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Studying the neural basis of human social interactions is a key topic in the field of social

neuroscience. Brain imaging studies in this field usually focus on the neural correlates

of the social interactions between two participants. However, as the participant number

further increases, even by a small amount, great difficulties raise. One challenge is how

to concurrently scan all the interacting brains with high ecological validity, especially for a

large number of participants. The other challenge is how to effectively model the complex

group interaction behaviors emerging from the intricate neural information exchange

among a group of socially organized people. Confronting these challenges, we propose

a new approach called “Cluster Imaging of Multi-brain Networks” (CIMBN). CIMBN

consists of two parts. The first part is a cluster imaging technique with high ecological

validity based on multiple functional near-infrared spectroscopy (fNIRS) systems. Using

this technique, we can easily extend the simultaneous imaging capacity of social

neuroscience studies up to dozens of participants. The second part of CIMBN is a

multi-brain network (MBN) modeling method based on graph theory. By taking each

brain as a network node and the relationship between any two brains as a network

edge, one can construct a network model for a group of interacting brains. The emergent

group social behaviors can then be studied using the network’s properties, such as

its topological structure and information exchange efficiency. Although there is still

much work to do, as a general framework for hyperscanning and modeling a group

of interacting brains, CIMBN can provide new insights into the neural correlates of group

social interactions, and advance social neuroscience and social psychology.

Keywords: social interaction, graph theory, functional near-infrared spectroscopy, hyperscanning, social

neuroscience, multi-brain network
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Introduction

Exploring the neural mechanisms of human social interactions is
the core of social neuroscience. In the past decade, with the help
of “hyperscanning” techniques (Montague et al., 2002; Babiloni
et al., 2006; Funane et al., 2011; Baess et al., 2012; Cui et al., 2012;
Hirata et al., 2014), many studies have investigated the neural
correlates of two-person social interactions (see Hari and Kujala,
2009; Astolfi et al., 2011; Sänger et al., 2011; Konvalinka and
Roepstorff, 2012; Liu and Pelowski, 2014 for reviews). However,
studying the neural correlates of more than two people’s social
interactions remains quite a new area. Novel neuroimaging
technology for “crowd psychology” studies (Hari and Kujala,
2009) is still awaiting further development.

In recent years, some pioneering studies have explored using
functional magnetic resonance imaging (fMRI) (Tomlin et al.,
2013; Smith et al., 2014) and electroencephalogram (EEG)
(Babiloni et al., 2006, 2007b, 2011, 2012) to simultaneously
scan multiple interacting brains (3–5 participants), taking large
steps from two-brain neuroscience to multi-brain neuroscience.
However, some technical challenges still limit the further
development of this new area. First, from the aspect of brain
imaging technology, fMRI-based multi-person hyperscanning
usually demands one fMRI scanner for each participant, making
it difficult to scan larger groups (although recently a novel
technique allowed a single fMRI scanner accommodating two
participants to scan them at the same time, Lee et al., 2012).
Moreover, the confines of an fMRI scanner are unlike daily-
life environments for social interaction. Compared with fMRI,
EEG allows more naturalistic scanning environments and has
a cost advantage which allows the integration of more EEG
recording systems to scan more participants. However, EEG
cannot precisely localize neuroelectrical signal origins (Michel
et al., 2004), which increases the difficulty in understanding
experimental results.

Second, from the aspect of modeling and analysis, a current
challenge is how to effectively model the complex interaction
process among all interacting brains. Social interaction relies
upon participants’ information exchange (Tognoli et al.,
2007). In a multi-person interaction environment, the
information exchange process is much more complex than
that in a two-person situation. Therefore, single-brain level
analysis and paired-brain level analysis may not support
comprehensive study of the characteristics of multi-brain

interaction processes.
Confronting these challenges, in the present study we

propose a general framework for hyperscanning and modeling
multiple interacting brains, called “Cluster Imaging of Multi-
brain Networks” (CIMBN). CIMBN consists of two parts. The
first part is a simultaneous multi-brain imaging technique
based on multiple functional near-infrared spectroscopy (fNIRS)

recording systems, called “cluster imaging.” FNIRS is a
fast-developing brain imaging technology. It measures the
hemodynamic responses of neural activity, and has relatively
high spatial resolution (about 1–3 cm, Boas et al., 2004) and
capacity for signal localization. FNIRS is quiet, comfortable, and
insensitive to participants’ body- and eye-movements, allowing

participants to communicate with each other verbally and non-
verbally just like in daily life (Jiang et al., 2012). Compared with
fMRI, fNIRS has much lower cost. Therefore, it is feasible to
simultaneously scan more participants by increasing the number
of fNIRS instruments. Moreover, most commercially available
fNIRS systems provide dozens of measurement channels.
Therefore, a single fNIRS instrument can be used to measure
multiple participants, at the cost of reduced measurement area
for each participant. These unique advantages make fNIRS very
promising for developing extensible cluster imaging systems of
high ecological validity.

The second part of CIMBN is a multi-brain network (MBN)
modeling method based on graph theory and network theory.
These approaches give powerful tools for modeling and analyzing
the connectivity relationships and information transmission
features between brains. Network analysis techniques have been
widely used in individual neuroscience to study the brain’s
structural and functional architecture (Bullmore and Sporns,
2009, 2012; Park and Friston, 2013). Recently it has also been
used in two-brain hyperscanning studies (Babiloni et al., 2007a;
Fallani et al., 2010; Sänger et al., 2012, 2013). In the framework of
CIMBN, a network is used to model the interacting relationships
among more than two brains. The idea is to abstract each brain
as a network node, and then take some index of brain-to-brain
interaction (e.g., the neural synchronization) between each pair
of brains as the strength of the network edge between the nodes.
Then the information transmission features of this MBN can
be characterized by its topological properties. As a new way
to analyze a group’s hyperscanning data, this approach has the
potential to provide new insights into the neural correlates of
information exchange among interacting people.

In this technical report, a cluster imaging platform consisting
of two fNIRS systems with parallel imaging capacity of nine
participants is described. A simple nine-person drumming
experiment was conducted to demonstrate the feasibility of the
platform. Concepts, methods, and application of MBN modeling
are introduced. Finally, as a general framework for social
neuroscience and social psychology studies, the advantages,
limitations, and possible future improvements of CIMBN are
discussed.

Cluster Imaging of Multi-Brain Networks

Part I: fNIRS-Based Cluster Imaging System
In this study, the cluster imaging system consisted of two
fNIRS systems (one ETG-4000, Hitachi Medical Corporation,
Japan; one LABNIRS, Shimadzu Corporation, Japan). Both fNIRS
systems were connected to a personal computer (Intel i3 CPU,
4GB RAM, Microsoft Windows XP operating system) to receive
control commands. The ETG-4000 was connected via the RS-232
serial port, and the LABNIRS was connected via the IEEE-1284
parallel port. Custom-developed software (programmed using
MATLAB, the MathWorks Company) running on the PC was
used to send triggers, experimental markers, and timestamps to
the two fNIRS systems (Figure 1A).

The optical fibers of each fNIRS system were divided
into several bundles to scan multiple participants. Specifically,
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FIGURE 1 | Architecture and channel configuration schematic of the

fNIRS-based cluster imaging system. (A) System architecture diagram. (B)

Channel configuration of ETG-4000. Upper panel shows the two predefined

probes with 4× 4 configuration. Lower panel shows the actual channel

allocation used in multi-brain imaging. Green channels are used while gray

channels are discarded. (C) Channel configuration of LABNIRS. (D) Activation

sequence diagram of the LABNIRS light sources.

the ETG-4000 was used to scan four participants and the
LABNIRS was used to scan five participants. Each participant
was allocated eight near-infrared optodes (four sources and
four detectors). When configuring the measurement channels,
it should be noted that there are two different ways that multi-
channel fNIRS systems operate. One way is frequency-division
multiplexing. This type of fNIRS system modulates every near-
infrared (NIR) light source at a different frequency, therefore
enabling frequency-based demultiplexing of the mixed signal
received by each detector into components from different NIR
light sources. For this type of fNIRS system (e.g., the ETG-
4000), the matching between the source and detector optodes
are predetermined. Therefore, experimenters need to divide the
measurement channels based on the system-predefined channel
configuration. For example, as the ETG-4000 predefined two 4×4
probe sets, they were divided into eight subsets to scan four
participants in our cluster imaging system [two subsets for each
participant, covering two regions of interest (ROI), Figure 1B].

Another way multi-channel fNIRS systems identify signals
from different NIR light sources is by time-division multiplexing,
in which the light sources are activated sequentially to avoid
aliasing. For this type of fNIRS system (e.g., the LABNIRS),
the experimenter can customize the source-detector arrangement
and set the source activation sequence to realize the scanning of
multiple participants simultaneously (Figures 1C,D).

In the current system, the optical fiber lengths of both ETG-
4000 and LABNIRS are 3 m, allowing the nine participants to

communicate in a face-to-face manner in a wide room. However,
limited by the arrangement of the optical fibers, the participants
cannot ambulate freely in the room. To study social interactions
among a group of ambulating people (e.g., similar to a cocktail
party), wireless fNIRS systems should be used.

Part II: Multi-Brain Network (MBN) Modeling and
Analysis
Network theory provides promising tools for analyzing the
complex information exchange process among multiple
interacting brains. To conduct MBN analysis, the first step is to
define the nodes and edges. As our fNIRS multi-brain imaging
setup only covers a few ROIs, instead of the whole brain, we
define a node as one ROI in one brain. The choice of ROI is
determined according to the experimental hypothesis. In our
case, to investigate social functions, the prefrontal cortex or
temporal parietal junction were chosen. After determining the
nodes, one of several inter-brain synchronization measures
can be used to assign the weights of the network edges, such
as the correlation coefficient (Holper et al., 2013), coherence
(Cui et al., 2012), and mutual information (Naeem et al., 2012).
Alternatively, considering the direction of information transfer,
the edge weights can be calculated by using dynamic causal
modeling (Friston et al., 2003) or Granger-causality (Holper
et al., 2012). Edge weights are stored in a connection matrix
where the element in the i-th row and j-th column is the inter-
brain neural synchronization between nodes i and j. An optional
step is to threshold the connection matrix to generate a binary
adjacency matrix, forming an unweighted network. Finally, the
connection matrix can be visualized as a graph to intuitively
show the structure of the network.

After the MBN is built, a variety of topological properties
of the MBN can be calculated to quantitatively assess the
network’s information exchange characteristics. There are two
main categories of topological measures. One category consists
of nodal metrics which describe the topological properties
of nodes, such as nodal degree, nodal clustering coefficient,
betweenness, and nodal efficiency. The other category consists
of network metrics which describe the topological properties
of the network, such as clustering coefficient, characteristic
path length, network efficiency (global efficiency and local
efficiency), assortativity, hierarchy (Ravasz and Barabasi, 2003),
synchronization (Barahona and Pecora, 2002), modularity
(Girvan and Newman, 2002), as well as the small-world property
(Watts and Strogatz, 1998) and scale-free property (Barabasi and
Albert, 1999). These metrics of the MBN can be correlated with
indices of social interaction behaviors to investigate the neural
correlates of multi-person social interactions. For example, a
group member with high nodal degree (many direct connections
with other nodes) or high betweenness (as an important
mediating node by which other nodes are connected) in the
MBN may show high leadership in the group, because a leader
usually needs to exchange information with other members more
frequently, which may make his/her brain an important “hub”
in the MBN. As another example, the task performance of a
group of people may be correlated with the MBN’s efficiency
indices, because higher information exchange efficiency among
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brains may lead to better communication, comprehension, and
cooperation.

A Demonstration Experiment

Cluster Imaging of a nine-Person Drumming
Experiment
As a demonstration of the CIMBN method, we conducted a
simple experiment in which nine participants drummed together
while their brain activities were simultaneously recorded and
analyzed off-line. As shown in Figure 2A, nine participants sat
in a circle (about 1.5m in diameter) in a wide room, each with a
drum. They drummed together and tried their best to make their
beats consistent with each other, a traditional social interaction
task which closely mimics some situations in daily life (Cohen
et al., 2014). During the drumming, the brain activities from
two regions (the prefrontal cortex and the left temporal parietal
junction, Figure 2B) of all nine participants were simultaneously
recorded. The signals were then off-line preprocessed, including
a temporal alignment between the two fNIRS instruments using
the timestamps, a down-sampling of the LABNIRS data (55.5Hz)
to the sampling rate of the ETG-4000 data (10Hz), and a low-
pass filter (2.5Hz) to remove high-frequency instrumental noise.
To obtain the drumming behavioral data, the drum beats of
all participants were recorded using vibration transducers and
synchronized with the NIRS signals using timestamps.

Multi-Brain Network Analyses
As an example of MBN construction, we defined the nodes
as the prefrontal cortex ROI. For each participant, the fNIRS

oxygenated hemoglobin (HbO) signals from the four channels
in the prefrontal cortex were ROI-averaged. Edge weights
were defined as the Pearson correlation coefficients between
the ROI-averaged time courses of each pair of participants.
A 9 × 9 connection matrix was obtained by calculating the
correlation coefficients for all node pairs. The connection
matrix was thresholded into an unweighted binary network
with an exploratory threshold of 0.5 and then visualized as a
graph. After the MBN construction, some basic indices—degree,
nodal global efficiency, nodal local efficiency, network global
efficiency, network local efficiency, and nodal betweenness—were
calculated. The degree of a node is defined as the number of edges
linking to that node. The nodal global efficiency of a node i is
defined as

Ei_glob =
1

N − 1

∑

i6=j∈G

1

lij
, (1)

where G is the graph. N is the number of nodes in G. lij is
the shortest path length between nodes i and j. The nodal local
efficiency of a node i is defined as

Ei_loc =
1

NGi (NGi − 1)

∑

i,j∈Gi

1

lij
, (2)

where NGi is the number of nodes in the subgraph Gi, the set
of neighboring nodes of node i. The network global efficiency is
defined as

Eglob =
1

N (N − 1)

∑

j 6=i∈G

1

lij
. (3)

FIGURE 2 | Nine-person drumming recorded using the fNIRS-based

cluster imaging system. (A) Photo of simultaneous nine-person cluster

imaging during drumming interaction. (B) Brain regions (ROI) measured

for each participant. (C) Signal samples from two representative

participants. Recorded oxygenated hemoglobin (HbO) signals were off-line

preprocessed, including alignment between the two fNIRS systems using

timestamps, down-sampling of LABNIRS data (55.5Hz) to the sampling

rate of ETG-4000 data (10Hz), and low-pass filtering (2.5Hz) to remove

high-frequency instrumental noise. Bottom row shows behavioral data

(drum beats).
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The network local efficiency is defined as

Eloc =
1

N

∑

i∈G

Eglob (Gi) . (4)

The nodal betweenness of a node i describes the number of
shortest paths between pairs of other nodes which pass through
node i. It is defined as

Bi =
∑

j 6=i6=k∈G

σjk (i)

σjk
. (5)

where σjk is the number of shortest paths from node j to node k,
and σjk(i) is the number of shortest paths from node j to node k
that pass through node i.

Results
Figure 2C shows the oxygenated hemoglobin (HbO) signals from
all eight channels of two sample participants (Left: Participant 1,
collected using ETG-4000; Right: Participant 5, collected using
LABNIRS). The pulse signals below the HbO traces illustrate the
drumming behavioral data.

Figure 3 shows the flowchart and the result of each step in
constructing the MBN. As illustrated, each pair of participants
were either linked directly or indirectly through other nodes,
which means all nodes (drummers) are in one connected
component. Table 1 shows several basic indices of the MBN: the
nodal degree, the nodal efficiency (global and local), the network
efficiency (global and local), and betweenness.

The current demonstration experiment and results are clearly
very preliminary, but they demonstrate the feasibility of using the
cluster imaging system to scan nine or even more participants
simultaneously in a realistic, face-to-face social interaction
environment. The MBN showed that, during the drumming, all
the participants’ brains were linked by either direct or indirect
paths, providing possible routes through which cooperation
information may transfer. The topological indices indicate
different nodes have distinct degree and global/local efficiency,
suggesting diversity of roles during the group cooperation task.
Although the neural basis of this MBN still awaits further study,
our platform provides a new avenue by which to explore the
intricate neural inter-communication process. In future studies,
we can extend the present group drumming experiment with
more experimental conditions and larger sample sizes. The
drumming sound data can also be leveraged in the analysis to
investigate the MBN’s behavioral significance.

Discussion

Social interactions have critical significance in all aspects of
human life, from individuals’ development to the species’
evolution. With the goal of studying the brain mechanisms
behind social interactions, social neuroscientists have always
sought methods that can measure and analyze the brains of
interacting people in more realistic social crowds and more
natural social environments (Hari and Kujala, 2009; Liu and
Pelowski, 2014). In the present study, we propose CIMBN as
a research framework for scanning and modeling a cluster

FIGURE 3 | Flowchart of the construction of a multi-brain network

from the nine-person drumming interaction. All nine participants’

brain activities were simultaneously recorded using our fNIRS cluster

imaging system (step 1), and the oxygenated hemoglobin (HbO) signals

from the four channels in the prefrontal cortex were ROI-averaged (step

2). Edge weights were obtained by calculating the Pearson correlation

coefficients between the ROI-averaged time courses, forming a 9× 9

connection matrix (step 3). The connection matrix was thresholded into

an unweighted binary network (step 4) and then visualized as a graph

(step 5).
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TABLE 1 | Indices of the multi-brain network.

Participant Nodal Network

1 2 3 4 5 6 7 8 9

Degree 3 5 5 1 4 5 3 5 1

Global efficiency 0.65 0.81 0.79 0.49 0.73 0.79 0.64 0.79 0.44 0.68

Local efficiency 0.33 0.78 0.85 0 0.83 0.85 1 0.55 0 0.58

Betweenness 7 7.9 2.3 0 2.8 2.3 0 7.7 0

of interacting brains. We extend multi-brain hyperscanning
techniques from both imaging and data analysis aspects and
provide a new tool for studying the neural correlates of social
interactions among a crowd of people.

Our work affords a way to greatly extend parallel
measurement capacity, which is an important technical
index of hyperscanning techniques. Larger simultaneous
measurement capacity is very important for the advancement
of social neuroscience. Humanity has always been organized in
social groups of various scales, from the nuclear family to the
nation-state, which raises a variety of interesting and valuable
scientific questions for social neuroscience, such as the nature of
cooperation and competition (Bowles, 2006; Vollan and Ostrom,
2010), collective intelligence (Woolley et al., 2010), group
cohesion and conflict (Pelled, 1996; Pescosolido and Saavedra,
2012), social facilitation and loafing (Zajonc, 1965; Ying et al.,
2014), group structure (Palla et al., 2007), leadership (Beaman
et al., 2012), and group-personality (Kramer et al., 2014). Most of
these social group behaviors usually occur with the participation
of a crowd of people, which makes it important to track all
interacting brains simultaneously. In the present work, we
established a cluster-imaging technique for simultaneously
scanning multiple brains and demonstrate a measurement
capacity of nine participants. To the best of our knowledge, this
is by far the highest capacity hyperscanning system, and it can
be further extended to accommodate dozens or even hundreds
of participants by simply integrating more fNIRS systems, with
negligible ecological validity loss.

Another contribution of our work is a new approach for
modeling and analyzing such cluster-imaging data. Existing
analysis methods for hyperscanning studies involving more than
two participants mainly work on two levels. One is the single-
brain level, which treats all the interacting brains separately
(Babiloni et al., 2011, 2012; Tomlin et al., 2013; Smith et al.,
2014), and another is the paired-brain level, which focuses on
the hyperlinks (i.e., the cross-brain connectivities) between two
brains (Babiloni et al., 2006, 2007b). These analysis methods
showed potential in pioneering studies. However, when the
number of simultaneously scanned brains greatly increases, the
social interaction processes which can be analyzed will be much
more complex. People combine to form small groups through
interpersonal interactions and small groups combine to form
larger groups through intergroup interactions. Usually, the large
groups’ characteristics are far different from that of the small
groups. That is to say, the effects of group social interactions

cannot be simply understood as “one plus one makes two.” This
non-linearity property of social interactions suggests that, for a
larger social group made up of many people, existing analysis
methods may not be enough to thoroughly study the neural
underpinnings of group social behaviors, even by assembling
all single-brain and paired-brain information. Therefore, we
propose a new approach—MBN analysis—for modeling and
analyzing the cluster imaging data. Under the framework of
CIMBN, the neural correlates of a group’s social behaviors can
be investigated at different scales, such as individuals, subgroups,
and the whole group, using the MBN’s nodal properties, sub-
network properties, and whole-network properties. Additionally,
the changes of the MBN during social interactions can also
be studied. These dynamics, including evolutionary events such
as growth, merging, contraction, and splitting (Palla et al.,
2007), may provide new insights into the mechanisms for the
propagation of behavior, knowledge, and emotion in social
groups.

Limitations and Future Work

As a general framework for multi-brain imaging and modeling,
CIMBN still has some limitations and may benefit from further
development. In terms of the clustering imaging technique, the
optical fibers of fNIRS systems sometimes limit the freedom of
the social interactions and bring difficulties in cable arrangement,
especially when the number of fNIRS systems increases. In the
future, wireless fNIRS systems may be employed to address this
problem.

EEG, a frequently-used, low-cost, and non-invasive brain
imaging modality, can be added into the CIMBN framework to
complement fNIRS for cluster imaging. In contrast with fMRI
and fNIRS, which record cerebral hemodynamic changes, EEG
records the brain’s neuroelectrical activity and has very high
temporal resolution. If fNIRS and EEG can be combined to
realize concurrent recording for cluster imaging, it will add
flexibility in terms of the types of analyses we can conduct and
thus assist the investigation of the neural underpinnings of group
social interactions.

CIMBN can also be extended to be internet-compatible,
allowing simultaneous recording at different geographical
locations with synchronization and data exchange occurring via
the internet. This would not only increase imaging capacity by
combining fNIRS systems from different laboratories, but also
enable researchers to break through geographical constraints
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to investigate long-distance social interaction processes, such
as social exchanges between cultures and social interactions in
cyberspace.

Although promising, the present MBN analysis method is
still preliminary and exploratory. Work is needed to further
develop the method. In future work, we plan to clarify the
impact of factors influencing MBN analysis, such as the noise
characteristics of cluster imaging data and different definitions
for network nodes (e.g., single ROI or multiple ROIs) and
edges (e.g., threshold selection for edge retention). In addition,
we plan to conduct social group interaction experiments with
multiple sessions to validate the test-retest reliability of the MBN
method. Finally, we plan to apply the MBN analysis method to a
diverse series of group social interaction experiments for further
validation and improvement.
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