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While it is widely recognized that thinking is somehow costly, involving cognitive effort

and producing mental fatigue, these costs have alternatively been assumed to exist,

treated as the brain’s assessment of lost opportunities, or suggested to be metabolic

but with implausible biological bases. We present a model of cognitive cost based on

the novel idea that the brain senses and plans for longer-term allocation of metabolic

resources by purposively conserving brain activity. We identify several distinct ways the

brain might control its metabolic output, and show how a control-theoretic model that

models decision-making with an energy budget can explain cognitive effort avoidance

in terms of an optimal allocation of limited energetic resources. The model accounts for

both subject responsiveness to reward and the detrimental effects of hypoglycemia on

cognitive function. A critical component of the model is using astrocytic glycogen as a

plausible basis for limited energetic reserves. Glycogen acts as an energy buffer that can

temporarily support high neural activity beyond the rate supported by blood glucose

supply. The published dynamics of glycogen depletion and repletion are consonant

with a broad array of phenomena associated with cognitive cost. Our model thus

subsumes both the “cost/benefit” and “limited resource” models of cognitive cost while

retaining valuable contributions of each. We discuss how the rational control of metabolic

resources could underpin the control of attention, working memory, cognitive look ahead,

and model-free vs. model-based policy learning.

Keywords: decision making, optimal control, glycogen, energy, cognitive control, mental effort

1. Introduction

Cognitive processes that require vigilance, model-based lookahead, or extensive utilization of
attention or working memory are said to incur a cost (Kool et al., 2010), described as aversive
(McGuire and Botvinick, 2010), or characterized as computationally expensive (Redish, 2013).
General avoidance of such processes makes us “lazy organisms” (McGuire, 1969) and “cognitive
misers” (Taylor, 1981), who in many circumstances would rather use “fast and frugal” heuristics
(Gigerenzer and Goldstein, 1996) or habits (Redish, 2013) than “intrinsically costly” deliberative
thought (Kool and Botvinick, 2014). Echoing Solomon’s “law of least effort” (Solomon, 1948), Balle
suggested that humans follow a “law of least mental effort” (Balle, 2002), always seeking the least
cognitively expensive way of achieving a goal.

Such claims raise the question of why certain types of cognition are costly. What, exactly, is
being spent? Botvinick and colleagues have suggested that cognitive leisure has inherent value, and
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that we forego this value by engaging in cognitive laborious
processes (Kool and Botvinick, 2014). A recent paper by Kurzban
et al. (2013) proposes that focusing limited cognitive resources
on a single task to the exclusion of other possible tasks carries
an opportunity cost. In this model, a subjective feeling of fatigue
is a signal to switch to more worthwhile tasks. Kool et al.
(2010) propose that the avoidance of cognitive demand is a
fundamental principle of cognition, though the authors fail to
specify why cognition should be demanding. These approaches
are sometimes called economic or “cost/benefit” models of
cognitive cost, as they model subject behavior as attempting
to optimally trade costs (leisure, opportunity cost, cognitive
demand) for benefits (reward, leisure).

“Cost/benefit” models provide an explanation for the finding
that increasing reward in specific types of tasks can induce
subjects to exert more cognitive effort (Camerer and Hogarth,
1999; Jimura et al., 2010) and improve executive function (Krebs
et al., 2010). An pernicious drawback of “cost/benefit” models is
that they decouple the act of cognition from its fundamentally
limited biological substrate, the brain. The models mentioned
here treat cognition as bounded or restricted, which is equivalent
to assuming that cognition has a limited bandwidth but unlimited
resources. As such, they are unable to convincingly account
for the dynamics of cognitive exertion and mental fatigue.
“Cost/benefit” models are also fundamentally divorced from
the well-established connection between blood sugar levels and
cognitive function, a relationship familiar to every doctor and
diabetic. As the blood sugar level of an individual falls, precisely
those processes that are considered costly are first affected (see
Feldman and Barshi, 2007).

Another influential approach links cognitive costs to the
utilization of a limited resource, purportedly blood glucose
(Gailliot et al., 2007). In this model, use of costly processes
diminishes available glucose, leaving less fuel for future processes.
Proponents of this assumption typically focus on self-control,
one instantiation of top-down executive control over behavior.
In the frequently used “dual-task” paradigm, subjects are asked
to perform an initial “depleting” task involving extensive use of
self-control. They are then asked to perform a second demanding
task. A commonly reported finding is that subjects perform
worse on the second task only if the first task was sufficiently
demanding, and the performance decrement can be eliminated
by offering subjects a glucose drink (see e.g., Gailliot et al., 2007).
Unlike “cost/benefit” models, “limited resource” models offer no
mechanism by which motivational factors can influence subject
behavior. Additionally, reported blood sugar decreases arising
from cognitively demanding tasks (as reported by Fairclough and
Houston, 2004; Gailliot et al., 2007) are much smaller than the
changes required to effect task performance (see below). Finally,
the strength of “limited resource” findings are coming under
increasing scrutiny from post-hoc analyses (Hagger et al., 2010;
Carter and McCullough, 2014).

In the present article we introduce a new model that
treats cognitive resources as depending squarely on a metabolic
substrate with explicitly specified dynamics, while still allowing
for the possibility of motivational factors to alter agent
performance. We suggest that an individual’s decision of whether

or not to incur cognitive costs in a given situation can be fruitfully
understood as one of decision making strategy: an agent will
only commit limited resources in cases where the payoff is worth
it. Unlike “cost/benefit” models, however, we treat resources as
dynamically utilized and replenished. Much like a marathon
runner, an agent attempting to optimize long-term performance
may choose to purposefully limit exertion in order to maintain
resource reserves for future use. What may appear to be aversion
to cognitive effort may in fact be strategic resource allocation.

A view of the brain as engaging in cognitive strategy selection
that is dynamic, constrained, and maximizing an objective
function is naturally modeled using optimal control theory.
Using an optimal control theory framework allows and requires
the modeler to be explicit about the dynamics of the system
being modeled, the objective function to be optimized, and
the planning horizon of the agent. From this perspective,
assumptions of limited resources and cost/benefit tradeoffs are
not diametrically opposed, as some have suggested (Kurzban
et al., 2013), but are different components in a more general
framework. So-called “opportunity costs” are simply a special
case in which an agent has more than one task available to choose
from. The “limited resource” assumption is a special case in which
system dynamics are specified but in which no explicit claim is
made about what is being optimized.

In what follows, we provide an optimal control model
of energy use in the brain. The model provides a novel
explanation of cognitive costs as arising from intelligent resource
allocation over time. We briefly review evidence supporting
our specification of system dynamics, objective function,
and controls. We then discuss results from a computational
implementation of our model, and compare the effects of various
modeling assumptions. Finally, we discuss the implications of our
model and suggest directions for future work.

2. Dynamic Resource Control

2.1. Overview
Optimal control theory is a mathematical approach to optimizing
dynamic action selection. Given a system with intrinsic
dynamics, a controller repeatedly receives signals from the
system, estimates its state, and executes actions in order to
optimize an objective function over time. We develop the
hypothesis that the brain has an intelligent control system
for managing its use of metabolic resources by trading off
performance for reductions in neural activity. We first review the
evidence for a control system view of energy management, and
then development a mathematical model of the same.

2.1.1. Cognitive fatigue and cost as energy depletion
Human cognition is a biological process operating within
biological constraints. As such, it is not surprising that
hypoglycemia is known to cause performance decrements in
cognitive tasks. Moderate hypoglycemia, such as that arising
from fasting, can impair cognitive performance short-term verbal
(Martin and Benton, 1999) and spatial (Benton and Parker, 1998)
memory, and the speed of mental computation (Benton and
Sargent, 1992; Donohoe and Benton, 1999; Kennedy and Scholey,
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2000). More severe hypoglycemia has been shown to negatively
affect performance in the Stroop task (Evans et al., 2000), multi-
choice reaction time tasks (Gold et al., 1995; Evans et al., 2000;
Schächinger et al., 2003), the PASATmental arithmetic task (Cox
et al., 1993; Gold et al., 1995), digit span tasks (Holmes et al.,
1983; Pramming et al., 1986), the Tail Making B task (Hoffman
et al., 1989; Gold et al., 1995; McCrimmon et al., 1997), tracking
performance (Hoffman et al., 1989; Schächinger et al., 2003),
attentional tasks (Lobmann et al., 2000; McAulay et al., 2001),
driving (Cox et al., 2000), auditory processing (McCrimmon
et al., 1997), though some studies report contradictory findings
(Holmes et al., 1986; Manning et al., 1990; Benton and Owens,
1993; McAulay et al., 2001) and high individual variation in
effects (Hoffman et al., 1989; Evans et al., 2000). In general,
performance in tests requiring only simple motor functions
(like the Finger Oscillation Test and Finger Tapping Task) are
not affected (Manning et al., 1990; Cox et al., 1993). Providing
subjects a glucose drink after fasting can improve performance
(Manning et al., 1990; Benton and Owens, 1993; Craft et al., 1994;
Benton and Parker, 1998; Martin and Benton, 1999). Similar
improvement was often not found when subjects were given a
sweetened placebo in place of a glucose drink to raise blood
sugar levels (Craft et al., 1994; Donohoe and Benton, 1999;
Scholey et al., 2001). Some studies report decreased reaction
time while others reported decreased accuracy. We suspect that
these differences can be explained by specifics of task design and
reward structure, though there is some evidence for an effect
of individual differences during mental fatigue (Hoffman et al.,
1989; Evans et al., 2000). See (Feldman and Barshi, 2007) for
a thorough review on the effects of glucose levels on cognitive
function.

Subjective mental fatigue and time-on-task can produce
similar performance decrements to hypoglycemia (Lorist et al.,
2000; Healy et al., 2004). As mentioned above, proponents of
the “limited resource” account of cognitive costs observe that
the dynamics of cognitive fatigue and performance degradation
is consistent with the depletion of a limited resource. That
resource is largely assumed to be blood glucose. However, direct
measurement of blood sugar levels (Fairclough and Houston,
2004; Gailliot et al., 2007) and metabolic rate (Huang et al., 2012)
during cognitively demanding tasks show effects that are too
small to account for the detrimental effects on performance that
occur during a hypoglycemic state. We suggest that this apparent
contradiction can be explained by accounting for the energy
storage and buffer mechanism provided by astrocytic glycogen
(c.f. Gailliot, 2008), in which astrocytic glycogen is the limited,
depletable resource. If this is the case, glycogen-dependent neural
activity should suffer when glycogen is depleted, while extended
cognitive load would have little or no effect on overall blood
glucose levels.

2.1.2. Brain Glycogen as Depletable Energy Resource
Glycogen is a storage form of glucose. In the human body
glycogen is primarily found in liver and muscle cells, but a
small amount also exists in astrocytes. It has been estimated that
glycogen metabolism in astrocytes accounts for only 1–6% of
energy use in the brain under normal conditions (Benington,

1995). Despite the small amount of glycogen utilization, the
amount of glucose stored in brain glycogen is thought to
be greater than the amount of non-glycogenic glucose in
the brain (Gruetter, 2002, cited in Gailliot, 2008). Moreover,
studies of both in vivo and in vitro glycogen metabolism
show that its usage is critically linked to periods of neural
stimulation.

Figure 1A shows a simplified schematic of the relationship
between capillaries, astrocytes, and neurons. Glucose from
capillaries is transported to astrocytes and neurons via facilitative
glucose transporter proteins (GLUT1 for astrocytes and GLUT3
for neurons). Glucose is phosphorylated to glucose-6-phosphate
upon entering an astrocyte. From there, it can be either stored
as glycogen or converted to lactate. Lactate is transported
from astrocytes to neurons using monocarboxylate transporters
(Simpson et al., 2007).

In a series of in vitro experiments, Brown and colleagues
investigated the dynamic relationship between astrocytic
glycogen and action potentials in the mouse optic nerve in
the presence and absence of glucose (Brown et al., 2003).
See Figures 4A,C for plots of the relevant dynamics. Axonal
response to stimulation was measured using compound action
potential area, or CAP area. When glucose was removed from
the environment and neural tissue was stimulated, CAP area
remained robust for up to 20 min, during which time glycogen
stores in astrocytes decreased in a remarkably linear fashion.
Glycogen content of astrocytes was strongly predictive of
the duration of sustained activity following aglycemia (see
Figure 4C). In addition, inhibiting monocarboxylate/lactate
transfer caused CAP area to decrease sharply rather than remain
stable, while introducing lactate sustained CAP area when
glycogen was absent. These observations strongly indicate that
astrocytic glycogen acts as a supplementary fuel reservoir for
neuronal activity. Moreover, in the presence of normal glucose
levels, axonal stimulation still led to a (less rapid) drop in
astrocytic glycogen levels, indicating that glycogen is utilized
even in the presence of a normal concentration of glucose.
Finally, CAP area was maintained when lactate transport was
blocked and a high concentration of glucose was present, but
not when the concentration of glucose was low, indicating that
neurons also use glucose directly (see Brown et al., 2003 Figure
3C, also Simpson et al., 2007).

The link between neuronal stimulation and glycogen
utilization is supported at a larger scale by in research involving
animal models. Choi et al. (2003) subjected rats to insulin-
induced hypoglycemia. As brain glucose approached zero, brain
glycogen content (as measured using 13-C NMR) declined
gradually and sustained brain activity for 2 h. Glycogen
utilization has also been shown to increase by tactile stimulation
of rats (Swanson, 1992; Swanson et al., 1992; Dienel and Cruz,
2006).

Glycogen stores have been shown to increase during sleep
(Swanson, 1992), anesthesia and sustained levels of high blood
sugar (Nelson et al., 1968), and to decrease during sleep
depravation (Karadzic and Mrsulja, 1969) and one-trial learning
(Hertz et al., 1996). Glycogen accumulates faster in regions
of the brain that have highest synaptic density (Phelps, 1972)
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and has a high concentration in the cerebellum, hippocampus,
thalamus, and striatum (Sagar et al., 1987). Finally, glycogen
does not appear to be a passive reservoir, utilized only when
energy need exceeds resources. Glycogen can be synthesized
and degraded simultaneously (Brown and Ransom, 2007), and
glycogen turnover rate increases in the presence of nearby
neural activity (Pentreath and Kai-Kai, 1982; Swanson et al.,
1992).

Taken together, current evidence strongly suggests that
astrocytic glycogen acts as a energy shunt or reservoir that is
depleted during periods of high neural activity and repleted
during rest, a shunt into which energy is consistently being
deposited and released. This stored energy can support neural
activity that exceeds the instantaneous resources of available
glucose, and is replenished during rest.

2.2. Optimal Control
An optimal control problem is fundamentally defined by system
dynamics, controller sensors and an objective function. In the
model we present, energy resources in the brain have intrinsic
dynamics and represent the system to be controlled. The system
state consists of the resources available in different components
of the brain, namely the energy residing in astrocytes and
neurons. The system dynamics describe energy flow between
capillaries, astrocytes, and neurons within an area. Control of
the system takes the form of increasing and decreasing energy
usage rate. In neural terms, we interpret this control as the
change in concentration of some excitatory neuromodulator.
An increase in neuromodulator concentration increases neural
excitability and the recruitment of more active neurons,
with which task-related energy utilization increases linearly.
Actual neural recruitment and associated energy utilization
depends on available resources, so the energy flow out of
neurons is a function of both the excitatory concentration
and available energy. The population of recruited neurons
maps to performance using a task-specific performance curve
(see Figure 3).

In an optimal control problem, a controller attempts to
optimize an objective function (also called an objective function)
over time. We assume that the objective function includes
rewards given for task performance. Whether the objective
function should include cognitive costs (indeed, the very phrase
“cognitive costs” belies the implication) is an open question.
The received wisdom is that cognitive costs are something to be
avoided for their own sake—that is, they belong in the objective
function. We suggest the possibility that apparently “costly”
cognitive processes are instead avoided because they strongly
affect energy resource availability, and hence performance at
longer time scales. If an agent has the capacity to plan, they
may judiciously use resources in order to maximize reward over
time. Indeed, the model we propose herein suggests a method for
discerning whether cognitive costs can be said to exist per se (see
Section 3.5).

Our proposed mapping between the optimal control
framework and brain energy dynamics is given in Table 1. The
goal of the controller is to execute a sequence of control actions
that minimizes the objective function over a given time horizon.
The objective function J, shown in Equation (1) for a time

TABLE 1 | Proposed relationship between a control theoretic framework

and the optimization of energy use in the brain over time.

Control theory Variable Interpretation

Time index k Index of time in a scale in which

distinct control actions are possible

State xk = [HN,HA] Quantity of energy available to

neurons and astrocytes

Control u Neuromodulator concentration driving

neural recruitment in an area

Dynamics xk+1 = f (xk , uk ) Energy dynamics in the brain

Objective function g(xk , uk ) Combination of cognitive costs (if any)

and rewards for a single time step

Objective function J Overall objective function to be

optimized over a given time horizon

FIGURE 1 | Energy flow during increased demand. (A) Simplified

account of capillary/glycogen/astrocyte relationship, modified from

Brown (2004). (B) A schematic of our model, in which energy is

treated as a single fluid flowing between compartments.

Lactate/GLUT labels are only for reference, as our model treats

energy flow as the flow of a single fluid. The model should be

understood to represent dynamics in a small region of the brain

that has relatively uniform energy dynamics.
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horizon n and initial state x0, is additive in that it is the sum of
costs at each time step k.

J(x0) = E

{

n
∑

k = 0

g(xk, uk)

}

(1)

Energy dynamics operate at varying temporal and spatial scales.
The model we introduce in the present work is intended to
represent neural dynamics on the time scale of roughly 20 min
to several hours, as that is the time scale of glycogen depletion
and subjective mental fatigue. The spatial scale of our model is a
local brain region with homogenous energy resources, subserving
some particular cognitive function. Elsewhere in this paper, we
consider cognitive functions like working memory, executive
control, and attention to be candidate functions as they are
sensitive to both energetic resources and reward, but in the
present model we treat only a simplified cognitive function whose
utilization maps to performance in a one-dimensional manner.
This function is intended to be the simplest case of a energy-
and reward-sensitive cognitive function, and more investigation
is needed to understand how specific functions like attention
or working memory should be modeled. We envision energy
dynamics being regulated across several regions (and functions)
at longer time scales, however, here our goal is to develop an
area specific control model whose extension to the full brain via
hierarchy and composition is the subject of future work.

We model the task-related dynamics of energy use using a
compartmental fluid flow model and show that our model is

dx

dt
=

[

dHA/dt
dHN/dt

]

=
[

Between-compartment flow+ Inflow from capillaries
Between-compartment flow+ Inflow from capillaries−Outflow

]

=
[ aconnector

aA

√
|HN −HA| · sgn (HN −HA) + αEB

aconnector
aN

√
|HA −HN | · sgn (HA −HN) + βEB − Euse(u,HN)

] (3)

consistent with available data. We then show how neural activity
can be modulated to control metabolic usage and maximize
long-term task performance.

2.2.1. Dynamics Model
We use glycogen-supported energy transfer as a dynamics model
in our optimal control approach to modeling cognitive costs. As
we are at present introducing amodel that we hope is qualitatively
useful, we will use a greatly simplified model of energy flow
from capillaries to astrocytes to neurons. Astrocytic glycogen and
glucose is treated as one energy pool, and neuronal lactate and
glucose is treated as another.

The model we propose is illustrated in Figure 1B. In this
model, energy (in the form of glucose) flows from capillaries
to both astrocytes and neurons. We model energy flow as
a fluid flowing from capillaries into astrocyte and neuron
“buckets” connected by a pipe. Though molecule transfer occurs
via transporter-facilitated diffusion, we make a simplifying
assumption and model the transfer of energy as the flow of a
liquid though containers, constrained only by the “radius” of
connecting pipe. Liquid flow between the two buckets is governed
by the Torricelli Model, in which the change in height of the

fluid in a bucket is proportional to the square root of the fluid
height. Each bucket is treated as “leaky,” leaking into the other
bucket.

The fluid flows from a capillary reservoir to both neurons and
astrocytes at a certain rate. Astrocytes are modeled as having a
greater energy/fluid capacity than neurons. Energy can flow freely
from astrocytes to neurons and back via a pipe at the base of
both containers (this models lactate transfer between cells). Fluid
levels naturally move toward equilibrium in connected vessels.
Energy/fluid can flow out of neurons via a variable rate active
pump. The requested rate of pumping, or energy utilization, is
the single control variable of the system.

The modeled relationship between requested energy
utilization and actual utilization is not linear. If the level of
energy in a neuron is zero, clearly no energy is present to
be utilized. Inspired by dynamics illustrated in Brown et al.
(2003), we model the relationship between requested energy
utilization and actual energy flow as a bounded exponential.
The actual energy utilization rate depends on both the energy
level in the neuron and the requested rate. This relationship is
illustrated in Figure 2. The complete state dynamics are given by
Equation (2):

xk+ 1 = f (xk, uk)

xk+1 ≈ xk +
dx

dt
(xk, uk)1t

(2)

where dx/dt is the differential change in the state given by
Equation (3):

The energy outflow Euse is a function of energy demands due
to the neural excitability control level u and the current neural
energy availability HN .

Euse(u,HN) = γu(1− e−δHN ) (4)

Each of the model parameters has a simple interpretation:

• HA,HN : Amount of energy in astrocyte and neuronal
compartments, respectively modeled as fluid heights.

• u: energy outflow “demand” due to neural activity. This is akin
to neuromodulator-induced neural recruitment in the brain,
modulating energy use with task demands.

• Euse(u,HN): energy outflow rate as a function of demand
and availability. This relationship is modeled as a bounded
exponential to account for both a zero rate of flow for an empty
compartment and an upper bounded of energy utilization.

• aA, aN : energy capacity of astrocytes and neurons, respectively.
• aconnector : parameter controlling the energy flow rate between

the astrocyte and neuron compartments.
• α, β : parameters controlling the energy flow rate from

the capillary to the astrocyte and neuronal compartments,
respectively.
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FIGURE 2 | Visual display of the relationship between

control/neuromodulation (u), energy availability (HN), energy

use (Euse), neural recruitment [NeuralRecruit(x,u)], and

performance [Perf(x,u)]. Curves were generated using the

equations from Equation (5) and parameters from Table 2. (A) The

relationship between control/neuromodulation and energy utilization is

modeled as linear, with the slope controlled by the amount of

energy available to neurons. (B) Performance as a function of

control/neuromodulation on a specific task at different levels of

energy availability. This figure illustrates that the same performance

can be achieved with different levels of available energy through

the application of varying levels of control/neuromodulation. (C)

Energy utilization has an upper bound and is affected by both

control/neuromodulation and energy availability.

TABLE 2 | Constants used in the computational implementation of the

model.

Name Value

Initial HN,HA 100

aconnector 0.5

aA 10

aN 1

α, β 0.00042

δ 0.05

γ 0.02

γe 6

γf 5

EB 100

For an explanation of parameter values, see Section 2.2.1.

• γ : scaling parameter controlling the utilization of energy as a
function of neuron energy level.

• δ: parameter controlling the sensitivity of energy use to low
energy availability.

• EB: energy content of the blood. Used to modulate the overall
flow of energy into the neuron and astrocyte buckets and
simulate hyper- and hypo-glycemia.

2.2.2. Cost Model
The goal of the controller is to optimize the objective function
over a given time horizon. Each time step k is an instance at
which controls can be executed. The time scale is intrinsically
set by the system dynamics. In our case, it is the time scale at
which an agent can change its level of cognitive effort. This is not
necessarily the same as the time scale of a given trial-based task; k
does not correspond to the trial number. The time scale at which

individuals can ramp up or down cognitive effort is a factor that
should be measured empirically, and should not be assumed to
be dictated by a given task.

The relationship between attempted cognitive control u,
resource availability [HN ,HA] and performance is illustrated in
Figure 2B. Cognitive control is mapped to task performance in
a two step process. First, requested control is converted into
actual energy utilization in a fashion that depends on the amount
of energy available to neurons. Energy utilization is assumed
to reflect neural recruitment for a particular task, which could
affect working memory load, attention, vigilance, or any other
cognitive resources that are variable and contribute to task
performance. Then, energy utilization is mapped to performance
through a monotonically increasing, task-specific performance
curve. Example performance curves are shown in Figure 3.
Each colored line represents a possible relationship between
resource utilization and performance for a given task, or different
strategies on a single task.

Our model assumes that resources can be utilized at a rate
dependent on the available energy level. If different tasks or
strategies are available as in Figure 3, an agent might change
tasks or strategies (or “policies,” in the terminology of optimal
decision making) in order to maintain optimal performance. The
availability of a set of performance curves dependent on resource
levels, whether they represent tasks or different strategies for the
same task, provides a natural explanation for task and strategy
switching that does not rely on theoretical constructions like
“opportunity costs.”

Equations (5) represent the control-to-performance
relationship at time step k. The cost g(x, u) for a state-control
pair is calculated to be a linear combination of the control u
and task performance (which is assumed to translate directly to
reward).

Frontiers in Neuroscience | www.frontiersin.org 6 August 2015 | Volume 9 | Article 289

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Christie and Schrater Cognitive cost as resource allocation

FIGURE 3 | Performance curves illustrating the relationship between

resource utilization and performance. Different curves can represent either

different policies/strategies for the same task or different tasks. Note that as

resources are depleted, the maximum possible energy utilization rate drops

(see Figure 2C), creating the possibility of a different strategies or task being

optimal based on energy dynamics alone. This provides a natural explanation

for task or strategy switching as a result of fatigue.

g(x, u) = λu− Perf (x, u)

Perf (x, u) =
1

1+ e−NeuralRecruit(x,u)

NeuralRecruit(x, u) = γeEuse(x, u)+ γf

Euse(x, u) = δu(1− e−γHN )

(5)

where Perf is the performance curve relating neural recruitment
and energy consumption to task performance, NeuralRecruit
represents the population size recruited given the energy use.
Parameter values in γe and γf were chosen to make the
variable part of Perf have the same scale as the glucose usage
Euse. The control component of this sum is represented by
the λu term.

When λ > 0, the control variable u influences the objective
function, in which case cognitive control can be said to be
intrinsically costly. While we expressed costs in terms of control
(which is traditional for optimal control theory), we could have
equivalently used the linear relationship between u and energy
use, to express the costs in terms of energy use, or nonlinearly
in terms of neural recruitment. Thus, λ represents both a gain
on control cost and a unit conversion factor. We explore the
implications of λ-values in Section 3 below.

2.3. Model Discussion
Energy dynamics in the brain can be understood to operate
at several temporal and physical scales. At the smallest scale,
glutamate must be rapidly (≈ 10 ms, see Bergles and Jahr,
1997) sequestered following firing to prevent glutamate toxicity.
This operation is performed much more quickly than increased
regional cerebral blood flow and is thought to be powered
by the rapid utilization of astrocytic glycogen (see Shulman
et al., 2001). At the scale of minutes and hours, high levels
of neural activity deplete glycogen stores (see above). This

is the scale at which our model is focused. Blood glucose
concentration is affected by exercise and food consumption. In
our model, the flow of energy from capillaries to astrocytes
directly affects the replenishment rate of glycogen (modeled as
energy level in the astrocyte bucket). Flow from capillaries to
astrocytes and neurons limits the maximum neuronal firing rate
following glycogen depletion, in which case energy is utilized as
soon as it enters the neuron bucket from the astrocyte bucket
or capillary.

As mentioned above, the proposed model allows for a simple
explanation of activity-induced cognitive deficits reported in
the ego depletion literature. Baumeister and colleagues propose
a resource-depletion framework in which self-control (and
possibly other cognitive functions) deplete a limited resource
(Gailliot et al., 2007). They suggest that this resource may be
blood glucose (Gailliot et al., 2007), citing the common finding
that a meal or glucose drink eliminates cognitive or self-control
deficits that follow a demanding task. Instead, we propose that it
is glycogen stores that are depleted in the presence of sustained
cognitive effort. In the absence of increased blood sugar levels,
performance should suffer following glycogen depletion. On the
other hand, increasing blood sugar levels increases instantaneous
transfer of glucose from capillaries to astrocytes and neurons,
providing energy to support normal levels of firing even in the
case of glycogen depletion.

Glucose in the blood is treated as an infinitely large resource
pool from which resources are extracted at a set rate. In principle,
blood glucose could be modeled as finite pool larger than that
of astrocytes. With the exception of Brown et al. (2003), few
results exist detailing glycogen dynamics on the time scale of our
model, and for this reason model parameters were selected to
match glycogen dynamics results found in that paper (see Section
3 for parameter values). A comparison of our model dynamics
in hypoglycemic conditions with mouse optic nerve data from
Brown et al. (2003) can be seen in Figure 4. The figures highlight
the effect of varying astrocytic glycogen content on the duration
of sustained neural activity.

2.3.1. Costs
Cognitive processes are called costly if they are processes to
which individuals are generally averse. That certain cognitive
processes are aversive is not in doubt—researchers have observed
for decades that certain cognitive functions are aversive (see
e.g., Tversky and Kahneman, 1974), necessitating in turn that
humans exhibit a tendency to rely on habits (Redish, 2013)
or heuristics (Gigerenzer and Goldstein, 1996) to perform
tasks. Many suggestions have been made as to the nature of
the cost driving cognitive aversion: for example that cognitive
effort requires foregone leisure (Kool and Botvinick, 2014), that
cognitive costs are a form of opportunity costs (Kurzban et al.,
2013), or that costs are related to the need for extensive cognitive
processing (Kool et al., 2010; McGuire and Botvinick, 2010).

Despite widespread agreement that cognitive effort is aversive,
very little work has been done to quantify this aversion. We
propose that a useful way to quantify aversion is in terms
of foregone reward. The ability of incentives to induce task
engagement is a standard operating assumption in experimental
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FIGURE 4 | Comparison of the energy dynamics of our model with the

dynamics of astrocytic glycogen and compound action potential

(CAP) area in vitro in a mouse optic nerve as reported in Brown et al.

(2003). (A) Recorded CAP area in a mouse optic nerve (squares) and

glycogen content (bars). The nerve was stimulated in a solution with no

glucose. Note that glycogen is not further depleted after reaching ≈ 25% of

its original level. Figure recreated using data from Brown et al. (2003). (B) A

simulation of the same situation as (A) using our model. To simulate

aglycemic conditions, the energy flow from the capillary, EB was set to 0 for

the duration of the simulation. (C) Recorded CAP area in the mouse optic

nerve in vitro as a function of time and the initial glycogen content in nearby

astrocytes. At 20 min, the solution was replaced with a solution containing

no glucose. Figure recreated using data from Brown et al. (2003). (D) A

simulation of the same situation as (C) using our model. The absence of

glucose in solution was modeled by again setting EB = 0 at 20 min. In our

model, astrocytic energy level ranges from 0 to 100, arbitrary units.

psychology and neuroscience. Extrinsic monetary or caloric
reward is only one type of reward and is often compounded
by and competes with other extrinsic (social, sexual) and
intrinsic (curiosity, empowerment, mastery) rewards for impact
on decision outcomes. However, it is easily quantified and has
been shown to impact cognitive effort (see Camerer and Hogarth,
1999 for a review). We therefore restrict our treatment of reward
to extrinsic reward for task performance (e.g., monetary), though
other reward types could in principle be accounted for.

Reward and cognitive effort appear to balance in some way,
resulting in a decision regarding whether or not to deploy
effortful cognitive strategies. To our knowledge, only one group
has attempted to quantify aversion to cognitive effort in terms
of foregone reward. Braver and colleagues rewarded subjects
for completing an N-back task (Westbrook et al., 2013). After
an initial familiarization phase, subjects could make choices
of whether to complete a more difficult task (higher N) for
more money, or a less difficult task (lower N) for less money.
Subjects were explicitly told that reward was contingent on
maintaining effort rather than performance. In this way, the
researchers effectively determined the amount of money subjects
were willing to forego in order to avoid a cognitively demanding

increase in N. They found that the subjective value of each
level of N, or the amount by which increasing N decrease the
preference for an offered reward, decreased linearly with the
magnitude of N. These results are fully consistent with the
additive objective function, although we suspect a more complex
objective function will be needed as experimental results become
rich enough to invalidate a first-order Taylor approximation.
However, the deeper implication is that for difficult tasks, by
suitably increasing the offered reward the subject will eventually
overcome task aversion and attempt the task. For a recent review
of neuroeconomic approaches to understanding cognitive effort,
see (Westbrook and Braver, 2015).

2.3.2. Controls
By treating cognitive effort as a resource control problem we
are assuming the brain has mechanisms that allow control
of cognitive effort and that varying effort affects subsequent
reward. We believe there are limitations on both the ability
to control resource allocation as well as limits on the impact
that effort has on performance. Evidence suggests that cognitive
effort can increase performance in certain tasks but not others.
Camerer and Hogarth (1999) reviewed research investigating
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the relationship between financial incentives and performance
in experiments. Their findings were nuanced. Higher incentives
do not appear to improve performance in a wide range of task
types, including tasks requiring insight (an “ah-hah! moment”).
Incentives can consistently harm performance in a judgment
and decision making tasks in which expert judgment can
routinely be out-performed by a simple rule based on quantifiable
observations. In this type of task, incentives appear to induce
subjects to expend greater deliberative effort, weighting their
own (inaccurate) judgements more highly than the predictions
of formulas. To be clear, in these tasks incentives appeared to
increase effort, but not objective performance. One simple way to
reconcile these results is to assume the existence of both model-
based high-cost deliberative neural computations and low-cost
model-free experience-based paths (Daw et al., 2005), with the
switch to deliberative decision-making resulting in a reduction in
performance in cases where model-free solutions are superior.

In addition, incentives aremost likely to improve performance
in a subclass of judgment and decision making tasks, specifically
tasks that are “effort-responsive.” These tasks critically depend
on the cognitive functions which are the strongest candidates as
controllable resources. In tasks where these functions operate,
extrinsic motivation can “improve recall of remembered items,
reduce the effect of anchoring bias on judgment, improve some
kinds of judgments or predictions, improve the ability to solve
easy problems, and also sharpen incentives to make zero-profit
trades in auctions or do piece-rate clerical work” (Camerer
and Hogarth, 1999). These tasks share a reliance on the use
of executive function and working memory resources. For our
purposes, the important finding is that in a specific but useful
set of task types, monetary incentives can explicitly increase the
utilization of the exact cognitive faculties that are considered
cognitively costly.

There is currently insufficient data to enable us to identify
a specific molecular mechanism for the proposed control.
However, given the aforementioned connections between
metabolic resource levels and offered reward on the one hand,
and subject effort and performance on cognitively demanding
tasks on the other, it is reasonable to posit the existence of some
signal by which neuronal gain is modulated according to both
the availability of metabolic resources and reward signals. One
proposal for such a signal is some subset of neuromodulators
associated with vigor acting on local excitatory neural gain via
glutamate and glycine, though future research is needed to
confirm this hypothesis. Botvinick and Braver (2015) provide a
review of the possible neural mechanisms of cognitive control,
and suggest dopamine as a candidate control signal.

2.3.3. Model
The control variable in our model is a brain region-specific
increase in neural excitability which we assume serves to
recruit more neurons and consume more energetic resources.
This control can also be understood as a requested size of
a neural population dedicated to a particular task, with the
request coming in the form of some excitatory neuromodulator.
This control mechanism is compatible with modulation of
attention (Nieuwenhuis and Yeung, 2005), and probably working

memory, executive-function, including vigilance, and model-
based lookahead size. However, we also acknowledge that there
is an excellent case for an alternative mechanism for cognitive
control by switching between decisionmaking systems or policies
that differ in costs and performance but can solve the same task.
Many recent models of cognitive effort take this approach and
simplify the graduation in cognitive effort into two categories of
decision-making processes such as “System 1” and “System 2”
(Stanovich andWest, 2000), procedural and deliberative (Redish,
2013), or model-free and model-based (Daw et al., 2005) (for
a review of dual-process models of decision making, see Evans,
2008). We believe a complete account of the control of cognitive
effort will incorporate both of these control mechanisms (graded
neural recruitment and strategy switching), a point we return to
in the general discussion.

An important implication of interpreting the cost as
something to be minimized over time is that agents optimizing
Equation (1) are not myopic: an agent may choose an action that
decreases an instantaneous reward in order to maximize reward
in the long run. In the context of cognitive costs, there are two
basic possibilities:

1. An agent avoids demanding cognitive processes because they
are intrinsically costly. In this case the use of such processes
would explicitly represented in the objective function. This is
the approach implied by McGuire and Botvinick (2010) and
elsewhere.

2. An agent generally avoids demanding cognitive processes
because doing so optimizes reward in the long run.

The second option is analogous to the situation a runner finds
herself in when competing in a marathon: sprinting at the
beginning of the run is locally optimal but globally disastrous,
because this strategy quickly exhausts the limited resources
available. Analogously, it is possible that aversion to cognitively
demanding processing is not a cost per se, but a strategic use
of a limited glycogen reservoir. If this is the case, an aversion
to certain cognitive processes may appear to indicate a cost but
instead be a long-run performance-preserving strategy. In this
case, cognitive costs might not belong in the objective function at
all. Our approach encompasses both views, with zero λ parameter
in Equation (5) for the long-run view, and positive λ for the
intrinsic cost view. We explore the predictions made by each of
these assumptions in the Section 3.

2.3.4. Fatigue
In order to effectively utilize control actions, a controller must
maintain an estimate of the current state. We propose that
a key signal carrying the current energy level maps onto
subjective fatigue. One might be tempted to suggest that mental
fatigue and associated performance decrease is a consequence
of resource depletion. Experimental findings contradict this,
indicating instead that sufficiently high motivational incentives
induce cognitive effort in spite of subjective fatigue (see e.g.,
Boksem et al., 2006).

We suggest that fatigue is not a signal of total resource
depletion but of impending depletion if the current rate of use is
maintained. In other words, subjects feel fatigued when glycogen
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stores anticipated to deplete at current usage, and fatigue is a
relatively crude signal of partial depletion.

The link between subjective fatigue and partial glycogen
depletion has experimental support (Matsui et al., 2011). Thus,
fatigue serves as an important signal enabling subjects to
estimate their energy state and plan their cognitive strategy
accordingly. If immediate incentives warrant further use of a
costly strategy, an individual may indeed temporarily continue its
use. The implication by critics is that this should be impossible
if a resources is in fact depleted and therefore unavailable
for further utilization. If fatigue indeed reflects only partial
glycogen depletion, this criticism becomes irrelevant. We would
nevertheless predict that at a long enough time scale, individuals
would become fatigued beyond the point of incentives to improve
performance because the required resources simply would not be
available.While this proposal suggests a global signal for resource
depletion, we believe that cognitive fatigue has gradations across
brain areas which may produce activity/task dependent fatigue.

3. Simulations

We implemented our model with the dynamics, controls, and
costs specified above. The optimal control framework allows
(and forces) us to be explicit about an agent’s lookahead and
the components of the objective function. As mentioned in
Section 2.3.3, it is unclear whether aversion to expensive cognitive
processes is the result of their being intrinsically costly or simply
an effect of long-term strategy. This ambiguity allows us to
consider a space of models as indicated in Figure 5, with axes
representing planning horizon and the intrinsic cost of cognitive
effort. On the extremes of the planning axis, we can treat an agent
as acting either myopically, with a decision based on only current
costs and rewards, or optimally, with a lookahead equal to the
time horizon of the task. On the intrinsic cost axis, we can omit
costs arising from the cognitive control completely (low costs), or
we can include control costs directly in the reward function (high
costs). We assume for simplicity that the agent has error-free
access to the current state and system dynamics, though in future
work we intend to relax this assumption, as these errors may be
critical for explaining behaviors that are essentially “illusions of
cognitive costs.”

3.1. Implementation
Optimal control solutions were calculated using dynamic
programming for the model in two experiment described below.
In both cases the model was implemented with the values for
constants listed in Table 2.

The dynamics used are listed in Equation (3). The objective
function for each step k is given in Equation (5). Each dimension
of the state space had a range [0, 100]. The state space was
discretized to integer values. Transitions were probabilistic based
on the fractional part of each dimension of the new state. For
example, a value of 2.1 would be discretized as 2 90% of the time,
and 3 10% of the time. At each time step, control levels were
chosen from were chosen from U = [0.5, 1, 2, 3, 4, 5].

A control action was taken at each time step k. The temporal
resolution for the dynamics model was higher than that of the

control actions, so once a control action was selected, the system
was run forward 100 iterations using Euler integration while
maintaining the selected control.

The optimal control strategy was calculated using dynamic
programming for a discrete state space as described in Bertsekas
(2005). To represent the conditions described in Figure 5,
simulations were performed for lookahead values of 1 and 100.
In the first case, the control cost is simply treated as the single
state’s g function and the control is chosen according to

uselected = argminu∈Ug(xk, u) (6)

With a lookahead equal to theN, the control at each step is chosen
recursively according to

uselected = argminu∈U
{

gk(xk, u)+ Jk+1

}

(7)

where Jk+1 is the minimum cost-to-go from step k+ 1 onward.

3.2. Simulation 1
In the first simulation, a finite time horizon of N = 100 was used
and reward (equal to performance) was assumed to be available
for the duration. Optimal control trajectories were calculated for
lookahead values of 1 and 100 and for λ = 0, 0.1, 0.4. The value
λ = 0 reflects the case in Figure 5 in which cognitive costs are not
included in the objective function. As discretization of the state
space led to stochastic state transitions, simulations were run four
times and results were combined using LOESS smoothing.

Control, resource, and performance trajectories for each
combination of lookahead and λ are shown in Figure 6. The
simulation results reveal several important patterns. First, a
higher control level is sustained when cognitive costs are not
included in the objective function λ = 0. In addition, control
strategies that include a lookahead of 100 maintain glycogen
levels that are much higher than those maintained by no
lookahead. This result reflects strategic resource allocation over
time, a feature that is not present with the agent cannot foresee
system dynamics in the longer term.

The most important result relating to the discussion above
is that when a lookahead is included, the optimal solution is
to sacrifice performance initially in order to maximize overall
performance. Comparing the initial requested level of control
(that is, allocation of neural resources) and resulting performance
with the long-term performance curve, one is again reminded of
a marathon runner. Without the ability to predict the depletion
of resources and its effect of resource depletion on performance,
the agent initially requests a high amount of resources. This
quickly decreases the level of astrocytic glycogen, which leads
to a lower sustainable performance level and overall lower
performance.

To rephrase this result in terms used above, what appears to be
an initial aversion to cognitive costs is actually a strategic decision
to avoid resource depletion and maximize long-term reward.

3.3. Simulation 2
In the second simulation, reward was made unavailable for
certain periods, simulating conditions where no reward is
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available to the agent (resting between experimental tasks, for
example). The dynamics, parameters, and objective function
were identical to those used in Simulation 1, with the exception
that the performance function returned 0 for two periods of time,
regardless of energy level or control action. The simulation was
run five times for 500 steps, and again the results were combined
using LOESS smoothing.

Simulation traces are shown in Figure 7. Though control
was not incorporated in the objective function, the control
action was nonetheless moderate throughout the simulation.
Control was minimal during the no-reward periods, as expected.

FIGURE 5 | The model is agnostic as to both the intrinsic cost of

control (i.e., whether control is included in the objective function of the

optimal control formulation) and the planning horizon of the agent. This

flexibility highlights the generality of the optimal control approach. Each choice

of planning horizon and intrinsic cost results in an agent with a distinct

optimization strategy.

That the control does not appear to be a step function at the
transition points is due to the smoothingmethod used. As seen in
Baumeister’s dual-task ego-depletion experiments, performance
was highest in the first rewarding period and diminished in the
second. Though astrocytic energy levels rebounded somewhat
during rest periods, the requirement of a minimal level of control
(u = 0.5 rather than u = 0) meant that available energy
was never fully replenished. This is in accordance with evidence
suggesting that astrocytic glycogen is slowly depleted during
waking hours and substantially replenished during a few hours
of sleep (Karadzic and Mrsulja, 1969; Swanson, 1992).

3.4. Model Extensions
As presented here, our model treats energetic resources as
an energy flow from capillaries to astrocytes and neurons.
The simulations above provide qualitative relationships between
control, performance, and energy dynamics. It would not be
difficult to calibrate the model in order to match known rates of
glucose transfer from capillaries to astrocytes and neurons. The
energy flow could be changed to use diffusion equations instead
of liquid flow equations. Conversion of glucose to glycogen then
lactate is somewhat inefficient, and that inefficiency could be
included in the model. The agent’s state is currently assumed to
be perfectly known by the agent, but a more realistic approach
would be to have the agent estimate its state from a crude,
noisy input. This would reflect our suggestion that fatigue
is a signal of partial glycogen depletion. These complicating
factors were omitted from the current model to preserve
as much simplicity as possible while still providing a useful
conceptual framework. Even so, the model already provides
qualitatively useful predictions (see e.g., the astrocytic glycogen
levels in Figure 6B, the performance trajectories in Figure 6C,
and the presence of a performance deficit in subsequent tasks in
Figure 7).

FIGURE 6 | Cognitive effort avoidance can be explained as

resource allocation with a lookahead. Plots show results from

Simulation 1, separated by agent lookahead and intrinsic cost (see also

Figure 5). (A) Computed optimal control u over time. The highest level

of control is requested by an agent with no lookahead and no intrinsic

cost of control. Note that actual performance depends both on

requested control and energy availability. (B) Glycogen energy levels HA
for each case. Note that agents with no lookahead deplete glycogen

much more quickly. (C) Agent performance over time. As expected,

agents with a longer lookahead and lower intrinsic costs exhibit better

overall performance while generally exercising less control (less

neuromodulation).
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FIGURE 7 | The model predicts lower performance on the second task

of a dual-task paradigm. The plot shows results from Simulation 2, with zero

intrinsic cost and a lookahead of 500. Shading indicates periods in which the

agent could be rewarded (on-task periods). Note that overall performance in

the second shaded period is lower than performance in the first.

3.5. Testable Predictions
Given the model outlined above, there is a way to test whether
the cognitive cost parameter λ is greater than 0, that is, whether
the objective function in our model should include a penalty
for cognitive control. The planning-based model introduces a
tradeoff between current and future resource utilization, with no
particular penalty for current utilization over future. In contrast,
a cognitive cost of λ > 0 implies a trade off between costs
and rewards in the present with no consideration of the future.
These models make different predictions in a condition where a
time horizon is short or non-existent (in other words, in which
no planning is needed). One way to induce such a scenario
is to provide an immediate and abundant source of energetic
resources, such that high utilization of astrocytic glycogen is not
necessary, even in conditions of high neural activity. To do this,
one could clamp an individual’s blood sugar to a high level, such
that all additional energy utilization arising from demanding
cognitive processing is provided from the blood (the capillary-
neuron connection in Figure 1B) rather than the astrocytic
glycogen shunt. In this condition there are no future energetic
consequences to high neural activity. Our model predicts that in
such a condition, subjects should not show cognitive cost effects
if λ = 0, in other words, all cognitive effort aversion can be
attributed planning. If cognitive cost effects persist we would
conclude that λ > 0, meaning that cognitive effort should be
treated as a cost per se.

The addition of a glycogen energy store allows us to make a
prediction that would potentially falsify either our account or the
glucose-only “limited resource” account. Consider a set of tasks
arranged in the commonly used dual-task paradigm in which the
first task is cognitively demanding enough to negatively affect
performance on the second task. As mentioned, several groups
have reported that the consumption of a glucose drink negates
the negative effect of performing the first task (Manning et al.,
1990; Benton and Owens, 1993; Craft et al., 1994; Benton and
Parker, 1998; Martin and Benton, 1999). Suppose the first task
is performed and then a glucose drink is administered. Now
consider a manipulation in which blood sugar is returned to
the pre-task level, e.g., via insulin injection, and then subjects

are asked to perform the same task again. If astrocytic glycogen
indeed acts as an energy shunt that is depleted during the task,
as we suggest, glycogen levels should still be largely depleted
following insulin injection. Because of this, performance on the
task should be worse than initial performance, despite equivalent
blood sugar levels. If, on the other hand, glycogen does not
act as an energy shunt and all energy is taken directly from
blood glucose, performance on the task should be equivalent
both times. Note that this prediction only holds in cases where
there the first task produces a reliable performance deficit in
subsequent tasks.

4. Implications

The idea that the brain has a sophisticated controller for resource
allocation has a number of important implications that we believe
provide a novel explanatory synthesis of a range of phenomena.
The timescale of the dynamics of glycogen depletion puts limits
on sustained neural activity and introduces potentially costly
consequences to operating at peak performance in one task
on the performance of subsequent tasks. We term controlling
resource allocation to optimize long-term performance optimally
lazy, which amounts to incorporating future resource availability
into decisions about how to recruit neural activity to solve a
particular task in the near-term. Although we developed our
model around the control of neural recruitment, we believe that
there are probably at least two additional and important control
schemes that operate at higher spatial and temporal scales. The
putative control schemes include:

4.1. Control by Modifying Gain on Neural Activity
This control mechanism is the focus of our paper. It optimizes
energy consumption on the timescale of an neural population
that has shared glucose dynamics and could be the target
of a local neuromodulator gain control signal. This control
strategy provides a new role for excitatory and inhibitory
neuromodulators, and we believe it includes known gain control
systems like attention, working memory, and executive function.
We expect to see this type of resource control at the intersection
of neural processes that are costly and whose recruitmentmakes a
graded impact on performance. While we modeled these gains at
the level of a neural population, it is more likely that gain control
is structured hierarchically, with multiple levels of resolution. For
example, the concept of vigor can be implemented by a more
global gain on goal-oriented behavior. Vigor is known to be
modulated by resource availability, with rich resource availability
increasing willingness to work in humans and animals, and in the
speed and variety of behaviors expressed (Niv et al., 2005).

4.2. Control by Switching Strategies or Policies
with Different Performance/Efficiency Trade-offs
There are also advantages to incorporating knowledge of
differential costs of neural activity to learn more metabolically
efficient strategies or policies. Investments in efficiency have the
largest pay-offs in frequently recurring tasks. If model-based
look-ahead is indeed differentially costly, then efficiency may
drive model-free policy learning. The idea that efficiency drives
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model-free learning is a significant change of viewpoint. Model-
free methods are usually justified on the basis of improved
accuracy as experience grows (Daw et al., 2005; Fulvio et al.,
2014). However, congruent with efficiency driving learning,
Huang et al. (2012) provide evidence that suggests later stages
of motor learning are directed toward increasing metabolic
efficiency, without gains in performance. More generally, varying
the weight on metabolic costs during task learning can produce a
family of solutions that can be rapidly selected between during
a task to provide an alternative online control of metabolic
costs. Given a family (at least two) strategies (policies) that
have different neural costs and performance on the same task, a
controller can select (or weight) policies to trade-off performance
vs. cognitive costs. The current model allows for this possibility
via the inclusion of multiple performance curves, as seen in
Figure 3.

4.3. Control by Modifying the Distribution of
Glycogen Across the Brain
When efficient solutions to recurrent tasks are not available
(or take too long to effectively learn), the brain may invest
in changing the distribution and quantity of energetic stores
across the brain, either by changing locations and numbers of
astrocytes and/or the amount of glycogen stored in astrocytes.
Reallocation of energetic stores constitutes a distinctive kind
of control that serves to anticipate and meet the demands
of recurrent neural activity at longer timescales. If present,
it would constitute a distinctive type of endurance learning,
that would provide a basis for generalizable gains in resource
dependent cognitive processes like attention, working memory,
look-ahead, and executive function. It is also strongly analogous
to changes in muscle glycogen stores induced by exercise.
Consistent with this idea, hypoglycemia (low energy availability)
causes lower cognitive/physical performance, and we have a
real need for rest after both heavy cognitive exertion similar to
physical exercise. The cognitive benefits of physical exercise may
result in part from better metabolic regulation, and cognitive
training may produce increases in glycogen similar to the
impact of physical training on muscle glycogen. Congruent
with this possibility, the time scale of glycogen repletion in
the brain is similar to that in muscle also overcompensation
afterwards (Matsui et al., 2012), and glycogen depletion leads
to super-compensation of glycogen levels in astrocytes (Choi
et al., 2003). Changes in resources may underlie the pattern
of cognitive gains documented in video game players, which
show general improvements in visual attention and working
memory (Bavelier et al., 2012), while simultaneously providing a
fundamental reason for the ubiquitous finding of lack of transfer
in most learning paradigms—learning paradigms are almost
universally conducted in conditions where task recurrence would
encourage the investment in efficient (but necessarily specialized)
solutions.

Considering glycogen allocation as an optimal resource
allocation problem, we predict that the differential density

of astrocytes and glycogen stores across the brain will be a
monotonic function of the frequency of sustained activity. Areas
whose activity are infrequent or short relative to depletion
dynamics will need less resources than areas whose activity is
frequent and sustained. This relationship between the statistics of
sustained neural activity and glycogen stores are easily testable.
In general, this predicts that the more specific the cognitive
function, the less frequent its sustained use and the more
susceptible it will be to degradation with decreases in energy
availability. As sustained functions are likely recoded in efficient
ways to exploit more direct sensory to motor mapping, we
predict this degradation will fall most heavily on higher cognitive
functions. The best evidence for this idea are the patterns of
loss of cognitive with declines in blood sugar, in which working
memory, attention, and executive control are more sensitive to
hypoglycemia than visual and auditory acuity or basic motor
functions (Feldman and Barshi, 2007).

4.4. A Mechanism for the Integration of Energy
Utilization
The model presented in this paper requires some mechanism by
which the depletion of astrocytic glycogen is translated into effort
avoidance behavior. Accordingly, one prediction of our model
is that the trajectory of glycogen storage levels should be coded
neurally at a larger scale than local negative feedback due to
neurotransmitter concentrations. This energy usage information
must then be transmitted to structures controlling cognitive
effort expenditure in order for it to manifest as behavior. We do
not make a specific claim about the identity of this circuit, but
the evidence presented in the review above, combined with the
explanatory power of the model presented in this paper, strongly
suggest that it exists.

In conclusion, by viewing the allocation of metabolic
resources as a control problem with the concrete resource
limitation given by the dynamics of glycogen storage and use, we
provide a family of novel explanations for a number of apparently
unrelated phenomena while simultaneously providing a rational
explanation for a wide range of troublesome biases and patterns
in decision making. These new hypotheses are quantitative,
testable, and we hope will provide grist for the development of
new explanations and interventions.
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