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In the past decade, the fusion between diffusion magnetic resonance imaging (dMRI)

and functional magnetic resonance imaging (fMRI) has opened the way for exploring

structure-function relationships in vivo. As it stands, the common approach usually

consists of analysing fMRI and dMRI datasets separately or using one to inform

the other, such as using fMRI activation sites to reconstruct dMRI streamlines that

interconnect them. Moreover, given the large inter-individual variability of the healthy

human brain, it is possible that valuable information is lost when a fixed set of dMRI/fMRI

analysis parameters such as threshold values are assumed constant across subjects.

By allowing one to modify such parameters while viewing the results in real-time, one

can begin to fully explore the sensitivity of structure-function relations and how they

differ across brain areas and individuals. This is especially important when interpreting

how structure-function relationships are altered in patients with neurological disorders,

such as the presence of a tumor. In this study, we present and validate a novel

approach to achieve this: First, we present an interactive method to generate and

visualize tractography-driven resting-state functional connectivity, which reduces the bias

introduced by seed size, shape and position. Next, we demonstrate that structural

and functional reconstruction parameters explain a significant portion of intra- and

inter-subject variability. Finally, we demonstrate how our proposed approach can be

used in a neurosurgical planning context. We believe this approach will promote the

exploration of structure-function relationships in a subject-specific aspect and will open

new opportunities for connectomics.
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1. Introduction

In the era of multi-modal magnetic resonance imaging (MRI), combining diffusion MRI (dMRI),
and functional MRI (fMRI) permits a unique way of exploring structure-function relationships in
vivo. With dMRI (Le Bihan and Breton, 1985; Le Bihan et al., 2001; Basser and Jones, 2002), it is
possible to probe the microstructure of biological tissues such as white matter connections of the
brain (i.e., structural connectivity). On the other hand, fMRI provides 4D whole-brain images that
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reflect changes in cortical blood flow, volume and oxygen as
measured by the Blood-Oxygenation-Level-Dependant (BOLD)
signal (Turner, 1992; Kwong et al., 1992; Bandettini et al.,
1993). At rest, the spontaneous low frequency fluctuations
(<0.08–0.1 Hz) in the BOLD signal allow the detection of
temporally correlated spatial patterns, also known as Resting
State Networks (RSNs) (Biswal et al., 1995; Damoiseaux et al.,
2006). The common way of exploring such RSNs is to extract
the preprocessed BOLD time course from an a priori region of
interest (ROI) and compute the temporal correlation with all
other voxels of the brain. The result is a seed-specific correlation
map or a functional connectivity map.

Integrating dMRI and fMRI is often necessary to understand
how patterns of functional connectivity are related to structural
connectivity. For instance, is functional connectivity present in
the absence of structural connectivity, or is one predictive of the
other (Honey et al., 2009)? While many studies have investigated
this in the past (Honey et al., 2009; van den Heuvel et al., 2009;
Mennes et al., 2010; Zhang et al., 2010; Várkuti et al., 2011;
Bowman et al., 2012; Hermundstad et al., 2013; Sporns, 2013;
Whittingstall et al., 2013; Goni et al., 2014; Ward et al., 2014; Zhu
et al., 2014), surprisingly few studies have investigated how subtle
changes in the analysis pipeline may alter structure-function
relationships (Bastiani et al., 2012). For example, functional
connectivity between highly vascularized areas may be artificially
large due to increased signal-to-noise-ratio (SNR) (Vigneau-Roy
et al., 2014). Many parameters, such as the correlation threshold
and cluster size, can influence functional connectivity matrices
(Gorgolewski et al., 2013; Stevens et al., 2013; Woo et al., 2014).
On the other hand, structural connectivity based on streamline
tractography is known to be biased by the many stopping criteria
involved in such reconstructions (i.e., step size, tracking mask,
angular deviation, seeding strategy, etc.) (Girard et al., 2014)
or algorithms (Bastiani et al., 2012). A slight change in these
traditional thresholds might perturb the connectivity profile of
certain brain areas. As such, different regions of the brain may
benefit from different reconstruction parameters (Chamberland
et al., 2014).

Additionally, it can be difficult to select the appropriate rs-
fMRI seed points in subjects with pathological developments
such as cerebral tumors, lesions, and other abnormalities
(Griffa et al., 2013; Chamberland et al., 2014), where white
matter bundles and associated cortex are often displaced. In
a clinical setting, it would be advantageous if neurosurgeons
could instantly view how a slight change in reconstruction
parameters impacts the results. Clearly, addressing this issue is
difficult, as it would require computing structural and functional
connectivity using many sets of pre-defined parameters and then
find ways to interact and interpret the connectivity profiles.
Therefore, the possibility of visualizing and quantifying structural
and functional connectivity while simultaneously modifying
important reconstruction parameters could change the way
structure-function relationships are studied in single subjects and
could lead to an optimized and more efficient way of analysing
data in large cohorts of healthy and/or patient populations.
Moreover, efficient scientific visualization is important when
analysing and illustrating multi-modal MRI data (Irimia et al.,

2012; Margulies et al., 2013; Rojas et al., 2014). With emerging
human connectome studies and the growing interest of applying
rs-fMRI in surgical planning and other clinical applications
(Daducci et al., 2012; Griffa et al., 2013; Meskaldji et al., 2013),
interactively exploring the circuitry of the brain is essential.

Overall, traditional ways of coupling dMRI with fMRI often
come down to reconstructing fiber pathways between distant
fMRI regions. However, not much attention has been given in
the development of new methods where dMRI assists fMRI.
To the best of our knowledge, no previous literature shows
how tractography could serve as a guide to generate rs-
fMRI connectivity. In this work, we propose an interactive
method for the exploration of single-subject brain connectivity
in a fully 3D interactive fashion, which can be coupled
with our existing real-time fiber tractography method robust
to crossings implemented in a freely available software, i.e.,
the Fibernavigator1 (Chamberland et al., 2014). Using a new
reconstruction technique, namely tractography-driven resting-
state, we demonstrate how structural and functional connectivity
can be merged together to explore the brain in a mutual and
interactive manner. The contributions of this work are thus
three-fold:

1. We present an interactive method to explore and visualize
tractography-driven resting-state functional connectivity.

2. We demonstrate that structural and functional reconstruction
parameters may explain a portion of intra- and inter-subject
variability.

3. We qualitatively demonstrate how the proposed methods can
be used in a neurosurgical planning context.

2. Methods

This section is organized as follow: First, we describe the MRI
acquisition protocols as well as the data processing. Next, we
present the technical implementation and characteristics of the
proposed method. Finally, the last part of this section includes
the full description of the experiments performed to evaluate the
proposed method.

2.1. MRI Acquisition
Datasets were obtained from 10 young healthy volunteers (ages
21–30, 4 females). In addition, 1 dataset was acquired from a
tumor patient (31 year old, male) with astrocytoma of grade
III located near the motor cortex. Imaging was performed on
a 1.5 T SIEMENS Magnetom (Vision). Subject motion was
minimized using head cushions. MRI sessions started with a
T1-weighted 1 mm isotropic MPRAGE (TR/TE 1860/3.54 ms)
image. Continuous functional recordings were carried out using
a standard echo-planar imaging (EPI) sequence (eyes closed). For
each run, 108 functional volumes consisting of 35 axial slices were
obtained with a 64 × 64 matrix, field of view (FOV) 220 mm,
TR/TE 2730/40 ms, for a voxel size of 3.4 × 3.4 × 4.2 mm3.
Additionally, high angular resolution diffusion imaging (HARDI)
data was acquired using a single-shot EPI spin echo sequence

1Open source software available online at: www.github.com/chamberm/
fibernavigator.
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(TR/TE = 11700/98 ms), with b-value of 1000 s/mm2 and 64
uniform directions (matrix size: 128 × 128, 2 mm isotropic
spatial resolution). To reduce susceptibility distortions, GRAPPA
parallel imaging was employed with an acceleration factor of
2. The study was performed according to the guidelines of the
Internal Review Board of the Centre Hospitalier Universitaire de
Sherbrooke (Comité d’éthique de la recherche sur I’humain du
CHUS).

2.2. Data Processing
2.2.1. T1 Processing

Non-local means (NLM) denoising was applied to the T1-
weigthed image prior to using the brain extraction tool (BET) of
FSL (Smith, 2002). This facilitated the registration procedure to
the upsampled (1 mm isotropic resolution) b = 0 diffusion image
using ANTS (Avants et al., 2009).

2.2.2. dMRI Processing

NLM denoising was performed on the raw diffusion data
(Descoteaux et al., 2008). Diffusion tensors, RGB map and
corresponding fractional anisotropy (FA) were estimated using
MRtrix (Tournier et al., 2012). The single fiber response function
was estimated (FA > 0.7). This response function was used
as input to spherical deconvolution (Tournier et al., 2007;
Descoteaux et al., 2009) to compute the fiber orientation
distribution function (fODF) at each voxel of the brain. In this
work, we used the efficient implementation publicly available
in MRtrix (Tournier et al., 2012) with a maximal spherical
harmonics order of 8 and the default parameters. All dMRI
derived metrics were upsampled to a 1 mm isotropic resolution
using trilinear interpolation (Dyrby et al., 2011; Girard et al.,
2012; Smith et al., 2012; Tournier et al., 2012). Finally, the
spherical harmonics peaks (i.e., main directions of diffusion, 3
per voxel) of each fODF were then extracted and served as input
for real-time fiber tractography (Chamberland et al., 2014).

2.2.3. fMRI Processing

Images were first motion and slice-time corrected using the
efficient implementation publicly available in AFNI (Cox, 1996).
Next, the data were spatially smoothed using NLM denoising
(Coupe et al., 2008; Bernier et al., 2014) implemented in Dipy
(Garyfallidis et al., 2014) using default parameters, and band-
pass filtered (0.008–0.08 Hz). The global signal at each voxel was
not regressed to avoid the introduction of anti-correlated regions
(Saad et al., 2012).

2.3. Resting-state Connectivity and Visualization
Our interactive rs-fMRI exploration method is implemented on
CPU and runs on a single core computer, which does not require
any specific hardware. It works on any fMRI data (e.g., resting-
state) which is preferably pre-processed (i.e., motion and slice
time corrected, spatial and temporal filtered). For anatomical
reference, the user has to provide a subject-specific underlying
anatomical image (e.g., T1, T2, FA, b0, etc.). By placing a
cubical or spherical ROI within the 3D environment (high
resolution anatomical space), one can instantaneously activate
the functional correlation module while dragging the seed-ROI
anywhere in the brain. The mean BOLD signal is first extracted

from the voxels encompassed by the ROI, and then statistically
compared to the rest of the brain. The correlation coefficient (r)
between voxels x and y is denoted as: r = cov(x, y)/σxσy, where
cov(x, y) is the covariance of the preprocessed BOLD signals
and σxσy are the standard deviations. The generated correlation
coefficients are then converted to z-scores (Whittingstall et al.,
2013) and rendered at each voxel as small particles (z > 0), which
are depth-sorted in real-time according to the user’s viewing axis.

To reduce cluttering, the opacity (alpha) and size of each
particle are weighted by their associated z-score value as seen
in Figure 1C. This way, regions showing higher correlations are
displayed predominantly over less correlated ones. Interactive
correlation (z-score) and cluster-size (ηmin) thresholds are also
available for visualization purposes. A flood fill algorithm is
responsible for determining the minimum number of connected
voxels (faces touching) to form and display fMRI-clusters (with
respect to ηmin). In a last step, the user can save and export
the generated activation map into a 3D nifti file. Note that the
computation step is performed in native space (i.e., fMRI space)
while the rendering stage is done at the anatomical level (e.g., T1-
space) using the scaling transformation matrix associated to the
anatomical and rs-fMRI datasets. Therefore, the anatomical and
rs-fMRI datasets must be centered at the same origin to ensure
proper link between the computation and visualization stages.

2.4. Combining Functional and Structural
Connectivity
Figure 1 shows the different seeding options proposed to
generate and visualize brain connectivity. In Figures 1A–C,
one can see the traditional approaches for generating structural
and functional connectivity using a seed-ROI (green box).
From this ROI, one can generate structural connectivity (i.e.,
tractography Chamberland et al., 2014, Figure 1A) or functional
connectivity (resting-state, Figure 1B). One can also initiate
streamlines from functional RSNs to visualize their underlying
structural connections (resting-state-driven tractography,
Figure 1C). Figure 1D shows a unique method to generate
rs-fMRI connectivity by extracting the average BOLD signal
from the last n points of each streamline, which is then correlated
with the rest of the brain (i.e., tractography-driven rs-fMRI).
This technique produces a streamline-specific map revealing the
underlying functional connectivity associated to the bundle of
interest. This is further described in the following section.

2.5. Experiments
2.5.1. Resting-state Networks Validation

The first step toward assessing the validity of our interactive
correlation method is to compare its results with traditional
methods. Using three overlap metrics (defined in the next
paragraph), we statistically compared z-score maps generated by
our real-time technique implemented in the Fibernavigator with
the ones generated offline using AFNI (Cox, 1996). To do so, we
first generated seven commonly reproducible RSNs (Beckmann
et al., 2005), namely the default mode network (DMN), motor
network, visual network, salience network, lateralized networks
and auditory network, by interactively positioning a 10 ×

10 × 10 voxels seed-ROI in seven associated anatomical regions
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FIGURE 1 | Interactive seeding methods proposed for structural and

functional connectivity. In (A,B), one can see the traditional approaches for

generating structural and functional connectivity using a seed-ROI (green box,

circled red on the right). (C) Shows the use of functional connectivity for the

generation of underlying structural connections by initiating tractography from

each rs-fMRI cluster. (D) Shows a streamline-specific map revealing the

underlying functional connectivity associated to the bundle of interest (i.e.,

corpus callosum, red). Note how functional connectivity extends far beyond

the white matter seed points red circles. Supplementary video available online

at: www.youtube.com/watch?v=eHSyf2AjbHw.

(posterior cingulate cortex (PCC), primary somatosensory
cortex, primary visual cortex, insula, lateral frontal cortex and
primary auditory cortex, respectively). Anatomical localization
(MNI space) of the seed regions can be found in Table A1.

The same experiment was performed using AFNI’s 3dfim+

command (Cox, 1996), with the same seed-ROIs as input and
converting the resulting correlation coefficients to z-scores. The
generated RSNs were then statistically thresholded at different
conventional z-scores (i.e., from 3.0 to 5.0) for statistical
comparison. First, the Dice coefficient (D) (Dice, 1945), as used
in previous rs-fMRI studies (Kristo et al., 2014; Tie et al., 2014),
is a similarity index that allows the quantification of the spatial
overlap between two datasets F andG, and is defined as follows: D
= 2 |F∩G| /(|F| + |G|)= 2a/(2a+ b+ c), where a is the number
of voxels shared by the two datasets, b the remaining voxels of F
that differs from G, and c the voxels that are present in G but not
in F. The advantage of using this metric is that it ranges between
0 and 1. Thus, a perfect fit between two z-maps will lead to a
Dice coefficient of 1, and 0 if there is no overlap at all. Next, the
Jaccard coefficient (J) is computed by taking the intersection over

FIGURE 2 | Principle behind the new tractography-driven rs-fMRI

correlation method. When a streamline reaches the gray matter (left), its

propagation is stopped. By looking at the BOLD signals within the voxels

encompassed by the last n points (3 in this case) of the streamline, the

average of the signals is correlated with all other voxels of the brain (right).

the union between two volumes (J= |F∩G| /(|F+G|)= a/(2a+
b+c)). This metric expresses the relative volume overlap between
the same RSN. The last metric is the correlation coefficient
(ρ) between the unthresholded z-scores maps, which not only
determines if there is spatial correspondence, but also compares
the z-values between the two maps.

2.5.2. Tractography-driven Resting-state fMRI

Having direct access to interactively adapt the tractography
parameters, and more precisely to the stopping criteria (i.e.,
tracking mask), is a key factor when performing interactive
structural connectivity. By interactively positioning a seed-ROI
at a specific brain position, the tracking algorithm (Chamberland
et al., 2014) performs dense 3D integration along the ODFs-
extracted peaks field, thus generating streamlines in a bi-
directional fashion. From there on, the 3D coordinates of
the last n points of each streamline bundle (n = 3) were
back-projected into fMRI-space to average their underlying
BOLD signal and perform real-time correlations with the
rest of the brain (Figure 2). Precisely, the mean signal is
averaged from all the end points (both sides of the streamlines),
unless they terminate outside of the fMRI volume. As the
characteristics of the tractography seed-ROI changes (i.e., size,
shape and position), the visualization updates. Functional
networks associated to the streamlines of interest and their
associated tractography parameters are thus revealed. These
parameters consist in the tracking mask threshold (τ ), the step
size (s), the angular threshold (θ), the number of seeds (#)
and the minimum/maximum streamline length (δmin/δmax). To
demonstrate the full potential of the technique, we reconstructed
9 well-known white matter bundles [cingulum (Cg), corpus
callosum (CC body, genu and splenium), corticospinal tract
(CST), optic radiations (OR), left and right superior longitudinal
fasciculus (SLF), and the auditory radiation (AR) Catani and
Thiebaut de Schotten, 2012]. Seed-ROIs where interactively
positioned at the midbody of each bundle and validated
according to co-author and neurosurgeon D. Fortin.
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2.5.3. Inter-subject Variability

Tractography-driven resting-state was used to demonstrate how
parameter selection alone may explain a portion of inter-subject
variability typically observed in the DMN (Buckner et al., 2008).
Using the tratography-driven rs-fMRI method described earlier,
we interactively generated the right Cg of a randomly chosen
subject (S6) and the underlying associated RSN (i.e., the DMN).
Here, reconstruction parameters were set as follows: FA threshold
(τ ) = 0.15, step size (s) = 0.5mm, maximum angle (θmax)
= 35◦, minimum length (δmin) = 60 mm, maximum length
(δmax) = 200 mm with 1000 seeds evenly distributed within
a 4 × 4 × 4 mm ROI located at the mid-coronal section of
the Cg body. The rs-fMRI z-score and minimum cluster size
(ηmin) thresholds were 4.0 and 40, respectively. Then, we assessed
inter-subject variability by applying those same parameters to the
remaining subjects. Next, we regenerated the Cg and associated
DMN networks on a individual basis. To achieve this, the
reconstruction parameters were interactively set according to the
neuroanatomy of each subjects, until the known anatomy of the
DMN was retrieved (i.e., functional connectivity in the medial
prefrontal cortex (mPFC), the PCC/precuneus, the left and right
temporoparietal lobes, Buckner et al., 2008; Ward et al., 2014).
The difference and percentage (%) change of each parameter
were then computed, defined as follows: (x - y) for the difference
and ((x − y) / y × 100) for the % change, where x represents
the subject-specific parameters and y the reference parameters
extracted from S6.

3. Results

3.1. Resting-state Networks Validation
Figure 3 shows the seven RSNs used for comparison. As seen
in Tables 1, 2, the overlap metrics D, J and ρ, ranged between
0.691 and 0.983 for all RSNs indicating a good overlap regardless
of the z-score threshold (i.e., z > 3.0, 4.0, and 5.0). The main
finding here is that our real-time interactive implementation is
equivalent to offline seed-based rs-fMRI analysis.

3.2. Tractography-driven Resting-state fMRI
In this section, we present the results of our interactive way of
computing rs-fMRI connectivity profiles, based on the extraction
of the BOLD signal from the end points of the streamlines
reconstructed by tractography. Bundle-specific tractography
parameters and associated RSNs are shown in Table 3. Figure 4
shows 9 selected fiber bundles and their end points used to
structurally reconstruct rs-fMRI connectivity, namely the Cg and
the DMN (z-score > 4.1), the CC-midbody and motor network
(z-score > 4.9), the CST and the motor network (z-score >

4.8), the OR-left and the visual network (z-score > 4.4), the CC-
splenium and the visual network (z-score > 5.0), the CC-genu
and the salience network (z-score > 4.2), the left and right SLF
for the lateralized networks (z-score > 4.6) and the auditory
radiations (AR) underlying the auditory network (z-score > 4.0).
Minimum cluster level for all RSNs was set to ηmin = 40 voxels
(fMRI-space). Tractography seed-ROIs were interactively placed
at the midbody of each bundle, indicated by the blue arrows
in Figure 4.

Tractography and rs-fMRI parameters where intentionally
different for diverse regions of the brain to demonstrate
the importance of having region-based parameters to explore
structure-function relationship and intra-subject variability
(Thiebaut de Schotten et al., 2011). These results show that
some functional networks are linked by either direct structural
connectivity (Figure 4 motor, salience, visual, lateral networks)
or indirect structural connectivity (Figure 4 DMN, lateral
networks) (van den Heuvel et al., 2009).

3.3. Inter-subject Variability
Table 4 shows Cg-specific tractography parameters and rs-fMRI
z-score thresholds used to extract the DMN across 10 subjects.
Note the large variability, particularly in the maximum angle
(θ) and in the minimum streamline lenth (δmin). The difference
and percentage (%) change of each parameter are displayed
in Table 5. The % changes in comparison with reference
S6 range from −13.3 to 73.3% for the FA threshold, 20–
140% for the step size, ±42.9% for the angle threshold, 0–
78.3% for the minimum length and ±20% for the z-score
threshold. Figure 5 shows the reconstructed DMN and Cg
for S6 (middle). Applying these subject-specific parameters on
other subjects yielded a Cg bundle and DMN map that varied
dramatically (Figure 5A, left representation of each subject ).
However, when interactively adjusting the tractography and rs-
fMRI reconstruction parameters in a subject-specific manner,
both the DMN and Cg were easily retrieved (Figure 5B, right
representation of each subject). Red circles indicate example
regions where one of the expected nodes could not be retrieved.
Blue circles shows false-positive clusters successfully suppressed.

The results from Tables 4, 5 and Figure 5 show that the
parameters needed to reconstruct the Cg varies dramatically
across subjects. As a result, so does the DMN. Differences
present in connectivity profiles show the importance of having
subject-specific parameters when looking at structure-function
relationships. Other parameters such as the number of seeds and
the minimum rs-fMRI cluster size remained fixed.

3.4. Neurosurgical Planning Application
The proposed interactive functional and structural
reconstruction methods were introduced at the pre- and
intra-operative levels for a neurosurgical intervention. The case
consists of a 31 years old male tumor patient with astrocytoma
of grade III located near the motor area. Figure 6 shows a
tractography-driven reconstruction of the DMN. Axial and
coronal views of RGB map (Figure 6A) show the deviated
Cg (red circle) induced by the mass effect of the tumor.
3D reconstructions of the Cg (green), tumor (red), and the
DMN (orange) are illustrated in Figure 6B. Figure 6C reveals
functional connectivity near the anterior side of the tumor
(mPFC). The Cg was reconstructed using the following standard
tractography parameters: min. FA = 0.2, s = 0.5mm, max. θ =

25◦, δmin = 90mm, δmax = 130mm. The rs-fMRI z-score and
cluster-size thresholds were set to 4.2 and 20, respectively. These
parameters are comparable to state-of-the-art reconstruction
parameters used for healthy subjects (Tables 3, 4) (Castellano
et al., 2012; Tournier et al., 2012). The DMN was then generated
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FIGURE 3 | Interactively generated resting state networks

(z > 4.0) from a single subject used for comparison. The 3D

maps were generated by interactively placing a seed-ROI in the

circled (red) anatomical regions. DMN: PCC, Motor network: primary

somatosensory cortex, Visual network: primary visual cortex,

Salience network: insula, Lateralized networks: lateral frontal cortex

and Auditory network: primary auditory cortex. RSNs are overlayed

over edge-detected T1 anatomical image for visualization purposes.

Anatomical localization (MNI) of the seed regions can be found in

Table A1.

by performing the temporal correlation of the BOLD signal
underlying the last 3 points of each streamlines with all the other
voxels of the brain.

Next, using resting-state driven tractography, we performed
the instantaneous reconstruction of white matter fiber pathways
using rs-fMRI clusters as seen in Figure 7. First, the motor RSN
was generated by interactively positioning a 10 × 10 × 10 mm
seed-ROI within themotor cortex (Figures 7A–C, z-score> 4.0).
Next, tractography was initiated by evenly distributing 28000
seeds (1 seed per voxel) within the uncovered motor network
clusters, thus allowing the reconstruction of the motor pathways
(Figure 7D). Tractography parameters were set as the following:

min. FA = 0.2, s = 1.0 mm, max. θ = 35◦, δmin = 10 mm,
δmax = 200mm. Generating such a connectivity profile offline
would require of the user to (1) “blindly” select a seed-ROI and
(2) observe the associated connectivity map before (3) using it as
a seeding mask for tractography. One could also use independent
component analysis (ICA) (Beckmann et al., 2005; Damoiseaux
et al., 2006), which is another way of extracting multiple RSNs
of the brain by statistically decomposing the acquired signal
in a set of separate intrinsic components. It then still requires
the appropriate selection of the component associated to the
motor network, to finally inject it as a seeding mask for
tractography.
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TABLE 1 | Comparison of seven RSNs generated with our method with an

offline method.

RSNs D ρ

z > 3.0 z > 4.0 z > 5.0

DMN 0.957 0.964 0.960 0.983

Motor 0.903 0.925 0.923 0.976

Visual 0.928 0.931 0.925 0.978

Salience 0.914 0.891 0.895 0.977

Lateral-l 0.938 0.935 0.953 0.980

Lateral-r 0.928 0.890 0.825 0.980

Auditory 0.887 0.821 0.817 0.976

Values represent the Dice overlap coefficients (D) for multiple z-scores and a correlation

metric (ρ) between the unthresholded maps. Analysis was performed on a single subject

(S2) which was randomly selected.

TABLE 2 | Comparison of seven RSNs generated with our method with an

offline method.

RSNs J

z > 3.0 z > 4.0 z > 5.0

DMN 0.917 0.931 0.923

Motor 0.823 0.861 0.857

Visual 0.866 0.870 0.861

Salience 0.842 0.803 0.811

Lateral-l 0.883 0.879 0.911

Lateral-r 0.865 0.802 0.703

Auditory 0.796 0.697 0.691

Values represent the Jaccard overlap coefficients (J) for multiple z-scores. Analysis was

performed on a single subject (S2) which was randomly selected.

TABLE 3 | Bundle-specific tractography parameters used for each RSN.

Bundle RSN τ s θ # δmin δmax

Cg (L) DMN 0.20 1.0 30 1625 100 200

CC (Midbody) Motor 0.21 1.3 30 638 90 200

CST Motor 0.20 1.0 25 854 135 200

OR (L) Visual 0.30 1.0 40 100 100 105

Splenium Visual 0.15 1.0 35 411 150 200

Genu Salience 0.20 1.0 28 358 105 135

SLF (L) Lateral (L) 0.20 1.0 35 284 85 130

SLF (R) Lateral (R) 0.20 1.0 30 410 60 120

AR Auditory 0.20 1.4 26 75 105 115

Tractography parameters are as follows: τ , FA threshold; s, step size; θ , maximum angle;

#, number of streamlines; δmin, minimum streamline length; δmax , maximum streamline

length. Analysis was performed on subject 2 (S2) which was randomly selected.

We then extracted the BOLD signal of the tumor area by
placing a 10 × 10 × 10 mm seed-ROI inside the tumor
region (Figure 8A) resulting in a functional segmentation of
the astrocytoma (Figure 8B). Next, using the functionally-driven
map (dilated by 3 mm to cover the boundaries of the WM),
tractography was initiated by interactively lowering the tracking

threshold (FA) from conventional values (0.10− 0.20, Castellano
et al., 2012) to 0.08. This enabled the reconstruction of “low-
FA” streamlines surrounding the tumor, as shown on Figure 8C.
These streamlines, comprised the CST and CC, wrapped laterally
around the tumor. Supplementary material available online at
www.youtube.com/watch?v=eHSyf2AjbHw illustrates the real-
time interactive methods introduced in this section.

4. Discussion

In this study, we proposed a new interactive method to generate
tractography-driven resting-state functional connectivity which
generates bundle-specific functional networks. We also show
the problems associated with the use of fixed reconstruction
parameters across different brain regions and individuals.
Our experiments reinforce the idea of using region- and
subject-specific parameters based on the neuroanatomy of
each individual. Finally, the proposed methods were applied
in a neurosurgical context, which allowed the exploration
of structure-function relationships to achieve subject-specific
medicine.

4.1. Visualization and Interactivity
Interactively coupling structural and functional imaging can
provide great insights about brain connectivity, especially with
the need to use rs-fMRI in surgical planning and other clinical
applications, and the advent of human connectome studies.
Some have proposed a tool for voxel-wise brain connectivity
visualization, but the method requires the pre-calculation of a
voxel-by-voxel correlation matrix (Dixhoorn et al., 2012) which
can be hundreds of Gigabytes. In addition, GPU implementations
have been developed for functional connectivity exploration
(Eklund et al., 2011, 2013) or for pre-surgical planning (Böttger
et al., 2011). The proposed methods, however, restricts the user
from placing a seed-ROI at any point in the 3D space, which
greatly reduces the level of interactivity. Subsequently, the user is
limited tomove the seed-ROI solely on 2D anatomical slices, thus
only revealing activations present on displayed slices. Moreover,
none of the aforementioned methods proposes the fusion of both
rs-fMRI and dMRI data. The efficient AFNI toolbox (FATCAT)
does propose a method for combining rs-fMRI and dMRI, but
demands the precomputing of whole-brain tractography with
fixed parameters (Cox, 1996; Saad and Reynolds, 2012; Taylor and
Saad, 2013). In addition, the proposed exploration tool does not
allow direct superposition of RSNs and underlying streamlines,
as the 3D brain hemispheres must be separated to achieve proper
visualization.

In this paper, the mean frame-per-second (FPS) index is over
20 when solely activating the real-time tractography method with
default parameters (anatomical space, 1000 seeds) (Chamberland
et al., 2014). The same interactivity level (30+ FPS) applies for
rs-fMRI connectivity, even when setting the z-score threshold to
0 (thus displaying thousands of correlation factors). For higher
resolution resting-state acquisition (e.g., 3T scanner, assuming
a 3 mm3 voxel size, 250 volumes, TR ≃ 2 s, 8 min total),
the interactivity would decrease in a “soft” real-time fashion.
This means that as the number of time-points increase, the FPS
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FIGURE 4 | Tractography-driven resting-state connectivity of 7

RSNs. Using the last 3 points (red dots) of each streamline (left of each

sub-figure), the underlying BOLD signal is extracted, averaged and

correlated with the rest of the brain (right of each sub-figure). In order of

appearance: CST and the motor network (z > 4.8), CC-body and motor

network (z > 4.9), AR and the auditory network (z > 4.0), CC-genu and

the salience network (z > 4.2), CC-splenium and the visual network (z >

5.0), OR-left and the visual network (z > 4.4), left and right SLF for the

lateralized networks (z > 4.6), Cg and the DMN (z > 4.1). Blue arrows

show where tractography seed-ROI was positioned. Note how functional

connectivity extends far beyond the white matter seed points for the

motor, auditory and DMN networks.

index decreases. One potential solution would be to implement
the correlation step on GPU (Eklund et al., 2011, 2013). This
would also allow the use of advanced techniques such as time-
lag and partial correlation. For tractography-driven rs-fMRI, the
interaction remains fluid as long as the maximum number of
tractography seeds within the interactive ROI does not exceed
1000. When performing resting-state driven tractography, these
1000 seeds must thus be shared between the displayed fMRI
clusters to maintain a high level of interactivity while moving the
seed-ROI.

To the best of our knowledge, our proposed approach is the
first study to interactively perform rs-fMRI connectivity based

on tractography results. We strongly encourage the reader to
visualize the following video to fully appreciate the contributions
of this work and the necessity of an interactive method: www.
youtube.com/watch?v=eHSyf2AjbHw.

4.2. Seed-based vs. Independant Component
Analysis
Independent component analysis (ICA) is another way
of extracting multiple RSNs of the brain by statistically
decomposing the acquired signal in a set of separate intrinsic
components (Beckmann et al., 2005; Damoiseaux et al., 2006).
By doing so, ICA does not require any a priori assumption
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regarding the selection of a seed-ROI. However, the method
is not well-suited for interactive exploration of RSNs due to
its intensive mathematical decomposition algorithm, and still
requires the selection of the desired networks manually or
semi-automatically. Most functional connectivity tools are
developed for group analysis, such as group-ICA (Beckmann
et al., 2009), where group-components are regressed back to
individuals, which can be heavy to use for single subject analysis.
In addition, it has also been shown that seed-based and ICA
methods provide comparable results when looking at rs-fMRI
connectivity (Damoiseaux et al., 2006; Long et al., 2008; van den
Heuvel et al., 2008; van den Heuvel and Hulshoff Pol, 2010;
Rosazza et al., 2012).

4.3. Offline Validation with AFNI
The quantitative overlap measures (D and ρ) showed that our
real-time interactive method can reproduce reliable networks
and is comparable to state-of-the-art offline techniques. More
specifically, the DMN, motor, visual, salience, and lateral-l
networks showed the highest D overlap and consistency across
different z-score thresholds (mean ± std, 0.960 ± 0.004, 0.917 ±
0.012, 0.928 ± 0.003, 0.900 ± 0.012, respectively). The lateral-r
and auditory networks metrics showed slightly lower D metrics

TABLE 4 | Cingulum-specific tractography parameters and rs-fMRI

z-scores used for the assessment of inter-subject variability.

Subjects τ s θ δmin δmax z-score

S1 0.13 0.6 40 90 200 4.20

S2 0.20 1.0 30 100 200 4.10

S3 0.16 1.2 30 107 200 4.20

S4 0.20 1.0 35 90 200 4.00

S5 0.15 0.8 50 110 200 4.60

S6 0.15 0.5 35 60 200 4.00

S7 0.20 1.2 31 80 200 4.05

S8 0.13 0.7 30 160 200 3.20

S9 0.19 1.0 20 60 200 4.80

S10 0.26 0.6 45 100 200 4.00

Avg. 0.18 0.9 35 96 200 4.12

Std. 0.04 0.3 9 29 0 0.42

Parameters: τ , FA threshold; s, step size; θ , maximum angle; δmin, minimum streamline

length; δmax , maximum streamline length (fixed); z-score, minimum rs-fMRI Z threshold.

(Avg: average, Std: standard deviation).

(0.881 ± 0.052, and 0.842 ± 0.034) while maintaining a high ρ

factor (0.980 and 0.976). The underlying correlation method is a
possible source of variability. Our implementation performs the
temporal correlation with all voxels of the brain, and only the
positive-valued correlation factors are converted to z-score, while
the remaining are set to 0.

4.4. Tractography-driven Resting-state fMRI
Tractography-informed rs-fMRI connectivity is a promising new
method that could reveal limits and indirect connections of
multiple RSNs (e.g., functional regions that does not share a
structural link). Having access to the tractography stopping
criterion in real-time allows the instantaneous visualization of
the effect of those parameters on the reconstructed networks.
Tractography parameters where intentionally different across
bundles. This demonstrates the importance of having region-
based parameters, thus enabling the exploration of intra-subject
variability. The main purpose of using a higher minimum
streamline length criteria (δmin > 60mm) than default settings
(e.g., 10 mm, Tournier et al., 2012) is to eliminate undesired
short streamlines that would otherwise terminate prematurely
within the white matter. Further research has to be conducted
to see how the location of tractography end points impacts on rs-
fMRI connectivity. The proposed technique could benefit from
more thorough stopping criteria such as introducing anatomical
priors (Smith et al., 2012; Girard et al., 2014), to ensure that all
streamlines terminate within the gray matter. In addition, the
step size and the number of terminal points per streamline used
for correlation are also directly linked. One has to keep in mind
that as the step size changes, the number of end points used
to perform functional correlation should potentially be adapted
accordingly. Interestingly, we also noticed that sometimes even
a few streamlines reaching the appropriate cortex region are
sufficient to generate a whole RSN. Overall, this method has the
advantage of making good use of the tractography parameters
by precisely adjusting them according to the desired network of
interest. Specifically, this experiment showed that multiple RSNs
can be recovered (Figure 4) using this original seeding strategy.

4.5. Inter-subject Variability
The morphology of the brain substantially differs between
individuals (Mueller et al., 2013). Traditional ways of coupling
fMRI and dMRI often come down to reconstructing fiber
pathways between distant fMRI activation regions. This may be
problematic for two reasons: First, it assumes that fMRI should

TABLE 5 | Difference between reconstruction parameters across subjects, using S6 as reference.

Subjects Difference and (% change)

Parameter S1 S2 S3 S4 S5 S6 (ref.) S7 S8 S9 S10

τ (unit free) −0.02 (−13.3) 0.05 (33.3) 0.01 (6.7) 0.05 (33.3) 0 (0) − 0.05 (33.3) −0.02 (−13.3) 0.04 (26.7) 0.11 (73.3)

s (mm) 0.1 (20) 0.5 (100) 0.7 (140) 0.5 (100) 0.3 (60) − 0.7 (140) 0.2 (40) 0.5 (100) 0.1 (20)

θ (◦) 5 (14.3) −5 (−14.3) −5 (−14.3) 0 (0) 15 (42.9) − −4 (−11.4) −5 (−14.3) −15 (−42.9) 10 (28.6)

δmin (mm) 30 (50.0) 40 (66.7) 47 (78.3) 30 (50.0) 50 (83.3) − 20 (33.3) 100 (166.7) 0 (0.0) 40 (66.7)

z-score (unit free) 0.2 (5.0) 0.1 (2.5) 0.2 (5.0) 0 (0.0) 0.6 (15.0) − 0.05 (1.3) −0.8 (−20.0) 0.8 (20.0) 0 (0.0)
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FIGURE 5 | DMN and Cg (right) displayed for all subjects. Middle

figure shows the network obtained from reference subject (S6) using

parameters in Table 4. Applying these parameters to all other subjects

yielded networks with annotation (A). Interactively tuning subject-specific

parameters (Table 4) produced the (B) version of the network. Red

circles indicate example regions, where one of the expected nodes could

not be retrieved. Blue circles show false-positive clusters successfully

suppressed.

lead to dMRI fiber reconstruction, but it is not always the case.
Actually, what do functional connectivity profiles look like when
fMRI seed regions are determined via the end points of key white-
matter bundles? Secondly, the vast majority of structure-function
studies are analysed by assuming fixed reconstruction parameters
across all subjects, despite the fact that this has been shown to lead
to false-negatives (Chamberland et al., 2014).

We assessed the inter-subject variability associated to the
structure-function relationship by importing a set of fixed
parameters from an individual to the rest of our subjects.
The right Cg bundle of each individual was reconstructed and
the last 3 points of each streamline served as seed-ROI to
perform correlations with the underlying BOLD signal present
at these voxels. This allowed the recovery of the DMN in all
cases, but with qualitative differences in their structural and
functional connectivity profiles. The fixed set of parameters

produced either artificially large functional connectivity spread
across the brain, or could not fully recover the expected nodes
of the DMN (mostly those located at the temporoparietal
junction, Figure 5). Table 5 revealed differences in subject-
specific parameters ranging from −0.02 to 0.11 for the FA
threshold, 0.1–0.7 mm for the step size, ± 15◦ for the angle
threshold, 0–100 mm for the minimum length, and ± 0.8 for
the z-score threshold. This variability shows the importance
of having subject-specific parameters when looking at brain
connectivity across multiple subjects. These parameters are
manually set based on anatomical knowledge. One could think
of a machine-learning method that could qualitatively set each
parameter based on the location and characteristics of the
seed-regions.

Other adjustments such as the number of seeds, the minimum
cluster size ηmin or the ROI’s size, shape, and position should
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FIGURE 6 | Tractography-driven reconstruction of the DMN applied to

a neurosurgical case. (A) Axial and coronal views of RGB map showing

the deviated Cg (red arrows) induced by the mass effect of the tumor. (B) 3D

reconstruction of the Cg (green), the tumor (red) and the DMN (orange)

based on tractography-driven resting-state. Seed-region was positioned at

the mid-body of the Cg (red circle). (C) 2D axial and sagittal views of

DMN-overlayed T1 map showing functional connectivity near the tumor

(mPFC).

FIGURE 7 | Surgical application using resting-state driven

tractography to uncover the functional and structural motor network

of a 31 years old tumor patient with astocytoma of grade III. (A)

Seed-ROI (blue box, red arrow) interactively positioned in the motor cortex.

(B) 2D correlation map revealing the motor network (z > 4.0). (C) 3D

rendering of segmented tumor and motor RSN. (D) Underlying white matter

fiber pathways (CST, CC) generated using 28,000 seeds evenly distributed

within the previously described rs-fMRI motor cluster map.

FIGURE 8 | Functional segmentation of a brain tumor using the BOLD

signal. (A) rs-fMRI seed-ROI (greenbox, red arrow) interactively placing

within the tumor area. (B) 3D voxels (z-score > 5.0) showing strong

functional correlation within the tumor. (C) Fiber tractography generated

using the functionally-segmented tumor mask showing structural

organization in the vicinity of the tumor. Colormaps: (A,B) RGB, (C) FA.
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not be neglected. One should note that the proposed technique
can robustly recover functional connectivity (e.g., DMN) from
its underlying structural connectivity (e.g., Cg) across different
subjects but can also extend to other well-known RSNs (e.g.,
motor, auditory, visual, salience, lateralized, and DMN networks,
Figure 4).

4.6. Application in Neurosurgical Context
From a neurosurgical perspective, it could be interesting to
look at the underlying functional network associated to an
intra-operatively stimulated cortical site. This would require the
preprocessing of multiple correlation maps associated to every
seed-ROI, which may vary in size, shape and position. For
subjects with brain tumors, the co-registration with templates is
also an issue. Indeed, the use of predefined seed regions can thus
be inefficient to explore rs-fMRI data due to distortions induced
by the mass effect of the tumor. To overcome this problem, we
have introduced an interactive method at both pre- and intra-
operative levels. In this way, it is straightforward for the user to
place a seed region (with adjustable size, shape and position) at
any point of the brain, according to the will of the neurosurgeon.
The use of the tractography-driven resting-state method enabled
recovery of a functional network underlying a tumor-induced
deviated structure (i.e., Cg).

We also showed that the BOLD signal can be used to
characterize, and more specifically functionally segment brain
tumors, as previously mentioned in the literature (Ulmer et al.,
2004; Hou et al., 2006; Feldman et al., 2009). Moreover, the use of
this functionally-driven map allowed us to initiate tractography
and identify infiltrated streamlines within the surroundings of
the tumor. By interactively lowering the tracking threshold in
real-time (i.e., FA > 0.08), coherent structure was found. Such
structure would not have been reconstructed if a higher FA
threshold had been used (e.g., FA > 0.1, Castellano et al., 2012).
Therefore, it is of tremendous importance to tune parameters in a
subject-specific way also in neurosurgical applications since this
leads to more reliable pathway estimates. Hence, neurosurgeries
should be individually adapted for the neuroanatomy of each
patient. Another potential application of the proposed methods
is for pre- and intra-operative planning for patients with
epilepsy where mapping the epileptic foci and its surrounding
connections is critical (Liu et al., 2009; Otte et al., 2012; Taimouri
et al., 2014; Tax et al., 2014). For neuro-degenerative diseases,
we believe that our approach is important to more accurately
visualize the alternation of a particular RSN. For instance,
our software package could be used to freely explore which

parameters (correlation threshold, seed location) need to be
adjusted to highlight the often-observed DMN. By doing so, the
user could then use this information as starting point for group
analysis.

5. Conclusion

In this paper, we proposed a method for probing functional
and structural connectivity in a 3D interactive fashion. By
extracting the BOLD time series from the end points of
a streamline and performing real-time correlations with the
rest of the brain, we demonstrated that multiple well-known
RSNs can be recovered. This provides more insight on the
structure-function relationship in a subject-specific aspect. It
can also serve as a quality assurance technique at the single
subject level prior to launching massive analysis. Importantly,
researchers should be careful when using fixed parameters
across multiple subjects, which potentially rules out most of
the inter-individual variability. In conclusion, our proposed
method can be used for clinical applications and is achievable
without complex GPU programming. Future development will
include a more thorough assessment of the white matter and
gray matter characterization by adding anatomical priors to
the tractography algorithm (Girard et al., 2014). Supplementary
video data showing the real-time interactive reconstruction of
brain networks can be found online at: www.youtube.com/
watch?v=eHSyf2AjbHw.
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Appendix

TABLE A1 | Spatial localization in MNI space coordinates of seed regions

used for Figure 3.

Anatomical label Coordinates (MNI)

Posterior cingulate cortex 0, 58, 47

Primary somatosensory cortex 40, 24, 69

Primary visual cortex 6, 83, 22

Insula 46, −11, 4

Lateral frontal cortex (left) 45, −20, 42

Lateral frontal cortex (right) −51, −18, 47

Primary auditory cortex −55, 22, 22
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