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Electroencephalography source imaging (ESI) is a useful technique to localize the

generators from a given scalp electric measurement and to investigate the temporal

dynamics of the large-scale neural circuits. By introducing reasonable priors from other

modalities, ESI reveals themost probable sources and communication structures at every

moment in time. Here, we review the available priors from such techniques as magnetic

resonance imaging (MRI), functional MRI (fMRI), and positron emission tomography

(PET). The modality’s specific contribution is analyzed from the perspective of source

reconstruction. For spatial priors, EEG-correlated fMRI, temporally coherent networks

(TCNs) and resting-state fMRI are systematically introduced in the ESI. Moreover, the fiber

tracking (diffusion tensor imaging, DTI) and neuro-stimulation techniques (transcranial

magnetic stimulation, TMS) are also introduced as the potential priors, which can help to

draw inferences about the neuroelectric connectivity in the source space. We conclude

that combining EEG source imaging with other complementary modalities is a promising

approach toward the study of brain networks in cognitive and clinical neurosciences.

Keywords: EEG source imaging, multimodality, brain network, EEG-fMRI

Introduction

Electroencephalography (EEG) measures the brain’s electric fields that are quantifiable at various
scalp sites. Its main contributor is the extra- and intra-cellular electric currents associated with
neuronal activity. Recently, EEG has been recognized as a useful technique to non-invasive study
of brain dynamics. Here are some reasons: First, the EEG system is easy to be manipulated and
cheap to be set up. Second, EEG can take direct measurement of the real-time response from neural
activity without delay. Third, EEG has the high temporal resolution that is suitable to investigate
dynamic brain activation during various cognitive tasks. Fourth, the modern EEG has greatly
improved in its spatial resolution with the increased number of electrodes. Advantages above make
EEG a widely utilized technique in cognitive and clinical neurosciences.

The reconstruction of electrophysiological activity in the cortex based on scalp EEG is a typical
inverse problem (Helmholtz, 1853). Due to a large number of unknown parameters comparing to
the number of scalp electrodes, the spatial location of the neuronal sources of the scalp recorded
activity cannot be conclusively determined, i.e., the inverse problem has no unique solution (Baillet
et al., 2001). Infinite configurations of neuronal sources can lead to the same scalp potential
measurement. A priori assumptions based on physiological and biophysical knowledge have to
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be incorporated to reduce the number of unknown parameters
and finally solve the problem. The rationality of the related
knowledge determines the correctness of the source imaging.
Currently, the available priors in EEG source imaging (ESI)
gain from magnetic resonance imaging (MRI), functional MRI
(fMRI), positron emission tomography (PET), diffusion tensor
imaging (DTI), transcranial magnetic stimulation (TMS), etc.

Algorithms for ESI have been rapidly evolved into many
directions over the last 20 years: from a single prior (Dale et al.,
2000) to multiple priors (Friston et al., 2008); from the task-
evoked activity (Henson et al., 2010) to the task-free connectivity
(Lei et al., 2011b); from the asymmetric spatial constraint to the
multimodal fusion (Baillet et al., 2001). Realistic head models
based on detailed anatomical information that derived from
the structural neuroimaging have improved the precision of
forward model. The spatial prior from functional neuroimaging
has advanced the accuracy of source localization. The precision
of source localization has made significant progress in recent
years, allowing real-time imaging of neural activity in the brain
directly and non-invasively. As illustrated in Figure 1, many
experimental and clinical studies have utilized diverse priors
from other modalities and have validated their correctness of
the localization by some direct evidence such as intracranial
recordings.

In this article, we reviewed the special contribution of each
modality to ESI, containing such techniques as MRI, fMRI, PET,
DTI, and TMS. First, we will discuss the mathematic frameworks
in combining priors. Then, we have a systematic analysis of
the spatial priors and it mainly includes EEG-correlated fMRI,
temporally coherent networks (TCNs) and resting-state fMRI.
Moreover, as functional and causality connectivity become a
central topic in the neuroimaging community, the fiber tracking
and neuro-stimulation techniques, corresponding to DTI and
TMS respectively, are also introduced as the priors, which can
help to draw inferences about the neuroelectric connectivity.
More than providing definitive answers, we aim to identify
important open issues in the quest of incorporating priors from
other modalities into ESI.

Mathematical Models to Incorporating
Priors

Here we only introduced two frameworks which were widely
utilized to incorporate priors into ESI. Penalty function employs
different types of norm and weight matrices to incorporate
priors from other modalities. Alternatively, Bayesian framework
considers prior information as a prior probability and computes
the posterior probability of source distribution.

Penalty Function
Penalty function imposes constraints on the source activity g in
a multiple-penalized model. The corresponding ESI estimation is
stated as (Valdés-Sosa et al., 2009b):

ĝ = argmin
g
(
∥

∥Y − Lg
∥

∥

2

2
+

k
∑

i= 1

λi
∥

∥Wig
∥

∥

p
) (1)

where ĝ ∈ Rd×s is the unknown source dynamics for d
dipoles. Y ∈ Rn×s is the EEG recording with n sensors and
s samples, and L ∈ Rn×d is the known lead-field matrix.
∥

∥Wig
∥

∥

p
is a penalization function with lp-norm, Wi is a

weight matrix imposing different type of constraint and λi is
a regularization parameter determining the relative importance
of each constraint. This model includes all prior information
through the k penalty functions. As both the types of norm and
the weight matrix are selectable, the penalized model is flexible to
incorporate different constraints.

Several forms of W have been proposed for EEG source
imaging. Obviously, the identity matrix produces the classical
minimum norm model (MNM) (Hämäläinen and Ilmoniemi,
1994). Because the gain matrix introduces an intrinsic bias that
favors solutions in close proximity to the sensors in MNM
reconstructions. While the normalized MNM has reduced this
problem through bias adjustment (Jeffs et al., 1987) though
it suffers from a depth bias per se (Lucka et al., 2012). For
normalized MNM, W is a matrix with diagonal elements equal
to the norm of the corresponding column of the gain matrix
L. W can further have a spatial derivative of the image of first
order or Laplacian form, and the latter corresponds to the low-
resolution electromagnetic tomography algorithm (LORETA)
(Pascual-Marqui et al., 1994). In an effort to reduce the spatial
blurring of LORETA, the focal underdetermined system solution
(FOCUSS) algorithm emphasizes strong sources while decreases
weak ones by iteratively updating W (Gorodnitsky and Rao,
1997). In application of multimodality, W is a diagonal matrix
with elements equal to the estimated source power at that
location, which may be the task-evoked activation evaluated in
each voxel from fMRI or PET.

The type of norms is another selectable item to restrain the
source distribution. In most study p = 2, where the symbol ‖·‖2
denotes l2-norm. The estimators are explicit and linear for this
quadratic function, offering smooth solutions. Recently, there
have been advances in solving the EEG inverse problem by a
sparse and local solution that highlight the use of non-convex
(non-quadratic) penalty functions (Valdés-Sosa et al., 2009b). A
variety of methods have been proposed such as l1 norm solution
[i.e., the least absolute shrinkage selection operator (LASSO)]
(Silva et al., 2004), and lp norm iterative sparse source (LPISS)
(Xu et al., 2007). Recently, an l0 constrained penalty function
is introduced in the solution space sparse coding optimization
(3SCO), which codes the solution space with some particles. The
particle-coded space is compressed by the evolution of particle
swarm optimization algorithm (Xu et al., 2010).

Bayesian Framework
Bayesian allows a priori assumption of EEG source to be explicitly
quantified by using postulated prior distributions. The types
of prior incorporated in Bayesian include information on the
neural current (David et al., 2006), the combined spatial and
temporal constraints (Trujillo-Barreto et al., 2004), as well as the
sparse nature of the sources (Friston et al., 2008). Recent studies
have shown that a promising tool for reliable estimation of EEG
sources is parametric empirical Bayesian (PEB) (Phillips et al.,
2005; Henson et al., 2010), which is:

Frontiers in Neuroscience | www.frontiersin.org 2 August 2015 | Volume 9 | Article 284

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Lei et al. Priors for EEG source imaging

FIGURE 1 | Priors for EEG source imaging. The anatomical and

structural information derived from MRI and CT advances the precision of the

head model. Spatial priors in ESI include task-evoked activity derived from

fMRI, EEG-correlated fMRI and PET. A recent extension of spatial prior is

task-free connectivity derived from resting-state fMRI. For connectivity

analysis, fiber tracking derived from DTI and neuro-stimulation techniques

such as TMS advance the inference of neuroelectric network in the cortex

space. The TMS alters cortical excitability, effective connectivity, and

oscillatory tuning of a given cortical area, and hence provides both spatial

and connectivity priors for ESI. All the sources are from our unpublished

experimental data. MRI, magnetic resonance imaging; CT, computed

tomography; EEG, Electroencephalography; ESI, EEG source imaging; fMRI,

functional MRI; PET, positron emission tomography; DTI, diffusion tensor

imaging; TMS, transcranial magnetic stimulation.

Y = Lg + ε1 ε1 ∼ N(0,T,C1)

g = 0+ ε2 ε2 ∼ N(0,T,C2), (2)

where ε1 and ε2, both obeying multivariate Gaussian
distributions, representing random fluctuations in sensor
and source spaces, respectively. The temporal correlations are
denoted by T, and the spatial covariance of ε2 are mixtures of
covariance components (CCs), i.e.,

C2 =

k
∑

i= 1

γiVi, (3)

where γ ≡ [γ1, γ2, . . . , γk]
T is a vector of k non-negative

hyperparameters that control the relative contribution of each
CC, Vi. The components set, V = {V1,V2, . . . ,Vk}, provides
an extremely flexible framework to incorporate priors from other
modalities. The number of components could range from one
(such as V = {I} in the classical MNM), to hundreds [such as
multiple sparse prior (MSP), in which each component accounts
for a certain compact spatial support; (Friston et al., 2008)].
In addition to the mathematical priors above, the task-evoked

activity derived from fMRI is widely considered in EEG source
imaging. For example, the statistical parametric map (SPM)
derived from a common general linear model (GLM) of fMRI
was adopted in an EEG source imaging method and it was named
as dynamic SPM (dSPM) (Dale et al., 2000). We will discuss the
form of CCs in Section Temporally Coherent Networks. Once the
form of spatial correlations of the sensor noises and the lead-field
are given, the model would be determined by the composition of
the empirical priors related to the sources. The hyperparameters
γ are akin to the standard regularization parameters in ill-posed
problems, and can be estimated with various Bayesian inferences
(Friston et al., 2008).

Relations between Bayesian and Penalty
Function
Though aforementioned frameworks have different forms, the
core structures are similar and can be easily translated to each
other. The advantage of penalized model is that both the types
of norm and the weight matrix are configurable (Figure 2).
The choice between sparse and smooth is valuable because it is
easy to design an experiment with specific penalized model. A
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FIGURE 2 | Relationship between penalty function and Bayesian

model. The advantages of penalty function are the configurable norm and the

weight matrix. In contrast, Bayesian model has a hierarchical structure, which

yield different influence on the final solution. ‖Wg‖p is a penalization function

with lp-norm, Wi is a weight matrix imposing different type of constraint and g

is the unknown source activity. While most studies set p = 2 to employ

l2-norm, recently developments proposed both l1 and l0 norms to obtain the

sparse solutions. Y is the EEG recording and L is the known lead-field matrix.

ε1 and ε2 obey multivariate Gaussian distributions, representing random

fluctuations in sensor and source spaces, respectively. The spatial covariance

of g, C, is mixtures of covariance components (Vi ) and hyperparameters (γi ).

balance can also be achieved by combining with multiple penalty
functions in a single objective function (Lei et al., 2009). In this
way, a family of models combining l1 norm and l2 norm describe
a continuous transition of one type of ESI to the other (Vega-
Hernandez et al., 2008). The functionally significant solutionmay
be identified with the blend of smoothness and sparseness.

The superiority of Bayesian model is its hierarchical structure
(Figure 2). In this model, the lower level has direct and strong
influence on the solution, while the higher level only influences
its adjacent levels and has weak influence on the final solution.
The prior distribution and the inference procedure that are
subsequently adopted have many choices, the implementations
of Bayesian model have led to a large number of algorithms with
seemingly very different properties.

In Bayesian model, if the prior distribution satisfies
multivariable Gaussian distribution, it can be easily translate into
a quadratic penalty function though transformation of logarithm.
In fact, there are explicit connections between many established
algorithms (Wipf and Nagarajan, 2009), including the LORETA,
FOCUSS, minimum current estimation, restricted maximum
likelihood, variational Bayes, the Laplace approximation,
automatic relevance determination, and beamforming (Van
Veen et al., 1997). The beamformer is a spatial-filtering approach
filtering the EEG signal by different beams and it is based on
lead-field matrix corresponding to some specific source points
(Sekihara et al., 2001). Surprisingly, all of these methods can
be formulated as particular cases of Bayesian distribution and
optimization rules, making theoretical analyses and algorithmic
improvements particularly relevant (Wipf and Nagarajan, 2009).

Anatomical and Structural Information

The accuracy of ESI depends crucially on the head model and
the solution space initiated to compute the forward problem.

The related imaging modality contains computed tomography
(CT) and MRI. The selected modalities influence the solution of
ESI, according to their sensitivity to hard or soft tissues. For the
majority of its practical applications, CT is usually not available
as there is no sufficient indication to expose the subject/patient to
the harmful ionizing radiation.

The Head Models
The head models can determine the measurements on the
scalp after locating the sources at the given positions. Both the
electromagnetic (permeability and conductivity) and geometrical
(shape) properties of the volume are considered in the head
models. The simplest and still widely used head model is the
spherical model. This model, with the uniform conductivity
properties, allows for an analytical solution of the forward
problem (Yao, 2000). Source localization accuracy is limited
when using this model because the head is not spherical and
also its conductivity is not spatially uniform (Michel et al.,
2004). Incorporations of different conductivity parameters and
consideration of local anisotropies in multi-shell spherical head
models can ameliorate the accuracy to a certain degree. The
overlapping-sphere head model was used to quickly calculate a
more realistic head shape. The volume currents were employed
to fit spherical head models for each individual electrode such
that the head is modeled more realistically as some overlapping
spheres, rather than a single sphere (Huang et al., 1999). Though
the boundary element method (BEM) model has the similar
accuracy with the overlapping sphere model, the latter is faster
to compute.

Several simulations have shown that accurate lead field
computation can only be achieved by using realistic volume
conductor models, such as BEM model and the finite element
method (FEM) model (Valdés-Hernández et al., 2009).
Triangulations of the interfaces between compartments
of equal isotropic conductivities are used in BEM model
as a geometric model (Hämäläinen and Sarvas, 1989). In
contrast, the FEM model tessellates the whole volume and
considers the individual anisotropic conductivities of each
element. It implies the FEM model can take skull-breaches
and anisotropies into account, especially for the sources placed
deeply in sulci (Van den Broek et al., 1998; Güllmar et al.,
2010). However, the generation of realistic geometric models
is not a trivial task, since it implies the accurate segmentation
of MRI and stable tessellations of head compartments. In
addition, the detailed anatomical information about tissue
conductivities is rarely available. Because of the obvious
complexity of realistic head models, efforts have been made
over recent years to combine the computational efficiency
of template model with more accurate descriptions of
the individual head shape. An approximate model (AM)
was proposed in the condition that individual’s MRI is not
available (Valdés-Hernández et al., 2009). The average models
perform better than a random selected individual model or
the usual average model in the MNI space. The AM seems a
convenient tool in large and systematical clinical and research
studies demanding EEG source localization, when MRI is
unavailable.
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The Solution Space
Another important issue concerns the permissible solution space
within which the sources are considered, i.e., the distribution
of the fixed solution points. It is valuable not only for source
reconstruction, but also to determine the coordinates of the
sources in terms of Brodmann areas or Talairach coordinates.
This information can further be used to draw conclusions about
the activated neurophysiologic structures.

In the spherical head models, the whole volume within
the sphere is assumed to be the solution space. Accordingly,
deep structures, cerebellum, and ventricles are all acceptable. In
realistic head models such as BEM model or FEM model, the
MRI is taken into account to restrict the solution space to the
structures where putative EEG sources can actually arise. The
optimal selection of such a restricted solution space is based on
the segmentation of the MRI into the gray and white matters.
Because the interface between the gray and white matters forms a
surface solution space of ESI, the orientation of the cortical source
space surface can be considered to be an additional prior for ESI
(Dale and Sereno, 1993; Lin et al., 2006). Based on the fair spatial
resolutions provided byMRI, the sources of optical stimulus were
revealed in the visual cortex at the individual level (Cottereau
et al., 2011). The use of the individual MRI is in need of clinical
cases when deformations or lesions are presented. Only by using
the subject’s ownMRI can such lesion areas be excluded from the
solution space.

Spatial Priors for ESI

Task-evoked activation identified by fMRI or PET is the widest
utilized spatial prior in ESI. In this case, the same task was
repeatedly conducted in another modality with higher spatial
resolution. The identified activation regions provide individual
information about the respond areas. Another spatial prior in
clinical application is the structure abnormality because of lesion
or infection. For example, the lesion area is accepted as the
interictal epileptiform discharges (IED) point in local epilepsy.
A recent study had investigated the concordance between EEG
source detection and voxel-based morphometry (Betting et al.,
2010). On average, the nearest voxels detected by these two
methods are very close, suggesting that gray matter abnormalities
are associated with focal IED.

Statistical Parametric Map
Task-evoked activation obtained from the blood oxygen level
dependent (BOLD) signal may be the most dominant spatial
prior for ESI (Liu et al., 1998; Henson et al., 2010). In this
approach, activation areas can be used either to initially seed
dipoles within the activation regions found in the SPM for
further dipole fittings (Ahlfors et al., 1999), or to constrain
the spatial locations of the likely sources of EEG (Liu et al.,
1998). For example, the visual components detected by EEG
can be properly localized in according with the subject’s fMRI
retinotopic maps obtained from the subject per se (Di Russo et al.,
2002). Another straightforward approach to implement the fMRI
constraint is to threshold the SPM of fMRI and set the variance
estimate to a non-zero value only at locations exceeding a certain

threshold (George et al., 1995). However, simulation studies
suggest that this approach is exceedingly sensitive to model
misspecifications, in particular to the presence of generators of
EEG signals that are invisible in fMRI (Liu et al., 1998). Using
a partial fMRI constraint can greatly reduce the distorting effect
on such potential misspecifications. This method is accomplished
by setting the minimum a priori variance estimate to some finite,
non-zero values (typically 10% of the maximum value) (Liu et al.,
1998; Dale et al., 2000).

The task-evoked activation is easy to be accepted in the PEB
framework of ESI (Phillips et al., 2002; Henson et al., 2010).
For example, in Equation (3) the SPM of fMRI constructed
a covariance component VdSPM in dSPM (Dale et al., 2000).
Set the off-diagonal terms to 0.0, while the diagonal terms of
VdSPM corresponding to supra-threshold nodes are assigned a
weight of 1.0. A more complex model considers the discrepant
contribution of each cluster or network in a single SPM (Henson
et al., 2010; Lei et al., 2012a). Because activation map usually
contains multiple clusters, they may have different contribution
to ESI though all of them are significant activation areas in fMRI
analyses. As a result, previous studies had conducted multiple
spatial priors after classifying the clusters from the activation
map, and then Bayesian modal selection was utilized to identify
themost important clusters that are critical to generate scalp EEG
(Henson et al., 2010; Lei et al., 2012a). In practice, the hierarchical
structure in PEB considers a variety of fMRI information as priors
(see Section Temporally Coherent Networks for more priors
from fMRI).

EEG-correlated fMRI
The simultaneous EEG-fMRI is a new technique to measure both
the metabolic and electronic activities during mental processes.
Here we introduced a method, named EEG-correlated fMRI, that
can extract priors for ESI (Lei et al., 2011b). EEG-correlated
fMRI investigates the hemodynamic changes associated with
simultaneous electrophysiological activity. Assuming the regions
identified in the simultaneous EEG-fMRI recording will reappear,
one may expect to localize the sources via high-density EEG
recording (Debener et al., 2006). We should note that the EEG
in EEG-correlated fMRI is very different from the EEG used in
ESI. In EEG-correlated fMRI, EEG acts like an oscilloscope with
very fewer sensors than it is in ESI. Power of rhythm activity
(Goldman et al., 2002) or amplitude of single-trial (Debener et al.,
2006) are extracted from these limited sensors, and are further
convolved with a canonical hemodynamic response function.
The resulted signal is utilized as a hemodynamic predictor in a
GLM. Assuming the degree of spatial concordance is good, one
may exploit the high spatial resolution of fMRI to localize the
generators of the high-density EEG signals based on a separated
EEG session.

Previous EEG-correlated fMRI studies in patients with
epilepsy often reveal that distributed patterns of BOLD signal
changes are correlated with IED. Both the positive and negative
BOLD cluster had equal contributions to ESI, and identified
source at IEDwas closest to these clusters withmaximal statistical
significance (Vulliemoz et al., 2009). In addition, the region
identified by EEG-correlated fMRI can further be used to
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initialize the contralateral sources, especially on the condition
that the scalp EEG showed a bilateral distribution of the sources.
Based on this assumption, we found a pair of bilateral sources
at IED by modeling correlated sources in each hemisphere (Lei
et al., 2011b).

ESI and EEG-correlated fMRI may use the same data if high-
density EEG is conducted in a simultaneous fMRI recording.
In this condition, EEG and fMRI can match with each other in
the temporal and spatial domains. Moreover, a mutual beneficial
iteration can be achieved in this condition. First, EEG-correlated
fMRI provides the spatial priors for EEG source imaging. Then,
the reconstructed source activity of ESI is further used as
predictors of the BOLD signal changes. This method, named
ESI-informed EEG-fMRI analysis, has more precise information
about the amplitude of neural response, and may finally reveal
the exact location of the BOLD signal changes (Vulliemoz et al.,
2010). An focal epilepsy study proved its superiority when
comparing with the conventional “event-related” designs based
solely on the scalp EEG (Vulliemoz et al., 2010).

Though the cluster identified by EEG-correlated fMRI is
valuable for EEG source imaging, this approach is rare utilized
in application. In fact, the result integrated with the priors may
be biased toward the activation map of EEG-correlated fMRI,
while clinical application concerned more about the independent
evidence from each modality. A reasonable alternation is to
compare the sources derived separately from ESI and EEG-
correlated fMRI. This method, named simultaneous ESI and
EEG-fMRI analysis, accesses the degree of spatial concordance
by using the EEG signals in parallel with both the ESI and the
hemodynamic predictors of the BOLD signals. Simultaneous ESI
and EEG-fMRI analysis has the potential to distinguish the areas
of BOLD response related to the initiation of IED from the
propagation areas (Vulliemoz et al., 2009, 2010). Generally, the
fMRI-informed constraint on ESI is not recommended to map
epileptic networks, unless a proper model comparison tool is
included to assess the relevance of the BOLD clusters as ESI
priors, for instance within a Bayesian framework for a posteriori
assessment of the relevance of the fMRI constraints (Daunizeau
et al., 2006).

Temporally Coherent Networks
The brain exhibits TCNs both during the resting-state and the
cognitive task. TCNs represent the interactions between different
brain areas and involve numerous cortical and sub-cortical
regions. In NEtwork based SOurce Imaging (NESOI), TCNs
derived from task fMRI data are employed as the covariance
priors of ESI (Lei et al., 2011b). As coherent analysis only
underlines the time synchronization, both task-evoked and
task-free activities are considered in NESOI. This is the main
difference of NESOI when compared with other methods using
traditional task-evoked priors from fMRI. This model also laid
the foundation for utilizing the brain networks of resting-state
fMRI for EEG source imaging (see Section Resting-state fMRI).

NESOI contains three steps to reconstruct the EEG source.
First, brain functional networks are extracted from fMRI by
spatial independent component decomposition. The intensity
values in each TCN are scaled to z scores. Second, each spatial

pattern (or TCN) is thresholded to form the spatial connected
clusters. Voxels with absolute z scores larger than a threshold
are considered to show activation. Third, each cluster is then
independently projected onto the surface mesh, leading to the
definition of a covariance component. A node in the EEG source
space is assigned according to the z score of its nearest-neighbor
fMRI voxel after spatial registration. All the activated nodes
in each TCN showed similar temporal dynamics of the BOLD
signals, thus we assumed they had similar properties for EEG
signal generation. For the PEB framework of ESI, the simplest
way to construct a covariance component (see Equation 3) from
a TCN is to assign the diagonal terms by 1.0 on condition that the
corresponding node is activated, and it assigns other terms by 0.0.
NESOI takes into account the local coherence in source space and
introduces a sophisticate covariance component based on TCNs
(Figure 3A). Using synthetic and real data, we have proved that
incorporating TCNs have significantly facilitated the EEG source
estimation when compared with other source inversion methods
(Lei et al., 2011b).

FIGURE 3 | Network-based source imaging and its variants. The brain

maps represent the spatial pattern of the upper covariance components

(CCs). (A) Temporally coherent networks derived from fMRI are employed as

the CCs in parametric empirical Bayesian model. (B) Three different structures

of CCs are illustrated: a covariance matrix with binary value only considers the

location information from fMRI (the black arrows have the same size); a

covariance matrix with continuous value assumes the magnitude of

neuroelectric activity based on fMRI statistical quantities (arrows with different

size); a covariance matrix with non-zero off-diagonal terms has a strong

assumption that EEG sources in a fMRI cluster have coherent time course (the

blue line between arrows). (C) CCs are messengers to transmit the information

between task-evoked and resting-state brain activation.
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The covariance component in our later development has
multiple variants (Lei et al., 2012a). As illustrated in Figure 3B,
the simple covariance component only contains 0 or 1 in the
diagonal terms, i.e., only the information about location from
fMRI is used for ESI. In contrast, a covariance component
with continuous value considers the fMRI statistical quantities
as the amplitude of neuroelectric activity. Finally, a covariance
component with non-zero off-diagonal terms could further
model the correlated EEG sources. The last model has a strong
assumption that EEG sources in a cluster have coherent time
course (see the blue line between arrows in Figure 3B). The
advantage of using a detailed covariance component is its
flexibility for diverse coupling between EEG and fMRI (Lei et al.,
2012a). Moreover, mutability of EEG sources across task and
subject can also be dealt effectively in this model. As illustrated in
Figure 3C, covariance components can even be the messengers
to transmit information between task and resting-state brain
activity.

Resting-state fMRI
Brain in resting state is an attractive topic in recent neuroimaging
studies (Fox and Raichle, 2007). The term “Resting State” mainly
refers to the coherent fluctuations of brain oscillations in different
brain regions, while the subject is at rest without any particular
stimulus or task. Distinct patterns of coherent activity have
been identified in resting-state fMRI. Resting state networks
(RSNs) involving predominantly visual areas, auditory areas,
sensorimotor areas, and those areas are known to be involved
in attentional processes and have been shown to be reproducible
across large populations (Smith et al., 2009). Intriguingly, the
spatial patterns of resting-state networks closely matched with
the task-evoked activation used by the brain undergoing a
comprehensive set of task types (Smith et al., 2009). In addition,
these resting-state networks are continuously and dynamically
“active” to constitute the full repertoire of functional networks
utilized by the brain in action. These patterns may facilitate EEG
source imaging, not only to EEG rhythm during resting state, but
also to event-related potential (Lei et al., 2011b).

Here we expanded the NESOI method above, named resting-
state NESOI (rsNESOI), which is modified to include RSNs
derived from resting-state fMRI as priors (Lei, 2012). The
rsNESOI employs RSNs with fixed spatial patterns; hence it is
free from extra fMRI scan to obtain the spatial priors. Templates
of nine RSNs constituted multiple spatial priors for ESI. The
RSNs were extracted from a resting-state fMRI dataset, which
consisted of 42 healthy participants (20 females, age 18–27)
from the Southwest University. All the data were mainly pre-
processed and were subjected to a group ICA (http://icatb.
sourceforge.net/). Then spatial patterns of resting-state fMRI
were displayed and explained based on the result of Smith
et al. (2009). Nine RSNs were extracted because of their similar
spatial distribution with the reported pattern (Smith et al., 2009).
The first three resting-state network corresponded to medial,
occipital pole, and lateral visual areas. Default mode network was
a large structure in the middle frontal, posterior cingulate, and
inferior temporal gyrus. Sensorimotor, auditory, and executive
control networks were usually utilized by the brain in some

special action. Left- and right-lateralized frontoparietal were
the only maps to be strongly lateralized. They covered several
frontoparietal areas. Networks were then employed as covariance
components of PEB for EEG source imaging (Lei, 2012). The
main difference between rsNESOI and NESOI is the utilization
of RSNs instead of the various functional activation constraints.
More importantly, because RSNs is fixed and no need to extract
from each experiment, the major novelty of rsNESOI is the
utilization of multiple RSNs derived from resting-state fMRI
without any fMRI scan (Lei, 2012).

ESI of resting state EEG may have great improvement
with priors from resting-state fMRI. It is widely believed that
neuronal oscillations are the basic mechanism that defines
functioning and interaction within and between the modules of
large-scale brain networks, and thus are the basic mechanism
of cognitive processing (Buzsáki and Draguhn, 2004). The
dynamic electrophysiological activity for rhythmic EEG can be
reconstructed on the condition that there is a good degree of
spatial concordance of the modules of large-scale functional
networks. This source imaging of the spontaneous EEG may
provide important findings in the understanding of brain
functioning and variations of these functions during rest, sleep,
cognitive task, maturation or psychiatric diseases.

Connectivity Priors for ESI

The question of how brain regions communicate with each other
is of increasing interest for the EEG community. With its fast
recording, EEG is much better suited to study the interactions
between brain regions during various cognitive tasks and resting-
state (Hillebrand et al., 2012). The dynamic information provided
by an EEG-derived network allows for a precise definition of the
location and timing of cognitive processes. For example, dynamic
changes of the epileptic brain can enhance our understanding
of seizure generation, propagation, and termination (Tyvaert
et al., 2009). Connectivity analysis directly applied to the scalp
electrode is problematic, because of the volume conduction of
the brain tissue and the influence of the reference on connectivity
measures.

The ambiguous measurement of scalp electrodes can best
be solved by assessing connectivity between time series. Those
time series are extracted after having done ESI. Two types of
method can execute connectivity analysis in source space. One
is the generate model based on biophysics. For example, the
neural mass model has the potential to simulate the activity
of neural ensembles and the connections between them, so
that it can generate brain rhythms or event-related responses
(David and Friston, 2003). Another is applying the connectivity
algorithms to the signals from the source space, i.e., EEG source
imaging combining with multivariate connectivity measures
determines the connectivity patterns of cortical activity (Astolfi
et al., 2007). Although a lot of techniques are available for
connectivity inference in cortex space, there are few studies
utilizing “connectivity” priors (note the difference from “spatial”
priors) from other modalities. First, with EEG’s extremely high
temporal resolution, there is hardly any technique has higher
temporal information than EEG that can be utilized as a “prior”
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in ESI. Second, the lack of unified model to simultaneous ESI and
connectivity analysis prevents developing effective strategy to
include connectivity priors. Here we introduced some potential
strategies to incorporate connectivity priors in ESI.

Structural Connectivity Prior and DTI
Structural connectivity defines the magnitude and time lag of
connection between brain regions, which is critical for the long-
rang communication. DTI quantifies the magnitude of water
diffusion in vivo non-invasively and describes three-dimensional
fiber tracking in each voxel. Anatomical parcellation based on
DTI can be used as a spatial prior for EEG source imaging. The
logic behind is that cortex belonging to the same anatomical
unit should tend to exhibit similar activity. A recent work
incorporated the percellation information derived from diffusion
weighted MRI into the reconstruction of distributed source
(Knösche et al., 2013). In ESI, inferring cortex connectivity
based on coherence or phase lag index is sensitive to indirect
connections. The fiber tracking obtained fromDTI can be used to
define the backbone of the network in the source space. A recent
source imaging study imposed stronger penalties to the cortex
connection that corresponded to weak anatomical connection
(Pineda-Pardo et al., 2014). The expressivity of the source model
was improved after introducing anatomical prior from diffusion
weightedMRI, leading to a better classification between psychotic
patients and healthy controls groups (Pineda-Pardo et al., 2014).

Because information transfer depends on the length of white
matters, so the neuroanatomical structure provided by DTI
can be further used to determine the interaction delay of
the macroscopic brain networks. This is valuable for ESI to
estimate the phase relation of brain oscillation. For example,
the phase pattern of the oscillatory neuronal activity has
been studied with the structural connectivity between regions
of the whole brain (Stam and Van Straaten, 2012). One
study found that cortical networks derived from source EEG
estimates partially reflect both direct and indirect underlying
white matter connectivity in all frequency bands evaluated. In
addition, functional connectivity was significantly reduced for
high frequency bands compared to low frequency bands when
structural support is absent (Chu et al., 2015). Intriguingly,
without external stimulation, a clear spatial pattern of phase
relations emerged with regions belonging to the default mode
network. In another study, the whitematter architecture precisely
determined the dynamic character of EEG rhythm. A positive
relation was identified between EEG alpha rhythm and white
matter architecture within the posterior and superior corona
radiata (Valdes-Hernández et al., 2010).

Disturbing Connectivity with TMS
TMS is a technique that allows for the non-invasive brain
stimulation. It alters cortical excitability, effective connectivity,
and oscillatory tuning of a given cortical area, and hence provides
both spatial and connectivity priors for ESI. TMS delivers a
brief high-intensity magnetic pulse to the head through a coil.
Electrical currents are induced in a focal area underneath the
coil, and they interact with ongoing activity in the neural
tissue. These brief currents, producing excitation or inhibition of

the stimulated cortical area, can transiently influence potential
distribution (Walsh and Cowey, 2000). Spatial priors from TMS
in ESI may give priority to superficial areas because the strength
from the magnetic field falls off rapidly with distance from the
TMS coil. While for the activating areas beneath the coil, cortico-
cortical and cortico-subcortical connections can also be tested
in the concurrent TMS-EEG. In fact, a neuroimaging study has
revealed that TMS also results in activation of remote brain
regions connected to the site of stimulation with long-range
connections (Rogasch and Fitzgerald, 2013).

Granger Causality Analysis
More recently, effective connectivity has been introduced in
the EEG community to capture causal relationships within
brain circuit. Multivariate methods such as structural equation
modeling, partial directed coherence, and directed transfer
function are widely employed, although most of these methods
are based on the Granger theory of causality (Astolfi et al., 2007).

An acceptable connectivity prior is the causal connection
derived from fMRI. Though with relatively low temporal
resolution, Granger causality analysis is widely utilized in
fMRI for certain brain regions (Roebroeck et al., 2005). If the
overlapped activation areas from EEG and fMRI were related to
the same neural activity, it is rational to compare the causality
inferred from both modalities. In a simultaneous EEG-fMRI
study, we compared the causal connectivity derived from EEG
and fMRI (Lei et al., 2011a). Interestingly, the links between
the same two areas were distinct different for EEG and fMRI.
Our data provided a complex relationship between modalities,
which should be considered cautiously when applying fMRI
connectivity priors in ESI (Lei et al., 2011a).

For resting-state EEG, the connectivity of slow fluctuations of
EEG has its natural correspondence to BOLD signals because of
the same time scale. In this situation, the connectivity identified
by fMRI provides a lag version of the EEG interaction because
of the convolving influence of hemodynamic response. Though
inter modality connectivity may be useful to compare the results
between EEG and fMRI, an interesting analysis may infer
the intra modality connectivity from a concurrent EEG/fMRI
recording. Based on EEG inverse solution and concurrent BOLD
signals, previous study revealed that there was no influence of the
fMRI on the EEG but the EEG sources had great influences on
the fMRI (Valdes-Sosa et al., 2011). For the slow phenomena of
the α-band EEG activity, a consistent causal model of EEG was
induced to fMRI modulation.

Though it is possible to consider that the connectivity
structure obtained from fMRI can be included as a prior to
estimate EEG source connection, it is hard to evaluate it.
Because the independence of EEG is attenuated as its result
may bias toward the connection of fMRI. In addition, the
BOLD correlations are found in very low frequency ranges
of <0.1Hz. This is much too slow to be relevant for ongoing
cognitive activities that change much more rapidly and lead
to different spatial patterns of coordinated networks within
fractions of seconds. Many studies used a two-step method:
source imaging and then compare functional connectivity
derived from fMRI and EEG in parallel. Complementary
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neuroelectric and hemodynamic information are referred here to
help explain the complex relationships between different brain
regions.

Dynamic Causal Modeling
Dynamic causal modeling (DCM) is an analytic tool developed to
study directionality and causality relationships between M/EEG
or fMRI sources (Friston et al., 2003; David et al., 2006).
Initially developed to model the event-related potentials of
equivalent current dipole, DCM has recently been applied to
spatial distributed source (Daunizeau et al., 2009). It provides a
cascade of forward models from neuronal features at the micro-
scale to the effective connectivity structure at the macro-scale.
DCM of EEG involves two levels of description. At the meso-
scale of local neuronal population, neural mass models describe
the dynamics of local excitatory and inhibitory subpopulations.
At the macro-scale of the effective connectivity structure of
brain regions, the forward, backward, and the lateral connection
constitute interactions among source units. The EEG signal is
estimated by computing the instantaneous electrical potential
generated by the pyramidal cells, which has been spread through
the head volume.

DCM employs large-scale computational modeling and
requires the explicit definition of the neuronal substrates that
elicit EEG measurements. On one hand, parameters at the
meso-scale, such as the synaptic time constant of excitatory
and inhibitory neurons, are motivated by experimental findings
typically obtained from animal studies (Friston et al., 2003). In
ESI, they have to be constantly adapted to novel experimental
insights as the priors. On the other hand, parameters at the
macro-scale such as lateral connection may be derived from
structure priors of DTI and MRI. Because of its comprehensive
model in meso and macro-scale, DCM bridges the gap
between our understanding of brain activity at a cellular level
and on a whole-brain scale, and it may provide a deeper
understanding of the neural mechanisms underlying the mental
processes of interest (Deco et al., 2008; Valdes-Sosa et al.,
2009a).

The aforementioned DCM of EEG directly utilized priors
from animal studies and structure neuroimaging. Additionally,
DCM can be applied to fMRI signals, and then the revealed
connectivity parameters may be utilized as priors in ESI. An
interesting question may be that which connectivity priors
derived from fMRI are more accurate, as both DCM and Granger
can reveal the connectivity for fMRI signal. Considering the
theoretical background, Granger causality, and DCM was based
on the original fMRI time series and the hidden state variables,
respectively. A previous study compared the results of Granger
causality and DCM with the functional coupling estimated from
intracerebral EEG (David et al., 2008). The neural driver of
spike-and-wave discharges was estimated accurately in DCM.
Functional connectivity analysis applied directly on fMRI signals
failed because hemodynamics varied between regions, rendering
temporal precedence irrelevant. Because DCM determined the
connectivity from hidden state variables, it may eliminate
the hemodynamic effects, and further provide more accurate
connection priors to ESI.

Future Directions

EEG source imaging provides a detailed picture of neural
activity in the cortex space, which is helpful to understand the
dynamic relationships between brain regions. However, because
EEG information alone provides limited spatial resolution,
advancing ESI requires the integration of inversion model
with other modalities. Below we discussed the current trends
of the methodological development in this fast developing
field.

Physiological Data and ESI
The wide application of diverse sensors makes the physiological
data, such as skin conductance, heart rate, and peripheral signal
accessible and available for neuroimaging. The current dipole
moment density q, defined as the moment of an equivalent
current dipole per surface area of active cortex, is an independent
parameter of size of active tissue. Recent study revealed that
the value of q has a maximum value in physiological conditions
across brain structures and species (i.e., 1–2 nAm/mm2), and
this maximum value may serve as an effective physiological
constraint for MEG/EEG inverse solutions (Murakami and
Okada, 2015). Other physiological measurements are useful in
ESI, because they are informed in interpretation of the results.
For example, the arousal state of the subject may be used to
judge the physiological significance of ESI. Thus, the purpose of
multimodal imaging would not be to merge data but to allow
informed judgment on the context of the data. The auxiliary data
can yield biomarkers to assess the state of the brain tissue, which
might account for intra- and inter-subject variability usually not
accounted for.

Relationships between Brain Rhythms
EEG directly measures synchronized neuronal activity across
a wide range of frequencies. The brain rhythms in specific
frequency bands have been related to distinct functions. In
terms of perception, for instance, γ-band (30–100Hz) has
been linked to perceptual grouping and maintenance in visual
memory (Foster and Parvizi, 2012). In contrast, the slower θ (4–
8Hz) and α-band (8–14Hz) have been related to interregional,
long-distance interaction for control of lower-level by higher-
order areas or for unification of cognitive operations through
phase-coupling with other frequency bands, besides more local
processes (Foster and Parvizi, 2012). Intriguingly, oscillatory
activities of different frequency bands have been reported to
interact with each other in several contexts, suggesting the
possibility that different frequency oscillations might carry
different dimensions of the integration process (Florin and
Baillet, 2015). One important conclusion of a cross-frequency
coupling analysis is that the beta rhythm is robust for long-
distance synchrony, whereas gamma rhythms tend to be more
stable for local patches of synchrony (Foster and Parvizi, 2012).
Cross-frequency coupling may be a pervasive mechanism used
by the brain to perform the network-level dynamic computations
that underlies brain integration. The future extension of ESI
needs to consider the cross-talk between frequencies and develop
new reconstruction models.
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Combining ESI and Network Construction
Current method constructs EEG cortex network in two steps, i.e.,
the source imaging is independent from the connectivity analysis.
A unified framework is required to estimate source distribution
and coupling parameters simultaneously. DCM provides an
extendable framework to incorporate source imaging methods.
In DCM of evoked responses, lead field is parameterized with
finite precision. It enables the data to inform the network’s
spatial configuration and its expression at the sensors (Kiebel
et al., 2006). Alternatively, discovering connectivity may also be
expressed as the state-space models with biophysically informed
observation and state equations. These models have to be
endowed with priors on unknown parameters and afford checks
for model identifiability (Valdes-Sosa et al., 2011). As ESI and
connectivity analysis are corresponding to observation and state
equation, respectively, a unified framework can be derived from
this condition.

From ESI to Multimodal Fusion
The spatial constraint in ESI does not consider other modalities
equivalently or analyze them jointly. It is a typical asymmetric
multimodal integration (Lei et al., 2012b). In contrast, a
symmetric integration constructed a common model to explain
the EEG and other modalities (Daunizeau et al., 2007; Valdes-
Sosa et al., 2009a; Lei et al., 2010). The symmetric integration
is widely applied in EEG and MEG fusion. We can further
categorize the symmetrical integration into themodel-driven and
the data-driven integration.

Based on the assumption that EEG and fMRI signals are
generated by the same cortical regions with a specific neural
population, the model-driven symmetric integration develops
biophysical generative models to inverse both EEG and BOLD
signals. Datasets of simultaneously acquired signals are entered
into a comprehensive model of brain activity, neurovascular
coupling, and finally relating BOLD signals and scalp EEG
signals to underlying neuronal activity (Daunizeau et al., 2007).
The inverse solutions of these models are the neuronal activity
and connectivity of the underlying neural population. The
symmetrical integration based on a cascade of generation models
provides a deeper understanding of the neural mechanisms
underlying mental processes of interest (Daunizeau et al., 2007;
Valdes-Sosa et al., 2009a).

The model-driven symmetrical integrations employ highly
detailed computational modeling and require the explicit
definition of the common neuronal substrates that elicit
both EEG and fMRI measurements. Recently, we integrated
both “temporal prediction” and “spatial constrain” into a
single framework, and then obtained a data-driven symmetric
integration (Lei et al., 2012b). Spatial temporal EEG/fMRI fusion

(STEFF) employs spatial constraint and temporal prediction
fusions in parallel. The fMRI spatial patterns are employed as the
covariance priors of the EEG source distribution, mean while, the
trial-by-trial dynamics extracted from EEG are utilized to form
the design matrix of the fMRI time course (Lei et al., 2010).

Any attempt at incorporating prior information from other
modalities into ESI inevitably encounters the problem that EEG
and the measurements of other modalities may be generated by

different physiological processes. Because of the mismatch with
each other, there is likely to be a disparity between the activation
areas revealed by EEG and other modalities. It is necessary
for a fault-tolerant ESI model to incorporate this candidate
information. For investigators, conventional approaches may fail
because of their tendency to the converging evidence of each
modality. In fact, some neural processes are independent between
modalities; that is, brain activity may be visible for one modality
while blind for the other. Analysis of these model-specific
components would be equally important for understanding of
various cognitive processes (Lei et al., 2012b).

Conclusions

Because of its outstanding property in temporal resolution, as
well as because it is free of radiation and easy to set up, EEG
is used extensively in both neuroscience research and clinical
applications. Both the functional and the effective connectivity
can be reconstructed in the source space. By introducing
reasonable priors from other modalities, EEG source imaging
reveals the most probable sources and their related networks at
every moment in time. Here, we reviewed the available priors
from MRI, fMRI, DTI, PET, TMS, etc. We focused our review on
task-evoked activation map derived from fMRI, PET, especially
from EEG-correlated fMRI. Then we introduced the priors for
connectivity analysis, which included resting-state fMRI, DTI,
TMS, the simultaneous EEG-fMRI and EEG-TMS. More than
providing definitive answers we aimed to identify the important
open issues in the quest of incorporating priors from other
modalities in EEG source localization. We suggest that combined
EEG source imaging with other complementary modalities,
simultaneously detailed the temporal and spatial dimensions of
brain activity, making it a promising approach toward the study
of neural networks in cognitive and clinical neurosciences.
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