
REVIEW
published: 03 July 2015

doi: 10.3389/fnins.2015.00229

Frontiers in Neuroscience | www.frontiersin.org 1 July 2015 | Volume 9 | Article 229

Edited by:

Tommaso Cassano,

University of Foggia, Italy

Luca Steardo,

Sapienza University of Rome, Italy

Reviewed by:

Sara Morley-Fletcher,

Centre National de la Recherche

Scientifique-University Lille, France

Fulvio D’Acquisto,

Queen Mary University of London, UK

*Correspondence:

Nathalie Castanon,

Laboratory of Nutrition and Integrative

Neurobiology, INRA, UMR 1286 -

University Bordeaux, 146 rue Léo

Saignat, F-33076 Bordeaux, France

nathalie.castanon@bordeaux.inra.fr

Specialty section:

This article was submitted to

Neuropharmacology,

a section of the journal

Frontiers in Neuroscience

Received: 31 March 2015

Accepted: 11 June 2015

Published: 03 July 2015

Citation:

Castanon N, Luheshi G and Layé S

(2015) Role of neuroinflammation in

the emotional and cognitive alterations

displayed by animal models of obesity.

Front. Neurosci. 9:229.

doi: 10.3389/fnins.2015.00229

Role of neuroinflammation in the
emotional and cognitive alterations
displayed by animal models of
obesity
Nathalie Castanon 1*, Giamal Luheshi 2 and Sophie Layé 1

1Nutrition and Integrative Neurobiology, INRA, UMR 1286, Université de Bordeaux, Bordeaux, France, 2Department of

Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada

Obesity is associated with a high prevalence of mood disorders and cognitive

dysfunctions in addition to being a significant risk factor for important health

complications such as cardiovascular diseases and type 2 diabetes. Identifying the

pathophysiological mechanisms underlying these health issues is a major public health

challenge. Based on recent findings, from studies conducted on animal models of

obesity, it has been proposed that inflammatory processes may participate in both

the peripheral and brain disorders associated with the obesity condition including the

development of emotional and cognitive alterations. This is supported by the fact that

obesity is characterized by peripheral low-grade inflammation, originating from increased

adipose tissue mass and/or dysbiosis (changes in gut microbiota environment), both of

which contribute to increased susceptibility to immune-mediated diseases. In this review,

we provide converging evidence showing that obesity is associated with exacerbated

neuroinflammation leading to dysfunction in vulnerable brain regions associated with

mood regulation, learning, and memory such as the hippocampus. These findings give

new insights to the pathophysiological mechanisms contributing to the development of

brain disorders in the context of obesity and provide valuable data for introducing new

therapeutic strategies for the treatment of neuropsychiatric complications often reported

in obese patients.

Keywords: obesity, anxiety, depression, memory impairments, inflammation, neuroinflammation, indoleamine

2-3-dioxygenase, GTP-cyclohydrolase 1

Introduction

The prevalence of obesity has been steadily and alarmingly increasing worldwide for decades,
fostering a rise in serious obesity-related outcomes, particularly cardiovascular diseases and
metabolic disorders that contribute to a significant rise in mortality. In addition, obesity is also
increasingly linked to a number of psychopathologies including mood disorders and cognitive
dysfunctions (Luppino et al., 2010; Francis and Stevenson, 2013). The incidence of depressive
symptoms (up to 30%) is much higher in obese subjects than in normal weight age-matched
population (Roberts et al., 2010; Pan et al., 2012; Lin et al., 2013). Similarly, convergent clinical
studies have revealed a predictive longitudinal association between obesity and the development of
age-related cognitive deficits (Cournot et al., 2006; Sabia et al., 2009; Dahl et al., 2013). Obesity is
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also a risk factor for neurological diseases such as Alzheimer’s
disease (Frisardi et al., 2010; Farooqui et al., 2012). Interestingly,
significant improvement in mood and cognitive function is
reported after weight loss induced by bariatric surgery or
diet restriction in obese subjects (Brinkworth et al., 2009;
Andersen et al., 2010; Siervo et al., 2012; Alosco et al.,
2014). Neuropsychiatric comorbidities considerably impair the
quality of life and social functioning of obese individuals.
More importantly, they emerge as additional risk factors
for aggravation of obesity and related systemic pathological
complications (Fiedorowicz et al., 2008; Scott et al., 2008).
Indeed, lifetime history of neuropsychiatric disorders or stressful
life events are reliable predictors for weight gain and the
subsequent development of obesity (Goldbacher et al., 2009;
Luppino et al., 2010; McIntyre et al., 2012). In addition, weight
gain often appears as a common side effect of many psychiatric
medications (Lopresti and Drummond, 2013). Altogether,
these data point to a noxious bidirectional relationship
between obesity and neuropsychiatric disorders. Identifying the
pathophysiological mechanisms that underlie such a comorbid
association represents therefore a major public health challenge.

Diet, social factors, and psychological distress are classically
advanced as contributors to the development of neuropsychiatric
symptoms in obese individuals. Mechanistically, these
factors may impact the functioning of key biological systems
participating in both obesity and neuropsychiatric disorders and
able to target the central nervous system (CNS) (McIntyre et al.,
2012; Hryhorczuk et al., 2013; Lopresti and Drummond, 2013).
Although several biological components of obesity are likely
candidates, there is increasing evidence for a role of inflammation
in this process (Emery et al., 2007; Capuron et al., 2008, 2011a;
Castanon et al., 2014; Lasselin andCapuron, 2014). Severe obesity
is indeed associated with an inflammatory profile characterized
by increased concentrations of circulating cytokines (Cancello
and Clement, 2006). The effect of inflammation on brain
function and behavior has been reported in many other chronic
inflammatory conditions (Evans et al., 2005; Dantzer et al., 2008).
However, there remains a noticeable void in understanding the
pathophysiological mechanisms underlying the development
of neuropsychiatric symptoms in the context of obesity. We
describe here how animal models of obesity, which already
shed light on the mechanisms of weight control and associated
metabolic alterations, can be useful to address this issue. We also
review the available evidence showing that obesity is associated
with exacerbated neuroinflammation leading to dysfunction
in vulnerable brain regions associated with mood regulation,
learning and memory, especially the hippocampus.

Obesity: More than Just a Metabolic
Disorder

Obesity is defined by the World Health Organization as an
“excessive or abnormal fat accumulation that presents a risk
to health.” Weight gain is associated with marked hyperplasia
of the white adipose tissue and substantial changes in the
function of adipocytes that start to secrete a number of

bioactive molecules collectively referred to as adipokines (leptin,
adiponectin, and a multitude of pro- and anti-inflammatory
cytokines) (Lehr et al., 2012; Aguilar-Valles et al., 2015).
Due to their ability of acting remotely on different organs
these molecules are suspected to participate in the etiology of
many obesity-associated metabolic comorbidities (Lehr et al.,
2012; Aguilar-Valles et al., 2015; Bluher and Mantzoros, 2015).
Chronic obesity is indeed often associated with hypertension,
coronary artery disease, dyslipidemia, hyperleptinemia, and
impaired glucose tolerance linked to hyperinsulinemia and
insulin resistance. Along with metabolic dysregulations, basal
low-grade inflammation increasingly appears as another key
component of obesity, which is now considered not only as
a metabolic disorder but also as an inflammatory condition
affecting both the innate and acquired immune systems (Schmidt
and Duncan, 2003; Cancello and Clement, 2006; Gregor and
Hotamisligil, 2011). Elevated plasma levels of inflammatory
cytokines (including interleukin (IL)-1β, tumor necrosis factor
(TNF)-α, IL-6 and C-reactive protein) have been reported in
obese patients (Park et al., 2005; Capuron et al., 2011a) and
different animal models of obesity (Xu et al., 2003; De Souza
et al., 2005; Cani et al., 2009; Pistell et al., 2010; Dinel et al.,
2011, 2014; Lawrence et al., 2012). Interestingly, peripheral low-
grade inflammation is significantly improved following weight
loss induced by low-caloric diet or bariatric surgery in both
obese humans (Ryan and Nicklas, 2004; Manco et al., 2007; Belza
et al., 2009; Hakeam et al., 2009; Rao, 2012) and animals (Zhang
et al., 2011; Liu et al., 2014; Schneck et al., 2014). Obesity is also
characterized by increased susceptibility to immune-mediated
diseases (Kanneganti and Dixit, 2012) and to infections (Amar
et al., 2007; Rummel et al., 2010; Lawrence et al., 2012; Huttunen
and Syrjanen, 2013; Dinel et al., 2014).

Obesity: An Inflammatory Condition

One major player in the development of the chronic low-
grade inflammatory state characterizing obesity is the white
adipose tissue, consistent with findings showing associations
between circulating levels of cytokines and measures of central
adiposity (Park et al., 2005). Together with adipocytes, infiltrated
macrophages, and T cells that progressively accumulate in
the adipose tissue potently secrete inflammatory mediators
(Cancello and Clement, 2006; Gregor and Hotamisligil, 2011;
Zeyda et al., 2011; Lasselin et al., 2013; Kim et al., 2014). In
addition, accumulation of activated immune cells also releasing
inflammatory factors in the circulation has been reported within
other organs, in particular the liver and muscles (Pedersen and
Febbraio, 2012; McNelis and Olefsky, 2014). More recently,
gut microbiota alterations and increased gut permeability have
also been involved in the pathogenesis of obesity and related
metabolic comorbidities (Brun et al., 2007; Tehrani et al., 2012;
Finelli et al., 2014), in particular through their impact on local
and systemic inflammation (Cani et al., 2009, 2012; Verdam
et al., 2013). Specific microbes-associated molecular patterns
(MAMPs) such as gut microbiota-derived lipopolysaccharide
(LPS) have been indeed shown to play a major role in the onset
and progression of obesity-related inflammation and metabolic
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diseases (Cani et al., 2007; Creely et al., 2007). Chronic intake
of high-fat diet impairs gut permeability, which leads to the
instauration of metabolic endotoxemia (i.e., increased plasma
levels of LPS) contributing to obesity-related inflammation
by activating systemic macrophages (Cani et al., 2008, 2009;
Verdam et al., 2013). Conversely, reduced serum levels of an
endotoxemia marker, the LPS binding protein, are found in obese
individuals following weight loss (Cani et al., 2008; Yang et al.,
2014).

Whatever the mechanisms triggering systemic inflammation
in obesity, it is now clear that this inflammatory state contributes
to increased central inflammatory processes (Rummel et al.,
2010; Buckman et al., 2014) associated with both metabolic
dysregulations and behavioral alterations (Dantzer et al., 2008).
Obesity-related brain inflammation is particularly notable in
the hypothalamus, with local enhanced inflammatory cytokine
expression and activation of dependent signaling pathways
being repeatedly reported in diet induced obesity (DIO) models
(De Souza et al., 2005; Zhang et al., 2008; Kleinridders
et al., 2009; Cai and Liu, 2012; Gao et al., 2014; Maric
et al., 2014). Increased infiltration, activation, and proliferation
of microglia and astrocytes in the hypothalamus are also
noted in both obese humans and rodent models of obesity
(Thaler et al., 2012). Interestingly, increased hypothalamic
inflammation has been related to the metabolic dysregulations
characterizing severe obesity, including leptin resistance, insulin
resistance and hyperglycemia (De Souza et al., 2005; Velloso
et al., 2008; Zhang et al., 2008; Kleinridders et al., 2009).
Beyond basal hypothalamic inflammation that appears as a
function of obesity, we also demonstrated in DIO models a
marked exacerbation of hypothalamic expression of different
inflammatory factors following a systemic immune challenge,
namely acute intraperitoneal injection of LPS (Pohl et al.,
2009; André et al., 2014). Of note, systemic LPS challenge also
exacerbates expression of brain cytokines (IL-1β, TNF-α) in areas
involved in mood regulation and memory formation such as
the hippocampus (André et al., 2014; Boitard et al., 2014; Dinel
et al., 2014). Besides, significant hippocampal inflammation is
also reported in unstimulated conditions when more severe
obesity is modeled (Dinel et al., 2011, 2014; Erion et al.,
2014). For example, immune defects such as increased systemic
inflammation and/or reduced immune competence (Cani et al.,
2009; Rummel et al., 2010; Lawrence et al., 2012), which are
reported in genetic models of severe obesity [ob/ob (deficient
for leptin) and db/db (deficient for functional leptin receptor)
mice], are associated with increased hippocampal cytokine (IL-
1β, IL-6, TNF-α) expression (Dinel et al., 2011, 2014; Erion et al.,
2014). Importantly, hippocampal inflammation is associated with
signs of dysfunctions within the brain (Stranahan et al., 2008;
Dey et al., 2014; Erion et al., 2014) and marked emotional and
cognitive alterations (Stranahan et al., 2008; Dinel et al., 2011,
2014; Erion et al., 2014). These models of obesity are therefore
especially suited for studying the long-term adverse effects of
obesity and investigating in particular the molecular and cellular
events underlying the development of emotional and cognitive
alterations.

Cognitive and Emotional Alterations
Displayed by Animal Models of Obesity

Several complementary models of obesity have been developed
over the last decades in order to study obesity and related
health complications, particularly cardiovascular diseases or
type 2 diabetes (Varga et al., 2009; Kanasaki and Koya, 2011).
Beyond these research topics, such animal models proved to be
very useful for studying the neurobiological basis of obesity-
associated emotional and cognitive alterations (Biessels and
Gispen, 2005; Kanoski and Davidson, 2011). For example,
models relying on diet modifications (DIO models), which are
close to human obesity with respect to etiological aspects, give
the opportunity of controlling the degree of obesity (low to
moderate), as well as the duration and time of exposure to high-
fat diet (perinatal periods, childhood, adulthood). Moreover,
because of their longitudinal characteristic, DIO models allow
for investigating the pathophysiological changes preceding
the development of obesity-related comorbidities, including
neuropsychiatric alterations. In addition, genetic models of
obesity reproduce moderate to severe obesity and display most of
the metabolic, inflammatory, and brain alterations characterizing
this condition, including neurobehavioral alterations.

In agreement with clinical studies, experimentally-induced
obesity is associated with a wide array of cognitive abnormalities
including impairment in learning and memory (Kanoski and
Davidson, 2011). For example, performances of spatial learning
and long-term memory (Boitard et al., 2012, 2014; Valladolid-
Acebes et al., 2013; André et al., 2014) or contextual fear
conditioning (Hwang et al., 2010) are impaired in DIO models
together with hippocampal synaptic plasticity (Molteni et al.,
2002; Hwang et al., 2010; Boitard et al., 2012). Interestingly,
the juvenile period (from weaning to young adulthood) seems
to be particularly vulnerable to the adverse effects of high-
fat diet on hippocampal function and related learning and
memory processes (Valladolid-Acebes et al., 2013; Boitard et al.,
2014). Indeed, exposure of adult mice to high-fat diet for the
same duration as young mice does not yield such behavioral
nor hippocampal alterations (Boitard et al., 2014; Valladolid-
Acebes et al., 2013). Moreover, we recently showed that rats
exposed to high-fat diet during the perinatal period and
maintained on this diet during adulthood displayed impaired
spatial memory and hippocampal neurogenesis in contrast with
those exposed to the diet only during the perinatal period or
after weaning (Lepinay et al., 2015). These data suggest therefore
that exposure to high-fat diet during the perinatal period
increases hippocampal vulnerability to the adverse effects of
subsequent high-fat feeding. This study complements previously
published data showing that maternal consumption of a high-
fat diet can affect spatial memory (Bilbo and Tsang, 2010;
Tozuka et al., 2010; Page et al., 2014) and hippocampal
function in off-spring (Niculescu and Lupu, 2009; Tozuka et al.,
2009). Similarly, an association between impaired hippocampus-
dependent spatial memory performances in the water-maze or
Y-maze tasks (Li et al., 2002; Dinel et al., 2011) and altered
hippocampal neurogenesis, neuronal dendrite morphology, and
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synaptic plasticity is also found in genetic models of obesity
such as db/db mice (Stranahan et al., 2008, 2009; Erion et al.,
2014; Ramos-Rodriguez et al., 2014). Interestingly, these mice
also display increased hippocampal expression of cytokines that
are known to influence hippocampal plasticity and behavior
(Dinel et al., 2011). In addition, blockade of hippocampal IL-
1β expression in db/db mice normalizes hippocampal dendritic
spine density and prevents synaptic dysfunction and cognitive
impairment (Erion et al., 2014). On the other hand, acquisition of
a conditioned taste aversion learning task (Ohta et al., 2003), as
well as working memory performances tested in a hippocampus-
independent task are on the contrary preserved in db/db mice
(Dinel et al., 2011). Altogether, these data point to the importance
of the hippocampus as key brain area for mediating cognitive
impairments linked to obesity.

Emotional reactivity is also impaired in animal models of
obesity, although with a different time-course of development
than cognition. Interestingly, we recently showed that DIO
starting at weaning in mice alters first spatial memory, then
anxiety-like behavior, whereas depressive-like behavior, either
assessed in the forced swim test (FST) or tail suspension test
(TST), remains unchanged unless the animals are challenged
with LPS (André et al., 2014). Rats exposed to moderate high-
fat diet from the perinatal period and throughout life also display
memory impairments but unaltered depressive-like behavior in
unstimulated conditions (Lepinay et al., 2015). Of note, increased
basal depressive-like behavior has been previously reported in
other DIO models but only when very high-fat diets associated
with important metabolic dysfunctions and presumably basal
low-grade inflammation are used (Yamada et al., 2011; Sharma
and Fulton, 2013). Moreover, it is well-known that depressive-
like behaviors mostly increase under challenging conditions such
as stress exposure (Lu et al., 2008) or immune stimulation
(Frenois et al., 2007; Moreau et al., 2008). Similarly, depressive-
like behavior is also increased in obese mice compared to lean
controls when experimental conditions used are particularly
stressful (e.g., sustained and/or repeated exposure to the test,
successive exposures to different behavioral tests over short
periods of time) (Collin et al., 2000; Yamada et al., 2011).
However, when stressful factors are tightly controlled, db/dbmice
display similar levels of depressive-like behavior than their lean
db/+ controls, although anxiety-like behavior remains elevated
(Dinel et al., 2011). These results strongly suggest an important
role for the inflammatory system and/or the hypothalamo-
pituitary-adrenal axis (HPA) axis, which are functionally related
(Raison and Miller, 2003), in underlying emotional alterations
associated with obesity. In addition, they indicate that obesity,
in conjunction with environmental conditions, can amplify CNS
dysfunctions and/or their harmful consequences on mood and
cognition. Supporting this notion, it has been recently shown
in DIO mice that exacerbated neuroinflammatory response to
a systemic LPS challenge contributes to increase depressive-
like behavior (Aguilar-Valles et al., 2014). Moreover, exacerbated
neuroinflammation and depressive-like behavior displayed by
LPS-injected DIO mice is also accompanied by enhanced HPA
axis activation (André et al., 2014). Altogether, these data support
the notion that obesity-associated cognitive and emotional

alterations rely on interactions involving multiple systems,
including metabolic characteristics, environmental influences
and immune-related processes.

Brain Inflammation: A Key Player in the
Control of Cognitive Functions and Mood

From Sickness Behavior to Neuropsychiatric
Symptoms
Over the last decades, clinical (Evans et al., 2005; Raison et al.,
2010; Capuron and Miller, 2011; Lasselin and Capuron, 2014)
and experimental (Castanon et al., 2002; Frenois et al., 2007;
Moreau et al., 2008) investigations focusing on the intricate
relationship between the innate immune system and the brain
have supported a main role for dysregulated production and/or
brain action of cytokines in neuropsychiatric disorders through
the profound action they exert on brain functions (Dantzer
et al., 2008; Zunszain et al., 2012). Most cytokines have
little or no function in healthy tissues, but they are rapidly
induced locally by activated innate immune cells in response
to tissue injury, infection, or inflammation. They are then
able to act systemically on distant organs, including the brain,
through a number of non-exclusive humoral, neural, and cellular
pathways that allow the peripheral immune messages to be
transmitted to the brain (Dantzer et al., 2008; Capuron and
Miller, 2011). Activation of immune-to-brain communication
ultimately induces the production of brain cytokines by
activated endothelial and glial cells, particularly microglia
(Layé et al., 1994; Castanon et al., 2004). Upon detection of
homeostatic disturbances, microglia are transiently activated
and rapidly engaged in brain adaptive immune responses
mainly due to their ability to produce cytokines, express their
receptors and amplify their signals (Ransohoff and Perry, 2009;
Kettenmann et al., 2011). Within the brain, cytokines are able to
influence pathways involved in behavioral regulations, including
neurotransmitter metabolism and function, neuroendocrine
activity, neural plasticity, and/or brain circuitry (Dantzer et al.,
2008). During an infection, transient brain cytokine activation
thus coordinate a large number of behavioral changes (including
weakness, listlessness, malaise, anorexia, fatigue, and transient
cognition and mood alterations) collectively referred to as
sickness behavior. Necessary for infection recovery, sickness
behavior usually resolves within few days, once microbial
pathogens have been cleared and the innate immune system
is no longer activated. However, failure to tightly regulate
systemic immune activation and/or brain microglial activation
leads to significant and prolonged induction of peripheral
and brain cytokines. This induction in turn might culminate
in medical conditions adversely affecting clinical outcomes,
including neuropsychiatric symptoms, particularly when they
ultimately affect key brain areas, such as the hippocampus,
the cortex, or the amygdala (Dantzer et al., 2008). During the
last decade, these findings have prompted a surge of interest
for the circumstances precipitating the development of such
pathological conditions and the identification of the underlying
mechanisms.
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Inflammation-associated Behavioral Alterations:
Underlying Mechanisms
Converging clinical findings have shown that inflammation-
related sickness behavior and neuropsychiatric symptoms differ
by their respective duration and intensity, suggesting that
they likely have distinct underlying mechanisms (Raison et al.,
2010; Capuron and Miller, 2011). Cytokines are able to induce
the synthesis of different enzymes in activated monocytes,
macrophages and brain microglia, namely the indoleamine
2,3-dioxygenase (IDO) and GTP-cyclohydrolase 1 (GTP-CH1),
which results in significant alterations in the biosynthesis of
key monoamines (e.g., serotonin, dopamine) known to play a
major role in mood regulation and cognitive function (Dantzer
et al., 2008; Capuron et al., 2011b). As part of the immune
response to infection, cytokine-induced activation of IDO, which
is the first and rate-limiting enzyme degrading tryptophan
along the kynurenine pathway, is usually beneficial to the
host (Mellor and Munn, 2008). However, sustained brain IDO
activation can also be deleterious by negatively impacting
monoaminergic neurotransmission, but also neuronal survival.
Interestingly, development of neuropsychiatric symptoms in
medically ill patients chronically treated with IFN-α (Raison
et al., 2010), elderly subjects (Capuron et al., 2011b), and
patients suffering from Alzheimer’s disease (Gulaj et al., 2010)
or strokes (Gold et al., 2011) is associated with increased
circulating levels of kynurenine. Severely obese individuals
with high prevalence of neuropsychiatric comorbidity also
display activation of IDO (Brandacher et al., 2006, 2007),
together with larger hippocampal atrophy than non-obese
subjects (Fotuhi et al., 2012). Increased brain kynurenine levels

resulting from IDO activation can be further metabolized to
produce neuroactive glutamatergic compounds, including 3-
hydroxykynurenine (3HKyn) and quinolinic acid (QA), which
play a key role in neuronal death and neurodegenerative diseases
by stimulating NMDA receptors and promoting oxidative stress
(Figure 1) (Stone et al., 2012; Campbell et al., 2014). On the other
hand, kynurenine can also be metabolized in kynurenic acid
(KA) that rather displays neuroprotective properties. However,
these apparently antagonistic pathways are compartmentalized
in the brain, with microglia preferentially producing QA,
whereas astrocytes produce KA. Sustained immune activation
therefore tips the scale in favor of neurotoxicity. In agreement
with this finding, increased brain, or cerebrospinal fluid (CSF)
concentrations of kynurenine and its neurotoxic metabolites
have been reported in several neurodegenerative and psychiatric
disorders (Schwarcz et al., 2001; Myint et al., 2007; Stone
et al., 2012; Campbell et al., 2014). Moreover, they have been
related with the stretch of brain damages, and with mood and
cognitive impairments (Stone et al., 2012), suggesting that IDO
activation may lead to both functional and structural alterations
in the brain. Consistent with this assumption, activation of the
kynurenine pathway has been recently shown to affect human
hippocampal neurogenesis (Zunszain et al., 2012; Savitz et al.,
2015a,b).

In line with clinical findings, experimental studies showed
that development of depressive-like and anxiety-like behaviors
induced by acute or chronic immune challenges in mice (Frenois
et al., 2007; Godbout et al., 2008; Moreau et al., 2008; O’Connor
et al., 2009a,b,c; Salazar et al., 2012; Corona et al., 2013; Lawson
et al., 2013) is associated with increased peripheral and brain

FIGURE 1 | Tryptophan metabolism through the kynurenine pathway.

Increased indoleamine 2,3-dioxygenase (IDO) activity occurring in activated

monocytes, macrophages, and brain microglia in conditions of immune

activation catabolizes tryptophan in kynurenine. Tryptophan is the

biosynthetic precursor for the synthesis of serotonin. By reducing the

availability of tryptophan for serotonin synthesis, IDO activation is able to

impair serotonin neurotransmission. Kynurenine is metabolized in different

neuroactive glutamatergic metabolites, including 3-hydroxykynurenine

(3-HKyn) and quinolinic acid that are produced by activated microglia, and

kynurenic acid produced by astrocytes. Elevated levels of quinolinic acid are

neurotoxic by activating glutamatergic NMDA receptors and promoting

oxidative stress. High concentrations of kynurenic acid can be

neuroprotective by antagonizing NMDA receptors, but sustained microglia

activation rather promotes increased neurotoxicity. KAT, kynurenine

aminotransferase; KMO, kynurenine monooxygenase; 3-HAO,

3-hyrdoxyanthranilic acid oxygenase; TPH, tryptophan hydroxylase.
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IDO activity (Lestage et al., 2002; Moreau et al., 2005; André
et al., 2008). Similarly, brain IDO activation was also associated
with cognitive and emotional alterations following immune
activation (Lawson et al., 2011; Barichello et al., 2013; Gibney
et al., 2013; Xie et al., 2014). More importantly, pharmacological,
or genetic inhibition of IDO activity prevents induction of
depressive-like behaviors, anxiety-like behaviors and/or cognitive
impairments by systemic immune challenges, without impacting
sickness behavior (Henry et al., 2009; O’Connor et al., 2009a,b,c;
Salazar et al., 2012; Barichello et al., 2013; Xie et al., 2014).
In addition, aged mice (Godbout et al., 2008; Kelley et al.,
2013), mice exhibiting constitutive microglial over-activation
(Corona et al., 2010) and obese mice (André et al., 2014) display
sustained cytokine production after an immune challenge,
together with protracted brain IDO expression and depressive-
like behavior (Godbout et al., 2008; Wynne et al., 2010; Corona
et al., 2013). Further studies report that centrally induced
inflammation, which only activates brain kynurenine pathway,
is sufficient to elicit depressive-like behaviors (Fu et al., 2010;
Park et al., 2011; Dobos et al., 2012; Lawson et al., 2013).
In addition, other studies shed light on the hippocampus as
important brain area for activation of cytokines and IDO (Frenois
et al., 2007; André et al., 2008; Henry et al., 2009; Wang
et al., 2009; Corona et al., 2010; Fu et al., 2010), although
they are broadly stimulated within the brain in response to
immune challenges (Castanon et al., 2004; André et al., 2008).
Interestingly, emotional alterations linked to hippocampus IDO
activation by an immune challenge are associated with reduced
hippocampal expression of the brain-derived neurotrophic factor
(BDNF) (Gibney et al., 2013). This neurotrophin contributes
to mood regulation and memory function, including in
conditions of immune activation (Barrientos et al., 2004),
by supporting synaptic plasticity and neuronal excitability
(Yamada and Nabeshima, 2003; Martinowich et al., 2007).
Interestingly, cognitive impairment and emotional alterations
reported in both obese DIO mice and db/db mice are also
associated with reduced BDNF levels in the cortex (Pistell et al.,
2010) and the hippocampus (Dinel et al., 2011). Reciprocally,
interventions normalizing hippocampal levels of BDNF in these
mice prevent hippocampus-mediated cognitive impairments
(Moy and McNay, 2012; Kariharan et al., 2015). These results
point to a link between increased neuroinflammation, impaired
neurogenesis/synaptic plasticity, and behavioral alterations in
obesity. Of note, brain IDO activation results in obese mice in
a huge increase of brain kynurenine concentrations compared
to lean mice, but similar impairment of brain tryptophan
levels (André et al., 2014). These results support those showing
that administration of kynurenine dose-dependently induces
depressive-like behaviors, anxiety-like behaviors and cognitive
impairment in normal-weight mice (Chess et al., 2009; O’Connor
et al., 2009c; Alexander et al., 2012; Salazar et al., 2012; Agudelo
et al., 2014). Altogether, although these results do not exclude the
possible role of impaired serotonin synthesis in inflammation-
induced neuropsychiatric symptoms, they clearly support a key
role for the neuroactive kynurenine metabolites resulting from
IDO activation.

Concurrently with activation of IDO, chronic inflammation
also activates GTP-CH1, which is the rate limiting enzyme
of GTP conversion ultimately leading to the production
of neopterin by activated immune cells at the expense of
tetrahydrobiopterin (BH4) formation (Figure 2) (Murr et al.,
2002; Oxenkrug, 2010; Capuron et al., 2011b). By acting as
a cofactor of aromatic amino acid hydroxylase, BH4 plays
a fundamental role in neurotransmitter synthesis, including
serotonin (Capuron et al., 2011b) but mainly dopamine
(Neurauter et al., 2008). Cytokine-induced GTP-CH1 activation,
classically assessed by measuring increased production
of neopterin, is indeed able to impair the dopaminergic
neurotransmission (Felger and Miller, 2012) which is known
to be involved in mood disorders and cognitive dysfunctions,
including in conditions of chronic immune stimulation (Brydon
et al., 2008; Capuron et al., 2012). Consistent with these
findings, reduced BH4 levels have been reported in patients
with psychiatric disorders (Hashimoto et al., 1994; Hoekstra
et al., 2001). Similarly, increased blood neopterin concentrations
correlate with a greater incidence of depressive episodes in
patients with major depression (Celik et al., 2010). Interestingly,
chronic low-grade inflammation that is classically reported in
elderly people is associated with activation of both IDO and GTP-
CH1 (Oxenkrug, 2010; Capuron et al., 2011b). More importantly,
these enzymatic activations have been shown to participate in
the pathophysiology of neuropsychiatric symptoms, whose
prevalence is often high in aged population (Oxenkrug,
2010; Capuron et al., 2011b). Of note, in addition to impair
monoaminergic neurotransmission, both enzymes contributes
to increase oxidative stress (Felger and Miller, 2012; Stone et al.,
2012; Campbell et al., 2014). Increased neopterin levels have
been reported in obese rats (Finkelstein et al., 1982) and humans
(Ledochowski et al., 1999; Oxenkrug et al., 2011), suggesting
that activation of the GTP-CH1 enzyme by cytokines, and the
consequent alterations of dopamine neurotransmission, may
contribute to the development of neuropsychiatric symptoms
reported in obesity. Although this assumption still needs to be
confirmed, it is worth mentioning that alterations of dopamine
function, together with alterations in basal ganglia/reward
circuitry have been reported in obese patients (de Weijer et al.,
2011; Volkow et al., 2011). Moreover, depressive-like behavior
is associated in DIO mice with alterations in striatal circuitry,
supporting a role for dopamine-related disruptions in obesity-
associated depressive symptoms (Sharma and Fulton, 2013).

Factors Modulating the Impact of
Neuroinflammation on Cognitive and
Emotional Alterations Associated with
Obesity

HPA Axis
Brain effects of cytokines on mood regulation and cognitive
function are likely modulated by the tight interactions
existing between the inflammatory and neuroendocrine
systems, in particular the HPA axis (Raison and Miller,
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FIGURE 2 | Effect of immune activation on the availability of

tetrahydrobiopterin (BH4). The guanosine-triphosphate-cyclo

hydrolase-1 (GTP-CH1) is the rate limiting enzyme of guanosine-

triphosphate (GTP) conversion in dihydrobiopterin (BH2). Increased

GTP-CH1 activity occurring in conditions of immune activation

ultimately leads to the production of neopterin at the expense of

tetrahydrobiopterin (BH4) formation. BH4 plays a fundamental role in

neurotransmitter synthesis, in particular serotonin and dopamine, by

acting as a cofactor of the tryptophan hydroxylase (TPH) and tyrosine

hydroxylase (TH). Cytokine-induced GTP-CH1 activation reduces

therefore monoaminergic neurotransmission. BH4 is also a cofactor of

the nitric oxide synthase (NOS). Reduced BH4 availability can indirectly

contributes to increase the production of free radicals promoting

oxidative stress.

2003; Capuron and Miller, 2011) which is highly activated
in obesity (Dinel et al., 2011, 2014). Immune alterations are
indeed notorious for causing significant changes in HPA axis
activity and vice versa. Consequently, alterations of HPA axis
functions and inflammatory activation are often associated
in many pathological conditions, including cancers treated
by immunotherapy (Capuron et al., 2003), mood disorders
(Zunszain et al., 2011) or obesity (Dinel et al., 2011, 2014; André
et al., 2014). Interestingly, glucocorticoids have been recently
shown to sensitize microglia in an animal model of obesity
(Dey et al., 2014). Reciprocally, DIO mice display exacerbated
HPA axis activation in response to an immune challenge,
together with increased neuroinflammation and depressive-like
behavior (André et al., 2014). This result supports the notion that
inflammatory factors and glucocorticoids may act together in
the context of obesity to promote the development of depressive
symptoms (Hryhorczuk et al., 2013) and cognitive functions,
in particular those involving the hippocampus (Stranahan
et al., 2008; Dey et al., 2014). Interestingly, both cytokines
and glucocorticoids have been shown for example to impair
hippocampal neurogenesis and neuronal function in animal
models of obesity (Stranahan et al., 2008; Dinel et al., 2011; Erion
et al., 2014; Wosiski-Kuhn et al., 2014). Moreover, reversing the
impairment of hippocampal neurogenesis by targeting cytokines
or glucocorticoids improves spatial memory deficits displayed by
obese mice (Stranahan et al., 2008; Erion et al., 2014).

Leptin
One of the stronger features associated with obesity is the
significant increase of leptin production (Lehr et al., 2012).
This adipokine has been extensively studied for decades for
its key role in the control of energy homeostasis and feeding
behavior through activation of specific leptin receptors in the
hypothalamus (Rosenbaum and Leibel, 2014). However, due to
the broad brain distribution of leptin receptors, which are also
located throughout the cortex and the hippocampus, leptin has
been shown to modulate memory processes and mood disorders
(Guo et al., 2013; Farr et al., 2015). Leptin is also known to locally
facilitate synaptic plasticity and neurogenesis (Shanley et al.,
2001). Deficits in spatial memory reported in DIO mice occur
concomitantly with desensitization of leptin signaling pathway
in the hippocampus (Valladolid-Acebes et al., 2013). Moreover,
selective deletion of leptin receptors in adult hippocampus
induces depressive-like behavior in mice (Guo et al., 2013)
and confers resistance to behavioral antidepressant effect of
fluoxetine (Guo and Lu, 2014). In addition, obese mice which are
characterized by impaired leptin signaling pathway (e.g., db/db or
ob/ob mice) display deficits of hippocampal-dependent memory
and increased anxiety-like behavior (Stranahan et al., 2008;
Dinel et al., 2011), together with increased basal hippocampal
inflammation (Dinel et al., 2011; Erion et al., 2014) and altered
neuroinflammatory response to an immune challenge (Rummel
et al., 2010; Lawrence et al., 2012; Dinel et al., 2014). These
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findings suggest that both leptin and cytokines may contribute
together to the development of behavioral alterations associated
with obesity. Interestingly, this assumption is supported by
mounting evidence showing that leptin acts as an important
neuroendocrine modulator of the immune system bymodulating
the activation of both peripheral immune cells and brain
microglia (Lafrance et al., 2010; Aguilar-Valles et al., 2015).

Insulin
This hormone, whose circulating levels and signaling pathway are
altered in obesity, is able to interact with inflammatory processes
and to act within the brain to modulate mood and cognition
(Ghasemi et al., 2013). Impaired insulin signaling pathway
may therefore, as with leptin, contribute to the development
of neuropsychiatric symptoms in the context of obesity by
interacting with brain cytokines. More studies are necessary to
test this hypothesis. However, it is worth noting that several
studies including ours suggest that insulin per se is not essential
or sufficient to explain behavioral alterations occurring in
obesity. For example, the increased risk of cognitive dysfunction

displayed by patients with metabolic syndrome is independent
from the presence of diabetes (Muller et al., 2010). Consistent
with these clinical findings, we recently reported increased
emotional behaviors and cognitive impairment in DIO animals
in the absence of any significant hyperinsulinemia (André
et al., 2014; Boitard et al., 2014). Similarly, normalization of
peripheral hyperglycemia in db/dbmice does not improve spatial
cognitive impairments or anxiety-like behaviors (Stranahan et al.,
2008, 2009). Besides, this normalization does not alter brain
concentrations of glucose and insulin that are similar in both
db/db and db/+mice (Stranahan et al., 2008).

Gut Microbiota
Converging evidence shows that obesity-related microbiota
dysregulations, which play a critical role in induction of
peripheral and brain inflammation (Bruce-Keller et al., 2015),
impact mood and cognitive functions (Cryan and Dinan, 2012),
although the nature of the biological pathways (neuronal,
hormonal and/or immune) underlying this effect is still elusive
(Cryan and Dinan, 2012). Interestingly, it has been recently

FIGURE 3 | Proposed role of neuroinflammation in obesity-associated

cognitive and emotional alterations. Obesity is characterized by

metabolic alterations (hyperinsulinemia, hyperleptinemia, increased activation

of the hypothalamo-pituitary-adrenal (HPA) axis…) and peripheral low-grade

inflammation, which originates from alterations in adipose tissue and gut

functions. These obesity-associated alterations are well-known to promote

brain inflammatory processes that represent key players in the development

of behavioral alterations associated with obesity. By sustaining

neuroinflammation, as manifested by chronic activation of microglia, brain

production of inflammatory cytokines, and local activation of indoleamine

2,3-dioxygenase (IDO) and guanosine-triphosphate-cyclohydrolase-1

(GTP-CH1), obesity may impair monoaminergic neurotransmission,

neurogenesis, and synaptic plasticity, and concomitantly promote

neurotoxicity. Such alterations of brain function induced by

neuroinflammation likely represent major pathophysiological pathways to

cognitive and emotional alterations in obesity.
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reported that transplantation of gut microbiota from DIO
mice to lean mice is sufficient to induce both brain microglial
activation and neurobehavioral changes in the absence of
obesity (Bruce-Keller et al., 2015). This elegant study supports
the notion that obesity-related gut microbiota alterations may
modulate gut-to-brain communication pathways, leading to
the development of neuropsychiatric comorbidities associated
with neuroinflammation. Akin with this assumption, the use
of compounds which beneficially alter the microbiota (e.g.,
prebiotics or probiotics) appears as a promising way to improve
neuropsychiatric comorbidities in obese patients (Cryan and
Dinan, 2012). More generally, nutritional interventions based on
factors with immunomodulatory properties and known impact
on behavior and mood, in particular omega-3 polyunsaturated
fatty acids and antioxidants (see Gomez-Pinilla and Nguyen,
2012; Bazinet and Layé, 2014 for review), are tractable
strategies for developing novel therapeutics for obesity-related
neuropsychiatric disorders. Lastly, based on the key role of the
kynurenine pathway in altering mood and cognition (Dantzer
et al., 2008), the opportunity of directly targeting this pathway, as
promisingly tested in the context of cancer (Platten et al., 2015),
should likely represent another interesting therapeutic approach.

Conclusion

Altogether, data presented in this review clearly show that
brain inflammatory processes represent key players in the

development of neuropsychiatric comorbidities in obesity.
These likely rely on interactions involving multiple systems,
including inflammatory processes but also neuroendocrine
systems, gut microbiota and environmental influences. Indeed,
neuroinflammation appears to be the cornerstone of the different
factors contributing to induce neuropsychiatric symptoms in
obesity. Several issues are however still unclear, in particular the
identification of the specific brain pathways and/or mechanisms
targeted by neuroinflammation and underlying obesity-
related mood and cognitive alterations. Recent experimental
results reported in this review suggest that cytokine-induced
unbalanced relationship between neurogenesis and neuronal
death combined with alterations in monoamine metabolism and
function likely represent a major pathophysiological pathway
to neuropsychiatric comorbidities in obesity (Figure 3). Given
the alarming and continuous rise in obesity in modern societies
and its role as a risk factor for many other diseases including
neuropsychiatric disorders, therapeutic strategies to reduce
obesity-related inflammation may be very promising approach
to improve the quality of life and health outcomes of overweight
and obese individuals.
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