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Brain computer interaction (BCI) technologies have proven effective in utilizing single-trial
classification algorithms to detect target images in rapid serial visualization presentation
tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect
that is often overlooked concerns the feature similarity between target and non-target
images. In most real-world environments there are likely to be many shared features
between targets and non-targets resulting in similar neural activity between the two
classes. It is unknown how current neural-based target classification algorithms perform
when qualitatively similar target and non-target images are presented. This study address
this question by comparing behavioral and neural classification performance across two
conditions: first, when targets were the only infrequent stimulus presented amongst
frequent background distracters; and second when targets were presented together
with infrequent non-targets containing similar visual features to the targets. The resulting
findings show that behavior is slower and less accurate when targets are presented
together with similar non-targets; moreover, single-trial classification yielded high levels
of misclassification when infrequent non-targets are included. Furthermore, we present
an approach to mitigate the image misclassification. We use confidence measures to
assess the quality of single-trial classification, and demonstrate that a system in which
low confidence trials are reclassified through a secondary process can result in improved
performance.

Keywords: confidence, EEG, classification, single-trial analysis, rapid serial visual presentation, brain-computer
interface

Introduction

The application space for brain computer interaction (BCI) technologies is rapidly expanding
with improvements in technology. For example, the use of BCI systems for image triage have
enabled image analysts to detect targets in large aerial photographs faster and more accurately than
traditional standard searches (Gerson et al., 2006; Parra et al., 2008; Sajda et al., 2010; Pohlmeyer
et al,, 2011; Zander and Kothe, 2011). Systems that incorporate neural activity to enhance visual
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target identification often utilize a rapid serial visual presentation
(RSVP) paradigm in which analysts are shown a sequence of
images in rapid succession (e.g., 2-10 Hz)(Potter, 1976; Chun and
Potter, 1995). The analyst’s task is to detect predefined targets
occurring with low frequency in a series of frequent background
(i.e., distractor) stimuli. When a target is detected in an image,
a tell-tale neural response commonly associated with the P300
event-related potential (ERP) is evoked and classified by the BCI
system (Pohlmeyer et al., 2011). Each image in an RSVP task
is classified based on the neural response of the analyst and
those that are deemed most likely to contain targets are triaged
for subsequent interrogation by the analyst. By using the RSVP
paradigm, it is possible for an analyst to quickly sort through
many images.

Previous studies using RSVP tasks for rapid target detection
have primarily focused on the two-class discrimination problem
of detecting target images within a set of distractor images
(Gerson et al., 2006; Bigdely-Shamlo et al., 2008; Parra et al., 2008;
Sajda et al., 2010; Touryan et al., 2010, 2011; Cecotti et al., 2011;
Yu et al., 2011, 2012; Marathe et al., 2013, 2014b). However, in
many real-world environments there are likely to be a subset
of distractor stimuli that share physical and semantic features
with the target stimuli (e.g., consider a non-target elk vs. a
target deer in a dense ensemble of forest imagery). While ERP
studies have analyzed the neural features evoked by rare non-
targets within a series of rare targets and frequent background
distractors using simple classes of stimuli (e.g., letters and colored
shapes) (Polich and Comerchero, 2003), it is unknown if similar
effects occur in complex imagery more similar to real-world
settings. Moreover, little research has been done to evaluate how
current neural-based classification algorithms perform when
two infrequent classes of stimuli with the same features (ie.,
target and non-target) are presented in a sequence of frequently
occurring distractor images. It is possible that many classification
algorithms used for RSVP target detection studies are sensitive
to neural features primarily associated with the detection of
infrequent stimuli rather than target detection/recognition,
resulting in drastically reduced performance.

The RSVP-based image triage process uses a measure of
confidence in the classifier through the probability score as
a means of quantifying the certainty of a decision. That is,
the probability that a particular image is a target provides
information regarding the likelihood a target was presented.
The importance of confidence in systems with low signal-to-
noise properties has long been understood in decision theory
(Bernoulli, 1954; Pascal and Krailsheimer, 1968; Lehmann, 2012)
and control communities (Olson et al., 2013; Tsiligkaridis et al.,
2014) and peripherally exists in current instantiations of image
triage BCIs (Gerson et al., 2006; Huang et al., 2008; Mathan et al.,
2008; Sajda et al., 2010). Additional uses of confidence measures
in BCIs are demonstrated through the rejection of particular
trials from analysis or the use of algorithms for the removal of
artifacts. Thus, while the use of confidence measures for target-
detection BClIs is not new, previous studies have not explicitly
described their methods for deriving the confidence metric, and
have not quantified the accuracy of their confidence estimates or
the unique contribution of confidence itself.

This study explores how current RSVP-based BCI
technologies may function in more complex task environments
by adding infrequent non-target images that are not task
relevant, but which are physically and semantically similar
to targets to presentations with rare targets and frequent
background distractors. In the first half of the paper, we examine
participants” ability to detect targets under two conditions: first
when targets are the only infrequent image class presented
and second, when the targets are presented with infrequent
non-targets in a standard RSVP task. Our analysis encompasses
behavior, averaged ERPs, and single-trial classification of EEG
data. The results demonstrate that both behavioral and single-
trial classification performance of target images decline with the
introduction of rare visually-similar non-target stimuli. We also
examine the effects of using trial-by-trial confidence measures
derived from the relationship between individual classifier
outputs and the discriminating threshold between targets and
non-targets to mitigate the drop in classifier performance. These
results provide a unique perspective into how methods for EEG
classification of visual imagery may perform in more complex
scenarios and the importance of incorporating confidence.

Methods

Participants

Eighteen participants volunteered for the current study.
Participants reported normal or corrected-to-normal vision and
no history of neurological problems. Due to excessive artifacts in
the EEG data, one participant was excluded from analysis. The
resulting 17 participants had an average age 34.9 years, 14 were
male, and all participants were right handed with the exception
of one left handed male.

The voluntary, fully informed, written consent of the persons
used in this research was obtained as required by federal and
Army regulations (U.S. Department of the Army, 1990; U.S.
Department of Defense Office of the Secretary of Defense, 1999).
The investigator has adhered to Army policies for the protection
of human subjects (U.S. Department of the Army, 1990). All
human subjects testing was approved by the Institutional Review
Board of the United States Army Research Laboratory.

Stimuli and Procedure

Participants were seated 75cm from a monitor and viewed
a series of images from a simulated desert metropolitan
environment in a RSVP paradigm (Figure 1). Images (960 x
600 pixels, 96 dpi, subtending 36.3° x 22.5°) were presented
using E-prime software for 500 ms (2 Hz) with no inter-stimulus
interval.

Data were analyzed from two conditions for all participants:
Target Only (TO) and Target and Non-Target (TN). The TO
condition contained only background distractors (background
scenes of a dessert metropolitan environment) and target images
(background scenes with a person carrying a weapon). The TN
condition contained non-target distractor stimuli (background
scene with a person without a weapon) along with both
background and target stimuli. (See Figurel for examples
of the stimuli). Target stimuli (both TN and TO conditions)
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distractors.

FIGURE 1 | RSVP task and stimuli in the current experiment. Participants were required to detect target images while ignoring non-targets and background

Non-Target

Target

and non-target distractor stimuli (TN condition only) were
never presented back to back. At least two background stimuli
were required to follow any target or non-target stimulus to
avoid issues with the attentional blink (Raymond et al., 1992;
Chun and Potter, 1995). In both the TO and TN conditions,
participants were instructed to press a button on a serial response
box as rapidly and accurately as possible with their dominant
index finger when they detected a target. Participants were also
instructed to silently count the number of targets they detected
and report this number at the end of each block.

Each condition contained six blocks of RSVP image
sequences. Each block was a 2-min image sequence in the TO
condition and a 2min and 14 s sequence in the TN condition.
The inter-block rest period was self-paced after a mandatory 10s
pause to report the target count. Each block began with a visual 5-
s count-down presented at the center of the display. Participants
were told to fixate toward the center of the display as all target
and non-target stimuli appeared within 6.5° of the image center
and would not appear on top of or occluded by buildings and
trees or in windows. Block order was counterbalanced across
participants. The individual blocks served to break up the RSVP
presentation and allow subjects to periodically rest. Thus, data
from the six blocks within each condition were concatenated and
analyzed as a whole.

The target to distractor ratio was 1:20 in the TO condition
and 1:14 in the TN condition. The non-target to distractor ratio
in the TN condition was also 1:14. Participants were not aware
of stimuli contingencies. Participants were given one block of
practice on each RSVP stimulus condition and were required to
correctly report at least 75% of targets to begin the experiment.
All participants needed only one practice block in each condition
to satisfy this requirement.

EEG Recording and Preprocessing

Electrophysiological recordings were digitally sampled at
1024 Hz from 64 scalp electrodes arranged in a 10-10 montage
using a BioSemi Active Two system (Amsterdam, Netherlands).
Impedances were kept below 25 k2. External leads were placed
on the outer canthus of each eye and above and below the
right orbital fossa to record EOG. Continuous EEG data were

pre-processed using EEGLAB (Delorme and Makeig, 2004). The
EEG data were referenced to the average of the left and right
earlobes, decimated to 512 Hz, and digitally filtered 0.1-50 Hz.

Gross artifacts were removed through visual inspection of the
continuous EEG data. Sections marked as artifacts were excised
from the data. Subsequently, independent component analysis
(ICA), (Jung et al., 2000) was run. Independent components
related to eye movements or muscle activity were manually
identified and removed. The time series data resulting from the
ICA-based cleaning was used for all further analyses.

For single-trial classification, the signal was first bandpass
filtered (Butterworth filter of order 4) with cutoff frequencies
at 1 and 10.66 Hz and then downsampled to 32 Hz. This new
sampling rate was chosen based on the sampling frequency
used by the winning team of the competition in the 2010 IEEE
Workshop on Machine Learning for Signal Processing (MLSP)
(Leiva and Martens, 2010).

Behavioral Analysis

To quantify the behavioral performance, any button press that
occurred between 200 and 1000 ms after a target or non-target
stimulus was attributed to that trial. Button presses attributed to
target trials were counted as hits, and all others as false positives.
Reaction times were calculated as the time between stimulus
presentation and button press.

Hits (Hit), misses (Miss), correct rejects (CorrectReject), and
false positives (FP) were calculated for each subject. The correct
rejects and false alarms were calculated separately for non-targets
and distractor trials in order to investigate the effect of adding the
non-target stimuli to the behavioral performance. These values
were used to calculate d’ (d-prime), an index of accuracy that
accounts for response bias (Green and Swets, 1966), for each
subject:

Hit FP
HR=———— FPR= - (1)
Hit 4 Miss FP + CorrectReject
d'= Z (HR) — Z(EPR) (2)

Where the function Z(p), p € [0,1], is the inverse of the
cumulative Gaussian distribution.
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ERP Analysis

ERP data were processed and analyzed using ERPLAB (Lopez-
Calderon and Luck, 2014). Artifact free data were epoched [-
500, 1000] ms around stimulus onset and binned according to
the experimental condition. ERPs were baseline corrected by
subtracting the mean of the activity of each channel from [-500,
0] ms from the epoched data. Only hits and correct rejections
were included in the ERP analysis. ERPs were calculated for
each stimulus type (background distractors, targets, non-targets).
P3 amplitude (400-800 ms) was separately calculated for each
subject in each experimental condition at electrode Pz. The time
segment analyzed was chosen based on the grand average target
ERP waveforms, which showed the maximum P3 amplitude
occurring over electrode Pz 400-800 ms post-stimulus.

Single-trial Classification

In order to quantify the effects of adding rare, target-like non-
target stimuli at the single-trial level, EEG data were epoched
to [0, 1000] ms, timelocked to stimulus onset, spatial filtered
using xXDAWN (Rivet et al., 2009), and classified with Bayesian
linear discriminant analysis (Hoffmann et al., 2008) [collectively
referred to as XD+BLDA (Rivet et al., 2009; Cecotti et al., 2011,
2012, 2015)].

XD+BLDA
The xDAWN algorithm is a spatial filtering algorithm that
identifies a linear combination of the raw neural signals that
maximizes the signal to noise ratio between targets and non-
targets. Let U € RM*N be the spatial filters, where N is the
total number of sensors and Ny is the number of spatial filters.
The signal after spatial filtering is defined by Xz, = XU where
X € RNNs js the recorded signal, Ny is the number of sampling
points. The expected waveform is considered spatially stable over
time for the spatial dimension reduction step.

In this framework, an algebraic model of the enhanced signals
XU is composed of three terms: the ERPs evoked by the targets
(D1A1), a response common to all stimuli (DA;), and the
residual noise (H), which are spatially filtered with U.

XU =(D1A1 +DA, +H)U (3)

D, and D, are two real Toeplitz matrices of size Ny x N; and Ny
X N, respectively. D; has its first column elements set to zero
except for those that correspond to a target onset, which are set
to one. For Dy, its first column elements are set to zero except
for those that correspond to all stimulus onsets. A; and A, are
two real matrices of size N; x N; and N, X Nj, respectively. A;
represents the prototypical ERP in response to targets, and A,
represents the prototypical ERP in response to all stimuli. N} and
N, are the number of sampling points representing the target and
superimposed evoked potentials, respectively. H is a real matrix
of size Ny x Nj.

Let us define spatial filters U that maximize the signal to signal
plus noise ratio (SSNR):

Tr(UTATDI DA, U)
Tr(UTXTXU)

SSNR (U) = 4)

where A, corresponds to the least mean square estimation of A;:

A= [%;] = ((D;; DT (D1 D)) (D DX (5)

where [D;;D;] is a matrix of size N; % (N; 4+ N;) obtained by
concatenation of D; and D;. Spatial filters are obtained through
the Rayleigh quotient by maximizing the SSNR (Rivet et al,
2009). The result of this process provides Ny spatial filters, that
are ranked in terms of their SSNR.

Eight spatial filters (Ny = 8) are then used as input to
a Bayesian linear discriminant analysis (BLDA) classifier. The
input vector is obtained by concatenating the Ny time-course
signals across the resulting spatial filters. The BLDA classifier
was selected as it is relatively robust to noise in the training data
(MacKay, 1992; Hoffmann et al., 2008).

Confidence

Confidence measures were derived to identify the reliability of the
classification made for each trial. A simple measure, the distance
of the classifier score to the discriminating boundary, was used as
confidence:

Score—k
C _ max(Score) —k Score >k (6)
Onf - Score—k
Score < k

in Score) i€
where Score is the score produced by the XD+BLDA
classification on a single trial. The classifier score represents a
projection from the feature space down to the decision space that
maximally separates the two classes. k is the threshold established
through XD+BLDA for discriminating targets from non-target
and background distractor stimuli. Max(Score) and min(Score)
are the maximum and minimum scores over the entire training
set.

Performance Evaluation

The effect of including the visually-similar non-target stimuli
in the RSVP paradigm on classifier performance was explored
by comparing the classifier performance across the TO and TN
conditions three distinct discriminations. First, target stimuli
were discriminated from background distractor stimuli in the
TO condition. This discrimination represents the baseline
RSVP paradigm with only two types of stimuli. Next, we
discriminated target stimuli from background distractor stimuli
in the TN condition, omitting the non-target stimuli. Finally,
we discriminated target stimuli from both non-target and
background distractor stimuli in the TN condition.

For each discrimination, classifier performance was evaluated
using a nested 10-fold cross validation with 80% of the data used
to train the spatial filter and classifier, 10% of the data used to
test the classifier and establish discrimination thresholds, and the
remaining 10% of the data used as an independent validation
set on which to apply the trained classifier and thresholds. This
process was repeated 10 times such that each contiguous 10%
slice of data was used as the final validation set. Performance was
evaluated based on the area under the ROC curve (Az, Fawcett,
2006) and misclassification rate in the final validation sets.
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Misclassification rates were derived based on a discrimination
threshold that maximizes the difference between the true positive
rate and the false positive rate from the classifier scores in the
training set and then applying this threshold to the classifier
scores in the validation set. Both Az and misclassification rates
were also used to quantify the accuracy of the confidence
measures presented here. To do so, a threshold for dividing the
data into high confidence and low confidence subsets was varied
from 0 to 90% in steps of 10%. A confidence threshold of 0%
meant that 0% of the data was included in the low confidence
subset, and all of the data was included in the high confidence
subset. A confidence threshold of 90% indicated that 90% of
the data was included in the low confidence subset and 10% of
the data was included in the high confidence subset. For each
confidence threshold in this range, the Az and misclassification
rates of the high confidence subset were measured. Using these
metrics, confidence values that accurately represent the reliability
of performance should increase Az and decrease misclassification
rates as the confidence threshold is raised.

Mitigation Strategies

The utility of applying confidence measures was further
demonstrated by quantifying the improvement in image labeling
accuracy when the estimated confidence was used to trigger
a corrective action. This study simulated a simple mitigation
strategy where trials above the confidence threshold were
classified using the neural classifier and trials below the
confidence threshold were manually labeled by the participant.
For the purpose of this simulation, we assume a human
participant given unlimited time to label the image will attain
100% accuracy, and thus the manually labeled trials were set
to the actual image labels. The classification performance using
this simulated mitigation strategy was evaluated using Az and
misclassification rates for each stimulus class.

Results

Results across the behavioral, ERP, and single-trial classification
analyses demonstrated that adding sparse, visually-similar, non-
target images made it more difficult for participants to identity
target images.

Behavior

Behavioral performance was characterized by comparing the
error rate by stimulus type, reaction time, and d-prime
across the TO and TN conditions (Figure 2). Across all three
measures, behavioral performance declined when non-targets
were included. Adding non-targets more than doubled the
average error rate for target stimuli (difference significant,
Wilcoxon signed rank test, p < 0.01, Figure 2A). Reaction times
obtained from correct target trials were significantly faster in the
TO condition (median RT of 514.67 ms) when compared to the
TN condition (median RT of 602.82 ms) (Wilcoxon signed rank
test, p < 0.001, Figure 2B). D-prime analysis showed that target
discrimination performance was significantly better for TO trials
(median d-prime of 4.25) over TN trials (median d-prime of 3.49)
(Wilcoxon signed rank test, p < 0.01, Figure 2C).

ERP Analysis

Statistical comparisons of grand average ERP waveforms
demonstrated that ERPs were significantly different across
stimulus type, with visually-similar non-targets generating ERPs
with amplitudes between those of target stimuli and background
distracters. In addition, ERPs for background distractor and
target stimuli were not significantly different across the TO and
TN conditions. A one-way ANOVA was used to analyze the
mean amplitude (400-800 ms) from electrode Pz with stimulus
(background distractor, target, non-target) as a main factor.
There was a main effect for stimulus in the TO condition,
[Fq, 16y = 111.34, p < 0.001], indicating a significantly
larger P3 amplitude for targets (mean amplitude: 13.66 V)
relative to background distractors (mean amplitude: —0.44 'V,
Figure 3A). A main effect was also obtained in the TN condition
[F, 32y = 83.01, p < 0.001]. Subsequent multiple comparison
tests using the Tukey-Kramer method showed that amplitudes
from background distractors, targets, and non-targets were all
significantly different from each other (Figure 3B). A Two-Way
ANOVA was run with the factors of Condition (TO or TN) and
stimulus (distractor or target) to assess any differences between
target P3 amplitude in the two conditions. There was a main
effect of stimulus [F(; 16y = 344.33, p < 0.001] but no main
effect for condition [F(; 16 = 0.001, p = 0.978] or interaction
[F(, 16) = 0.002, p = 0.964] indicating that both the background
distractor and target activity was similar between the TO and TN
conditions, and that there were significant differences between
background distractor and target activity in both the TO and TN
conditions (Figure 3).

Single-Trial Detection

Overall classification performance declines when visually-similar
non-target stimuli are present in the RSVP stream (Figure 4).
The TO condition represents the baseline RSVP discrimination
of target vs. background distractor. The classifier was highly
accurate in this condition, producing average Az > 0.97. When
targets are discriminated from background distractor stimuli
in the TN condition (ignoring non-target stimuli) performance
is not significantly different (Wilcoxon signed rank test; p =
0.06). However, when non-target stimuli are included in the
discrimination, performance is significantly worse than when
they were not included (Wilcoxon signed rank test; p < 0.001).

In addition to the Az measure, the classifier performance
was also measured by quantifying the misclassification rate for
each stimulus type (Figure 5). Again, we focused on the same
three discriminations: target vs. background distractor in the TO
condition (Figure 5A), target vs. background distractor in the
TN condition (Figure 5B), and target vs. both non-target and
background distractor stimuli in the TN condition (Figure 5C).
In the baseline TO condition, misclassification rates were below
10% for both target and background distractor stimuli. This level
of accuracy would be expected given the high Az levels achieved
by in this condition (see Figure 4).

Moving from the TO condition to the TN condition
resulted in no significant change in misclassification rates when
discriminating target stimuli from background distractor stimuli.
(Wilcoxon signed rank test, p = 0.23 and p = 0.07 for target
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FIGURE 2 | Behavioral Performance. (A) Shows error rates for
each stimulus type for both TO (light gray) and TN (dark gray)
conditions. (B) Shows target reaction time for both conditions. (C)
Shows d-prime measures for both conditions. Error bars show the

Reaction Time (ms)

Reaction Time C D-Prime

750 5
700 45

650
600 g 4
550 235

©

500
3

450
400 2.5
|:|Target Only (TO)

-Target + Non Target (TN)
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box, crosses indicate mean values and horizontal lines indicate

median values.

A Target Only Condition
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B Target + Non-target Condition
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Difference Waves
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4
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FIGURE 3 | Grand-average ERP waveforms at electrode Pz and
topographic voltage maps (400-800 ms); white dot indicates location
of electrode Pz. (A) Shows grand-average ERP waveforms and
topographic maps to target and background distractor stimuli in the Target
Only (TO) condition. (B) Shows grand-average ERP waveforms and

Target

Target

Non-target Background

topographic maps to target, non-target and background distractor stimuli in
the Target plus Non-target (TN) condition. (C) Shows difference waves
created by subtracting the background distractor from targets in the TO
condition and the background distractor from targets and non-targets in the
TN condition.

and background distractor stimuli, respectively). Including non-
target stimuli in the discrimination increased misclassification
rates for target stimuli (Wilcoxon signed rank test, p = 0.01)
and resulted in an exceptionally high misclassification rate for
non-target stimuli (38.84 & 8.71%). Misclassification rates for
background distractor stimuli were slightly, yet significantly,
reduced with the addition of the non-target stimulus (Wilcoxon
signed rank test, p = 0.049).

The increase in misclassification rates in the non-target
condition is potentially problematic for many real-world
applications of this technology where users will encounter
instances of non-target stimuli that share the same physical and
semantic features as target stimuli. To address this issue, we
explored applying confidence measures to the classifier outputs
as a means to mitigate the misclassification rate (Figures 6, 7).

Non-target ERPs from high confidence trials are more readily
distinguished from target ERPs than in low confidence trials, as
shown for subject S10 in Figure 6. Here, high and low confidence
trials are defined as the top 25% and bottom 25%, respectively.
Trials labeled with high confidence showed greater separation
between target trials and both non-targets and background
distractor trials than trials with low confidence. A Wilcoxon
signed rank test [corrected for multiple comparisons using False
Discovery Rate (Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001)] shows that the difference between the high
and low confidence wave form for all three stimulus categories
is statistically significant (p < 0.001). When this analysis
is extended across all participants, 14 out of 16 participants
show significant differences between high and low confidence
trials for all three stimulus categories (p-values corrected for
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FIGURE 4 | Overall classification performance under various
conditions. Left: Target vs. background distractor (T v B) discrimination
performance in TO condition. Middle: Target vs. background distractor (T v B)
discrimination performance in TN condition. Right: Target vs. both background
distractor and non-target (T v (B+NT)) discrimination performance in the TN
condition.
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FIGURE 5 | Misclassification rate for each stimulus type for each
discrimination when the threshold was calculated based on the
classifier scores from the training set. (A) Shows the misclassification rate
for target (T) and background distractor (B) stimuli in the TO condition. (B)
Shows the misclassification rate for target and background distractor stimuli in
the TN condition when targets are discriminated from background distractor
only. (C) Shows the misclassification rate for target, background distractor,
and non-target (NT) stimuli in the TN condition when targets are discriminated
from both background distractor and non-target stimuli. Error bars shows the
highest and lowest data point within 1.5 times the inter-quartile range of the
upper and lower quartiles, respectively. Within each box, crosses indicate
mean values and horizontal lines indicate median values.

multiple comparisons using False Discovery Rate, g = 0.05). All
participants had significant differences between high confidence
and low confidence stimuli for at least 2 of the 3 stimulus
categories. A similar analysis was carried out to compare
behavioral performance between high and low confidence trials
(as defined by the classifier), but no significant difference was
found.

Overall, non-target stimuli have lower confidence than the
target or background distractor stimuli (0.442 £ 0.0057, 0.5751
=+ 0.0014, 0.3051 =+ 0.0057 mean =+ standard error for target,
background and non-target stimuli, respectively, Figure 7A).

For each participant, a One-Way repeated measures ANOVA
was used to analyze the confidence attributed to each stimulus
type. When p-values are corrected for multiple comparisons
using False Discovery Rate analysis (Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001), all 16 participants showed
a significant effect for stimulus type (g < 0.05). Across all
participants, the multiple comparisons analysis showed that the
confidence attributed to non-target trials was significantly lower
than the confidence attributed to both background distractor
and target trials for all participants. Additionally, confidence
values for target stimuli were less than those for background
distractor stimuli.

The use of confidence measures also had a significant effect on
classification performance. Figure 7B shows the area under the
ROC curve (Az) for classification performance for all trials as a
function of confidence thresholds. As the confidence threshold
is raised from the minimum to a value that matches 90th
percentile of confidence values for each subject, the average
Az value across all participants increases to a nearly perfect
classification (solid line in Figure 7B). This improvement is
further evidenced through the change in misclassification rates
for each of the stimulus classes as shown in Figure 7C (solid
lines). As the confidence threshold increases, misclassification
rates for the target and background distractor stimuli fall to
nearly zero. However, non-target stimuli maintain a high level
of misclassification regardless of confidence level. The improved
performance obtained by raising the confidence threshold comes
at the cost of ignoring portions of the data set. The amount of
data remaining for each stimulus class for increasing confidence
thresholds is shown in Figure 7D. Alternatively however, instead
of simply ignoring trials that fall below a confidence threshold,
one might instead choose to seek alternative methods for
classification. A simple example of an alternative method would
be to manually label those images where the neural classifiers
failed to produce a highly confident outcome. The performance
of such a system improves the overall classification accuracy as
shown in the dashed line in Figure 7B at the expense of the
extra time needed to manually label images. The performance
improvement through the manual labeling process is further
evidenced through the reduction of misclassification rates for
each stimulus class (Figure 7C, dashed lines). For background
and non-target stimuli, the difference between the neural
classification alone and the neural classification combined with
manual labeling is significant for all confidence thresholds above
0% (Wilcoxon signed rank test p < 0.001 for both classes, p-
values were also corrected for multiple comparisons through
False Discovery Rate with ¢ < 0.05). For target stimuli, the
difference is significant for all confidence thresholds above 0%
and <90% (Wilcoxon signed rank test p < 0.001 for both classes,
p-values were also corrected for multiple comparisons through
False Discovery Rate with g < 0.05).

Discussion

Prior work by many groups (Gerson et al., 2006; Bigdely-Shamlo
et al., 2008; Parra et al., 2008; Sajda et al., 2010; Touryan et al.,
2010, 2011; Cecotti et al., 2011; Yu et al.,, 2011, 2012; Marathe

Frontiers in Neuroscience | www.frontiersin.org

August 2015 | Volume 9 | Article 270


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Marathe et al.

Confidence metrics improve BCI performance

A All Trials B High Confidence (o] Low Confidence

Target

200ms

FIGURE 6 | Confidence ERPs for Subject S$10. (A) ERPs across
all trials. (B) ERPs for the high confidence trials (e.g., top 25%
trials when sorted by confidence). (C) ERPs for low confidence trial
(e.g., bottom 25% trials when sorted by confidence). The difference
between the high and low confidence wave form for all three

Non-target Background

stimulus categories is statistically significant (Wilcoxon signed rank
test corrected for multiple comparisons using False Discovery Rate
p < 0.001). The high confidence trials show a greater separation
between target and non-target trials when compared to the low
confidence trials.

et al., 2013, 2014b) has demonstrated the effectiveness of using
single-trial classification to detect targets in RSVP; however,
little of this work explicitly examined how feature similarity
between target and non-target stimuli effected target detection
accuracy. We addressed this concern in the present study by
introducing a more realistic situation where target and non-target
stimuli, though each occurred infrequently, shared both physical
and semantic features but only targets were task relevant. We
evaluated the impact of this manipulation on behavior, ERPs, and
single-trial classification of the evoked neural response. Results
across the behavioral, ERP, and single-trial classification analyses
demonstrated that adding sparse, visually-similar, non-target
images made it more difficult for participants to identity target
images and more difficult to classify images from neural data.

Confidence

Previous studies using RSVP-based neural technologies for image
triage applications (Gerson et al, 2006; Huang et al., 2008;
Mathan et al., 2008; Sajda et al., 2010) have employed statistical
methods to identify a subset of trials most likely to be target
images. As an extension of this previous work, we employed a
confidence-based approach in an offline simulation to mitigate
the drop in performance that occurred when non-targets were
included in the RSVP stream.

Confidence measures derived from the classifier score
were used to sort the data set based on likelihood of
correct classification. A comparison of the ERPs and single
trial classification performance showed significant differences
between the high and low confidence trials. The ERP analysis
showed that high confidence target trials were more separate
from the non-target and background distractor trials than low
confidence target trials. This increased separation led to an
improved classification performance for high confidence trials.
Specifically, Figure7B shows that as we remove the lower
confidence trials from the performance analysis, classification
accuracy improves.

However; the use of a distance from threshold method for
establishing confidence, as was done here, has been shown to
be less than ideal in previous studies (Platt, 2000). Employing
more robust confidence measures (for example, a density-based
estimation method in the learned feature space) will likely further
improve performance. Additionally, our confidence measures
used only information from the classifier scores; however there
is potentially a large amount of information in a variety of
sources that could further improve the estimate of confidence
in a given decision (e.g., data from multiple sensor modalities,
individual skill level/expertise, sleep history etc.,). We envision
that an accurate estimate of confidence in a particular decision
(e.g., target vs. non-target for the current image) may require
a combination of a number of the approaches above. Future
studies will examine how to improve our confidence estimate
by combining different approaches from those listed above. Such
endeavors may provide a more robust estimate of confidence that
will likely help further improve performance.

Once the low performing trials have been identified, one
can employ a number of mitigation strategies. The simplest
mitigation strategy would be to simply manually label the low
confidence images. If we use the current data to simulate
performance when the lowest 20% of trials are manually
labeled, overall target detection error is reduced by 36%. While
the manually relabeling may be the simplest option, it will
dramatically increase the time needed to completely label the set
of images. For example, Figure 7C shows that approximately 30%
of the data must be manually labeled to reduce the non-target
error rate to 20%. If we assume that it takes a user an average
of 1s per manually labeled image, then the manual labeling will
increase the total labeling time by 60%. While this increased
labeling time may be acceptable for some applications, other
strategies may be more efficient. For example, the low confidence
images can be re-displayed to the same person using RSVP, or
sent to another person for target identification. Alternatively, we
may also be able to couple the human based target identification
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FIGURE 7 | Confidence. (A) Confidence levels by stimulus type. (B) Az
for trials as a function of confidence threshold. Solid line shows the Az
for trials exceeding the confidence threshold given. Dashed line shows
Az when trials below the confidence threshold are manually labeled
while trials above the threshold are labeled through the neural
classification. In both cases, as confidence increases, Az increases. (C)
Misclassification rates for trials that exceed a given confidence
threshold. Solid lines show misclassification rates for neural classification
only. As confidence increases, the misclassification rates for target and
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background distractor stimuli fall to nearly 0. Non-target misclassification
rates remain high regardless of confidence levels. Dashed lines show
misclassification rates when trials below the threshold are manually
labeled, while trials above the threshold use neural classification.
Misclassification rates for all three stimulus classes are reduced through
the manual labeling process. The inset graph show zooms in on the
lower portion of the graph to highlight the decrease in misclassification
rates for target and background stimuli. (D) Percent of trials that
exceed a given confidence threshold.

with an automatic target recognition system (Wang et al., 2009;
Sajda et al., 2010) to improve performance. Such an endeavor
is currently underway (Marathe et al., 2014a) and will greatly
benefit from the results presented here.

The improvement demonstrated by the inclusion of
confidence measures has broad implications for the development
of future systems. While we focused on an RSVP-based target
detection paradigm, the use of confidence in human decisions
can be extended to a wide range of human-in-the loop systems.
The principle of confidence has been applied in control theory
to account for variable or noisy sensors. Here we provide initial
evidence that the same principle can be applied to account for
inherent variability in human decisions.

Top-down Influences

One aspect that was not explored in this study was how top-
down influences due to task instructions may have affected
performance. In this study participants were told to explicitly

look for people with weapons in order to test whether the
participants and subsequently the classification algorithms could
discern people with weapons (targets) from people without
weapons (non-targets). The ERP analysis suggests that early
stages (200-400 ms) of the P3 waveform may reflect an orienting
response to stimulus novelty since rare target and non-
target waveforms were similar but different from the frequent
background distractors. Later stages (400-600ms) of the P3
show differences between targets, non-targets and background
distractors indicating processes related to target selection or
non-target inhibition. Since both targets and non-targets shared
many properties (appearing infrequently, people) participants
may have adopted a strategy to orient to any rare stimulus.
Other research that included a non-target stimulus in a standard
oddball paradigm showed that non-targets have a neural response
similar to the frequent background distractors and not the target
(Steiner et al., 2013); however the stimuli used in this study were
simple shape stimuli containing different stimulus properties,
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e.g., circles, squares, triangles. This may have lead participants
to select targets or possibly inhibit non-targets at an earlier stage
of processing than what was seen in the current study. The ERP
waveforms and classification results may have been different if
participants searched for targets that did not contain features
similar to non-targets (Polich and Comerchero, 2003), or if the
instructions had been to explicitly look for weapons (with no
mention of people).

Conclusion

By evaluating the impact of adding a non-target stimulus to a
standard RSVP-based paradigm, this study begins the process of
moving RSVP based target identification applications into more
complex environments that include natural images. We have
shown that the introduction of a non-target stimulus yields a
significant slowing of reaction time and reduction of d-prime.
This decrement in behavioral performance is accompanied by a
decrement in classification accuracy for single-trial detection and
an increase in misclassification rates. Importantly we show that
incorporating measures of confidence can identify trials where
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