulated silicon cochlea; they drive neurons B1

and B2 with excitatory synapses; B1 is connected to the B2 neuron of its

own channel with an inhibitory synapse, while it is connected to the other

channels through the delay populations C with plastic connections. Delays

are proportional to the tonotopic distance between channels. (B) Input

raster plot (left) and final weight distribution (right) when stimulating the

network with a forward frequency sweep, activating all channels in rapid

succession. (C) Input raster plot (left) and final weight distribution (right)

when stimulating the network with a backward frequency sweep, activating

all channels in rapid succession; (D) input raster plot (left) and final weight

distribution (right) when stimulating the network with a forked frequency

sweep starting from the central channels.

distance between two channels. This delay line is the feature
that enables learning of temporal patterns through coincidence
detection.

To test our newly introduced SpiNNaker infrastructure for
microsecond precision and delays, we reproduce the results
published by Sheik et al. (2012) on the implementation of the
model on a plastic neuromorphic analog VLSI multi-neuron
chip. We present the same three spiking patterns as in the paper:
a forward, a backward and a forked frequency sweep, activating
all channels in rapid succession but with different time dynamics.
Each channel is activated with 10 spikes with an ISI of 250
µs and each channel is activated with a delay of 500µs after
the previous channel. Each frequency sweep has been repeated
20 times, resulting in the connectivity matrices presented in
Figures 9B-D which can be compared with Figures 7, 8 in Sheik
et al. (2012). In each case training took approximately 4 s. The
resulting weight matrices, initialized randomly, show how the
network was able to learn a precise spatio-temporal pattern
through coincidence detection. The learning process potentiates
the synapses detecting the temporal features of the presented
stimulus thanks to the tonotopic delays lines, converging in an
emergent connectivity matrix which tunes the network to the
presented stimulus.

The same experiment has also been replicated on SpiNNaker
using the framework introduced in Galluppi et al. (2015), but
with important differences in the temporal resolution and in the
methodology to what is presented here. The temporal resolution
of the former work is limited to the millisecond precision because
of the structure of the neuron models and plasticity framework
used. This new framework allows us to compute plasticity with
a time resolution of less than a millisecond, which was not
possible with the previous plasticity methods implemented on
SpiNNaker.

When comparing our resulting weight matrices to the ones
from Sheik et al. (2012), it can be noted that our results are
not impacted by 2 important factors of the hardware system
used in the original work: the precision of the synaptic weights
and the mismatch between neurons. Since SpiNNaker is a digital
platform, the precision of the weights can be changed depending
on the application. As a result, our results show a finer scale in
the weight matrix. Similarly, SpiNNaker neurons and synapses
are not affected by hardware mismatch because of the digital
implementation which results in less noisy weight metrics in our
implementation.

This workmatches the temporal resolution of the experiments
in Sheik et al. (2012). Regarding themethodology, in this work we
use a purely event-driven approach, that is plasticity is computed
as soon as a spike is received, leveraging the simplification
introduced by the separation of synaptic delays and neural
models. This work hence constitutes the first implementation of
plasticity on SpiNNaker where the weight update is not deferred
into the future.

5. Discussion

In this paper, we showed that the current software package
provided with the SpiNNaker platform was insufficient for

Frontiers in Neuroscience | www.frontiersin.org 12 June 2015 | Volume 9 | Article 206

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

certain applications requiring temporal resolution below a
millisecond. To overcome this limitation, we introduced new
software tools and models allowing to go beyond the millisecond
barrier and reach microsecond precision.

To assert these new functionalities, we needed information
about the timing involved at the level of SpiNNaker’s fabric
itself. We characterized the timing requirements of the hardware
on one hand and of the software API on the other. This
allowed us to fully characterize our implementation and provide
insights about its computational limits for an user wanting to
simulate a given network. We then demonstrated that our newly
introduced architecture can simulate networks implementing
sub-millisecond tasks and using plasticity by achieving, in real-
time, sound localization, and sound patterns extraction with
realistic spike trains.

It should be noted that these new tools do not change the
way in which events are transferred in the global SpiNNaker
architecture. They are just making the best of real-time to
increase the time resolution of implemented models. Thus,
they are fully compatible with the already existing models on
SpiNNaker. This means that if a user wants to build a sensory
processing neural network in which microsecond resolution is
only needed in the early processing stages, he or she can use these
microsecond precision models in these stages and then feed their
output to standard neural models which will then compute with
millisecond resolution for the later stages. This allows resources
to be exploited maximally by tuning the time resolution to the
requirements of the running model.

Notably we have introduced learning in our framework as
it is a key process in developing precise coincident detectors.
Furthermore, in the already mentioned owl auditory system,

cross-modal interaction of different sensory systems appears to
be crucial: visual cues guide the formation of a precise sound
localization neural circuit (Gutfreund et al., 2002; Knudsen,
2002). These studies point at the importance of representing
sensory inputs with high temporal resolution. In fact our
newly introduced framework is much oriented to exploiting the
enhanced temporal properties given by neuromorphic event-
driven sensors (Liu and Delbruck, 2010), as silicon retinas
(Lichtsteiner et al., 2008; Posch et al., 2011, 2014), and cochleas
(Liu et al., 2014) which can seamlessly be interfaced with
SpiNNaker (Galluppi et al., 2012a; Orchard et al., 2015). In this
regard we have presented here a platform which offers a wide
range of trade-offs in simulating spiking neural networks with
different time-scales efficiently, and can be used for cross-modal
learning.

Acknowledgments

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n◦ 604102 (HBP).
This work was also performed in the frame of the LABEX
LIFESENSES [ANR-10-LABX-65] and was supported by French
state funds managed by the ANR within the Investissements
d’Avenir programme [ANR-11-IDEX-0004-02]. The SpiNNaker
project is supported by the Engineering and Physical Sciences

Research Council (EPSRC) under Grant EP/G015740/01. The
work proposed in this paper results from discussions at the
Telluride Neuromorphic Cognition Engineering Workshop;
the authors would like to thank the sponsors and the
organizers.

References

Bair, W., and Koch, C. (1996). Temporal precision of spike trains in extrastriate

cortex of the behaving macaque monkey. Neural Comput. 8, 1185–1202.

Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R.,

Bussat, J.-M., et al. (2014). Neurogrid: a mixed-analog-digital multichip

system for large-scale neural simulations. Proc. IEEE 102, 699–716. doi:

10.1109/JPROC.2014.2313565

Berry, M. J., Warland, D. K., and Meister, M. (1997). The structure and precision

of retinal spike trains. Proc. Natl. Acad. Sci. U.S.A. 94, 5411–5416.

Bi, G., and Poo, M. (1998). Synaptic modifications in cultured hippocampal

neurons: dependence on spike timing, synaptic strength, and postsynaptic cell

type. J. Neurosci. 18, 10464–10472.

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural

network with spike-driven synaptic dynamics. Neural Comput. 19, 2881–2912.

doi: 10.1162/neco.2007.19.11.2881

Brink, S., Nease, S., Hasler, P., Ramakrishnan, S., Wunderlich, R., Basu, A., et al.

(2013). A learning-enabled Neuron array IC based upon transistor channel

models of biological phenomena. IEEE Trans. Biomed. Circuits Syst. 7, 71–81.

doi: 10.1109/TBCAS.2012.2197858

Carr, C. E., and Konishi, M. (1988). Axonal delay lines for time

measurement in the owl’s brainstem. Proc. Natl. Acad. Sci. U.S.A. 85,

8311–8315.

Chang, E., Morris, K., Shannon, R., and Lindsey, B. (2000). Repeated sequences of

interspike intervals in baroresponsive respiratory related neuronal assemblies

of the cat brain stem. J. Neurophysiol. 84, 1136–1148. Available online at: http://

jn.physiology.org/content/84/3/1136.short

Coath, M., Sheik, S., Chicca, E., Indiveri, G., Denham, S. L., and Wennekers,

T. (2013). A robust sound perception model suitable for neuromorphic

implementation. Front. Neurosci. 7:278. doi: 10.3389/fnins.2013.00278

Davison, A. P., Brderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D., et al.

(2009). PyNN: a common interface for neuronal network simulators. Front.

Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

Furber, S., and Temple, S. (2007). Neural systems engineering. J. R. Soc. Interface

4, 193–206. doi: 10.1098/rsif.2006.0177

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the spinnaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Furber, S., Galluppi, F., Temple, S., and Plana, A. (2014). The SpiNNaker project.

Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Galluppi, F., Brohan, K., Davidson, S., Serrano-Gotarredona, T., Carrasco, J.,

Linares-Barranco, B., et al. (2012a). “A real-time, event-driven neuromorphic

system for goal-directed attentional selection,” in Neural Information

Processing, eds T. Huang, Z. Zeng, C. Li, and C. S. Leung (Berlin; Heidelberg:

Springer), 226–233.

Galluppi, F., Davies, S., Rast, A., Sharp, T., Plana, L. A., and Furber, S. (2012b).

“A hierachical configuration system for a massively parallel neural hardware

platform,” in Proceedings of the 9th Conference on Computing Frontiers, CF ’12

(New York, NY: ACM), 183–192.

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber, S. B., et al.

(2015). A framework for plasticity implementation on the spinnaker neural

architecture. Front. Neurosci. 8:429. doi: 10.3389/fnins.2014.00429

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996). A neuronal

learning rule for sub-millisecond temporal coding. Nature 383, 76–78.

Frontiers in Neuroscience | www.frontiersin.org 13 June 2015 | Volume 9 | Article 206

http://jn.physiology.org/content/84/3/1136.short
http://jn.physiology.org/content/84/3/1136.short
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Lagorce et al. Breaking the millisecond barrier on SpiNNaker

Gollisch, T., andMeister, M. (2008). Rapid neural coding in the retina with relative

spike latencies. Science 319, 1108–1111. doi: 10.1126/science.1149639

Gutfreund, Y., Zheng, W., and Knudsen, E. I. (2002). Gated visual input to the

central auditory system. Science 297, 1556–1559. doi: 10.1126/science.1073712

Indiveri, G., Chicca, E., and Douglas, R. (2006). A VLSI array of low-power spiking

neurons and bistable synapses with spike-timing dependent plasticity. IEEE

Trans. Neural Netw. 17, 211–221. doi: 10.1109/TNN.2005.860850

jAER (2007). jAER Open Source Project. Available online at: http://jaerproject.org.

Jin, X., Rast, A., Galluppi, F., Khan, M., and Furber, S. (2009). “Implementing

learning on the SpiNNaker universal neural chip multiprocessor,” in Neural

Information Processing, Vol. 5863, Chapter 48, eds C. S. Leung, M. Lee, and J. H.

Chan (Berlin; Heidelberg: Springer), 425–432.

Knudsen, E. I. (2002). Instructed learning in the auditory localization pathway of

the barn owl. Nature 417, 322–328. doi: 10.1038/417322a

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128x128 120dB 15us latency

asynchronous temporal contrast vision sensor. IEEE J. Solid State Circuits 43,

566–576. doi: 10.1109/JSSC.2007.914337

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.

Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.03.007

Liu, S.-C., van Schaik, A., Minch, B., and Delbruck, T. (2014). Asynchronous

binaural spatial audition sensor with 2 × 64 × 4 channel output. IEEE Trans.

Biomed. Circ. Syst. 8, 453–464. doi: 10.1109/TBCAS.2013.2281834

Mahowald, M. (1994). An Analog VLSI System for Stereoscopic Vision. Norwell,

MA: Kluwer Academic Publishers.

Mao, B., Hamzei-Sichani, F., Aronov, D., Froemke, R., and Yuste, R. (2001).

Dynamics of spontaneous activity in neocortical slices. Neuron 32, 883–898.

doi: 10.1016/S0896-6273(01)00518-9

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

a scalable communication network and interface. Science 345, 668–673. doi:

10.1126/science.1254642

Mitra, S., Fusi, S., and Indiveri, G. (2009). Real-time classification of complex

patterns using spike-based learning in neuromorphic VLSI. IEEE Trans.

Biomed. Circuits Syst. 3, 32–42. doi: 10.1109/TBCAS.2008.2005781

Orchard, G., Lagorce, X., Posch, C., Benosman, R., and Galluppi, F. (2015). “Real-

time event-driven spiking neural network object recognition on the SpiNNaker

platform,” in Submitted to the International Conference of Circuit and Systems

(ISCAS) 2015 (Lisbon).

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free PWM image sensor With lossless pixel-level video

compression and time-domain CDS. IEEE J. Solid State Circuits 46, 259–275.

doi: 10.1109/JSSC.2010.2085952

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T.

(2014). Retinomorphic event-based vision sensors: bioinspired cameras with

spiking output. Proc. IEEE 102, 1470–1484. doi: 10.1109/JPROC.2014.23

46153

Sharp, T., Plana, L. A., Galluppi, F., and Furber, S. (2011). Event-driven simulation

of arbitrary spiking neural networks on SpiNNaker. in Neural Information

Processing Vol. 7064 of Lecture Notes in Computer Science, eds B.-L. Lu, L.

Zhang, and J. Kwok (Berlin; Heidelberg: Springer), 424–430.

Sheik, S., Coath, M., Indiveri, G., Denham, S. L., Wennekers, T., and Chicca, E.

(2012). Emergent auditory feature tuning in a real-time neuromorphic VLSI

system. Front. Neurosci. 6:17. doi: 10.3389/fnins.2012.00017

Softky, W. (1994). Sub-millisecond coincidence detection in active dendritic trees.

Neuroscience 58, 13–41.

Stromatias, E., Galluppi, F., Patterson, C., and Furber, S. (2013). “Power analysis of

large-scale, real-time neural networks on spinnaker,” in The 2013 International

Joint Conference on Neural Networks (IJCNN) (Dallas, TX), 1–8.

Tetko, I., and Villa, A. (2001). A pattern grouping algorithm for analysis of

spatiotemporal patterns in neuronal spike trains. 1. Detection of repeated

patterns. J. Neurosci. Methods 105, 1–14. doi: 10.1016/S0165-0270(00)00336-8

Wu, J., and Furber, S. (2010). A multicast routing scheme for a universal

spiking neural network architecture. Comput. J. 53, 280–288. doi:

10.1093/comjnl/bxp024

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2015 Lagorce, Stromatias, Galluppi, Plana, Liu, Furber and Benosman.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 14 June 2015 | Volume 9 | Article 206

http://jaerproject.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Breaking the millisecond barrier on SpiNNaker: implementing asynchronous event-based plastic models with microsecond resolution
	1. Introduction
	2. The SpiNNaker Platform
	2.1. Hardware
	2.2. Software
	2.3. Limitations of the Current Implementation

	3. Going Beyond the Millisecond
	3.1. Tools and Support
	3.1.1. SpiNNaker API
	3.1.2. Monitoring Spikes
	3.1.3. Generating Input Spikes

	3.2. Neural Models
	3.2.1. Dendritic Delays
	3.2.2. Synchrony Detectors
	3.2.3. Leaky Integrate and Fire Neurons
	3.2.4. Plasticity

	4. Results
	4.1. Intra- and Inter-Chip MC Packet Latencies
	4.1.1. Intra-Chip MC Packet Latency
	4.1.2. Inter-Chip MC Packet Latency

	4.2. Time Characterization
	4.3. Detecting Sub-Millisecond Spike Synchrony in a Model of Sound Localization
	4.4. Learning Temporal Patterns with Sub-millisecond Precision

	5. Discussion
	Acknowledgments
	References

