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Immune deficiencies are often associated with a number of physical manifestations

including loss of sense of smell and an increased level of anxiety. We have previously

shown that T and B cell-deficient recombinase activating gene (RAG-1)−/− knockout

mice have an increased level of anxiety-like behavior and altered gene expression

involved in olfaction. In this study, we expanded these findings by testing the structure and

functional development of the olfactory system in RAG-1−/− mice. Our results show that

these mice have a reduced engagement in different types of odors and this phenotype

is associated with disorganized architecture of glomerular tissue and atrophy of the main

olfactory epithelium. Most intriguingly this defect manifests specifically in adult age and

is not due to impairment in the patterning of the olfactory neuron staining at the embryo

stage. Together these findings provide a formerly unreported biological evidence for an

altered function of the olfactory system in RAG-1−/− mice.

Keywords: immunosuppression, immunodeficiency, anxiety, olfactory dysfunction, main and accessory olfactory

system (MOS and AOS), main olfactory epithelium (MOE)

Introduction

Many vertebrates, including most mammals and reptiles utilize the sense of smell for their survival
since it is essential for finding nutritious food, a suitable mate and to escape predators (Mombaerts,
2004). Odor perception is a finely regulated process that occurs through a substantial and yet
finite number of odorant receptors. Indeed, mammals have 347 genes coding for functional odor
receptors among a total of 1000 genes and each olfactory receptor is activated by a specific odorant
(Hoover, 2010; Glatz and Bailey-Hill, 2011).

Similar to the olfactory system, the immune system helps us to relate to the external environment
and to differentiate harmful or innocuous agents. Recent clinical evidence have suggested that these
two systems share more than just a similarity and potentially communicate with each other. Indeed,
clinical studies on patients suffering from a wide range of immune disorders such as autoimmune
pathologies like multiple sclerosis (Lutterotti et al., 2011; Erb et al., 2012; Garcia-Gonzalez et al.,
2013), systemic lupus erythematous (Shoenfeld, 2007; Shoenfeld et al., 2009; Cavaco et al., 2012;
Perricone et al., 2013) and Sjögren’s syndrome (Midilli et al., 2013) or immunodeficiencies like
HIV/AIDS (Graham et al., 1995; Mueller et al., 2002; Vance, 2004, 2007; Vance and Burrage,
2006) have often reported a reduction in threshold of discrimination of different odors (TDI)
or olfactory dysfunction typically at the onset of disease. Hence either the absence of adaptive
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immune cells (as in the case of immunodeficiencies) or the
uncontrolled activation of these cells (as in autoimmune diseases)
can cause a loss or reduced ability to smell i.e., anosmia or
hyposmia.

Over the past few years, we have been investigating the
crosstalk between emotions and immune system. Our recent
characterization of the emotional behavior of immunodeficient
recombination activation gene (RAG)-1 knockout mice has
revealed an increased level of anxiety-like behavior in these
animals. Most interestingly, these changes in behavior were
accompanied with changes in the gene expression profile of
the brain including a reduced expression of genes involved in
olfactory transduction. This was a rather interesting finding
considering that the same immunological conditions that cause
anosmia have also been associated with increased incidence of
mental disorders and stress. Most intriguingly, studies using both
pharmacological and surgical impairment of the olfactory system
have also described a significant increase in anxiety-like behavior
thus suggesting the possibility that smell, anxiety and immune
response might share a common molecular pathway.

To test this hypothesis, in this study we investigated if the
increased anxiety—like behavior of RAG-1−/− mice was also
associated with an impaired sense of smell. In addition to this,
because RAG-1 is expressed in olfactory sensory neurons (OSN)
and epithelium (OE) we also investigated if the absence of this
gene would affect the development of the olfactory system. Our
results provide the first experimental evidence for a specific role
of RAG-1 in the conservation of the olfactory system in adult
mice rather than its development at the embryo stage. Most
importantly, our studies provide further evidence for a possible
role ofRAG-1 asmolecular link between emotions, immunity and
sense of smell.

Materials and Methods

Mice
RAG-1−/− mice on C57/BL6 background were kindly provided
by Prof. Hans Stauss, (University College London, UK) while
control C57BL/6 mice were purchased from Charles River. Both
strains were bred in our animal facility. We used 7 week-old
male mice for all the behavioral tests and timed-embryos were
obtained bymatingmice in the evening. The presence of a vaginal
plug in the morning indicates successful mating and the resulting
embryo would be considered 0.5 day old (E0.5). Mice were
housed in groups of maximum 6 animals per cage under specific-
pathogen-free conditions and with free access to food and water.
All the behavioral experiments were performed during the light
phase of the light-dark cycle and no more than 2 tests per day
were performed. All tests were conducted in a blinded fashion
and according to the UK Animals (Scientific Procedures) Act,
1986. The local biological service unit at Queen Mary University
of London approved all experimental protocols.

Buried Food Test
First described in the early 1970s (Alberts and Galef, 1971), the
buried food test has been adapted under various names and a
range of palatable food have been used (e.g., cookies, cereals and

food pellets). The purpose of this experimental test is to measure
an animal’s ability to smell volatile odors and its natural tendency
to use olfactory cues for foraging. Themain parameters measured
in this test are the latency to find the hidden food and the time
spent eating it (Yang and Crawley, 2009). The testing protocol
of 3 days consists of an odor familiarization exercise on day 1,
food deprivation on day 2 and testing on day 3. On day 1, 7-week
male C57BL/6 and RAG-1−/− mice were placed in a clean mouse
plastic cage (25 × 42 × 12 cm) containing 3 cm of fresh cage
bedding. Three Teddy Grahams cookies (Nabisco Inc.; 1 cookie
for every 2 mice) where placed in each cage and left overnight.
Cages were inspected on day 2 to verify that the cookies were
consumed to make sure that the bait is a highly palatable food.
On day 2 at approximately 4 pm (1 day before the test), food
pellets were removed from the cages and testing mice fasted
overnight. The test was performed on day 3 at approximately 11
am after 1-h acclimatization in the testing room. Mice were then
individually introduced into a clean cage containing 3 cm deep of
clean bedding and allowed to acclimate to the cage for 5min to
reduce the interference of novel environment exploration during
the test. A cookie was buried beneath 1 cm of bedding in a
random corner of the cage and the mouse introduced into the
cage. The site of animal placement and the site at which the
cookie was buried remained constant. Time necessary for the
animal to retrieve the cookie with its front paws was measured in
seconds (latency) up to a maximum parameter of 15min (900 s
was the maximum score; Yang and Crawley, 2009).

Olfactory Habituation/Cross-habituation Test
The capability of mice to detect and differentiate various odors
(social and non-social odors) was examined with the olfactory
habituation/cross-habituation test (Luo et al., 2002; Yang and
Crawley, 2009). The main aim of this test is to measure an
animal’s tendency to investigate novel smells and presenting
the mice with a sequence of different odors assesses this. A
common sequence is (1) water; (2) two non-social odors; and (3)
two social odors. Habituation is defined by a decrease in time
spent sniffing the same odor. Cross-habituation is represented
by a reinstatement of olfactory investigation when a novel odor
is presented (Woodley and Baum, 2003; Wrenn et al., 2003;
Wersinger et al., 2007). Prior testing, the mice were allowed to
acclimate for 30min to a clean food- and water-deprived testing
cage with a dry cotton-tipped applicator inserted through the
water bottle hole. This is a necessary practice because it can
reduce the interference of novel environment exploration during
the olfactory test. Non-social odors were prepared in themorning
of the same day of the test, they included: (1) distilled water; (2)
solution with almond extract; (3) solution with banana extract
(McCormick Inc. brand). Almond and banana are standard non-
social odors because they are distinctly different and mildly
attractive natural food odors, but unrelated to the food with
which laboratory rodents are familiar (Huckins et al., 2013). The
solutions were prepared by adding 10µl of almond or banana
extract to 990µl of distilled water (1:1000 dilution). For the social
odors, a cotton-tipped applicator was swiped in a zigzag fashion
5 times on the bottom of a cage. We used 5 day-old dirty cages
of female mice for unfamiliar social cage 1 and male mice of the
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same age for unfamiliar social cage 2. Stimuli were presented
in the following order: water × 3, almond × 3, banana × 3,
social odor × 3. A trial period of 2min was given for each
stimulus presented, and thus the time spent sniffing the tip for
each stimulus was recorded in seconds using a silent stopwatch.

Immunohistochemistry
Immunofluorescence was applied to formaldehyde fixed
cryosections as previously described (Cariboni et al., 2011).
Briefly, coronal sections were blocked with serum free protein
block (DAKO) and immunostained with goat anti–OMP (1:500;
DAKO), rabbit anti-Tuj1 (1:500; Covance), followed by cy3-
and 488-conjugated donkey antigoat/rabbit Fab fragment
secondary antibodies (Jackson ImmunoResearch). Nuclei were
counterstained with DAPI (Sigma). For immunoperoxidase
staining, formaldehyde-fixed sections were processed as
described previously. Briefly, coronal adjacent sections of
formaldehyde-fixed embryo heads of 25m were incubated with
hydrogen peroxide to quench endogenous peroxidase activity
and then blocked and incubated with rabbit anti-peripherin
(1:1000, Chemicon) or rabbit anti-GnRH (1:1000, ImmunoStar)
primary antibodies and followed by biotinylated goat anti-
rabbit antibody (Vector Laboratories). Immunoreactivity
was visualized with the ABC kit (Vector Laboratories) and
3,3-diaminobenzidine (Sigma). The analysis was performed
on at least 3 samples for each genotype. We measured the
pixel intensity of OMP staining in 20µm coronal sections
through the olfactory glomeruli of 3 mice for each genotype.
Haematoxylin and eosin staining (H&E) was applied to paraffin
sections of whole heads as previously described for other tissues
(Maione et al., 2009, 2010; Paschalidis et al., 2009). Briefly,
whole heads were obtained from 7-week old wild-type C57BL/6
and RAG-1−/− mice. Prior fixation with 4% paraformaldehyde
(pH 7.4) and decalcification in 10% EDTA (pH 7.2–7.4), the
heads were embedded in paraffin wax. Sagittal sections were
deparaffinized and stained with haematoxylin and eosin. Digital
images were taken using the Image Pro image analysis software
package.

Data Analysis
All the statistical analysis was performed using GraphPad
Prism software. The buried food test was analyzed using the
nonparametric Mann–Whitney U-test. Statistical significance
was set at p ≤ 0.05 and all data are presented as mean ± SEM as
previously described (Dawson et al., 2005; Fleming et al., 2008).
For the habituation/dishabituation test, One-Way repeated
measured ANOVA within each group was used to compare the
time that subjects spent investigating the stimulus upon the
different exposure. All data are presented as mean± SEM.

The total number of GnRH neurons/head was quantified as
previously described (Cariboni et al., 2011). To compare the
abundance of OMP+-neurons we measured the pixel intensity
of OMP staining in 20-µm coronal sections through the OB of
3 mice for each genotype, by using ImageJ software (NIH). To
compare the area of glomeruli, we measured the area of each
glomerulus in 20-µm coronal sections through the OB of adult
mice for each genotype, at the same anatomical level, by using

ImageJ software. To compare the OE thickness, we measured
the thickness of OE in 10-µm sagittal sections through the nasal
region for each genotype, at the same anatomical level, by using
ImageJ software. To determine statistical significance, we used
the unpaired t-test. A P-value of less than 0.05 was considered
statistically significant. For all experiments, data are expressed as
the mean± SEM.

Results

RAG-1−/− Immunodeficient Mice Have an Altered
Sense of Smell
The buried food test is a reliable protocol that relies on the
natural tendency of the mouse to use olfactory cues for foraging.
The main parameter is the latency to uncover a small piece
of palatable food such as a cookie, hidden beneath a layer of
sawdust, within an established length of time. We first tested the
palatability of the bait leaving the cookie with mice overnight
(see Materials and Methods Section) and observed no difference
between RAG-1−/− and control C57/BL6, i.e., both strains
consumed the whole cookie. However, when we performed the
test of the buried cookie, we observed a significant five-fold
increase in the latency to find the bait (203 s ± 77.7 vs. 42 s ±
18.9; p < 0.001) in the RAG-1−/− compared to control C57/BL6
mice (Figure 1A).

To further assess the olfactory function of RAG-1−/− mice,
we used the habituation/cross-habituation test, which relies on
the animal’s tendency to explore novel smells and is also used
to evaluate its ability to distinguish between different odors
(Yang and Crawley, 2009). When presented with different stimuli
(water, almond, banana, and social odor), control C57BL/6
mice (wild-type) showed the expected increase in time sniffing
(compare number 1 bar in the water group with number 1 bar in
the other groups) every time a new odor was introduced (cross-
habituation). They also showed habituation to the same stimuli
since the time spent sniffing the same stimuli was significantly
reduced upon the second and the third exposure (compare white
bar 1 with bars 2 and 3 in each group) (Figure 1B). In contrast,
RAG-1−/− mice did not follow this pattern and showed an
overall reduction in the time of sniffing. More specifically, the
investigation rate was so low that both habituation and cross–
habituation were difficult to be assessed. Interestingly, however,
RAG-1−/− mice showed an increase in the time spent exploring
the social stimulus compared to unfamiliar ones (almond and
banana) and showed a trend toward a normal pattern of
habituation (although the differences between the 3 exposure
were not significant) suggesting a preserved function of the
vomeronasal organ and an impaired activity of themain olfactory
system (see Discussion).

Histological Assessment of the Olfactory and
Vomeronasal Systems in RAG-1−/− Embryos
The development of the olfactory system is strictly linked
to the development of the gonadotropin-releasing-hormone
neurons, which regulate reproductive function (Wray, 2010;
Forni and Wray, 2014). These neuroendocrine cells originate
in the nasal placode, the embryonic structure that gives rise to
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FIGURE 1 | RAG-1−/− mice show an impaired sense of smell. Adult 7 week-old RAG-1−/− and control C57/BL6 mice were tested with the buried cookie test

(top panels) or the habituation/dishabituation test (bottom panels) as described in Materials and methods. The bar graph in (A) represents the time expressed in

seconds required to find the buried cookie. Values are mean ± SEM obtained from a single experiment with n = 5 mice and representative on n = 4 experiments with

similar results. ***p <0.005 vs. C57BL/6 control mice. The graph in (B) shows the time expressed in seconds spent sniffing the stimuli (water, almond, banana, and

social odor). The numbers on the x-axes (1, 2, and 3) indicate the order of the repetitive exposure i.e., 1st, 2nd, and 3rd. Values are mean ± SEM obtained from a

single experiment with n = 5 mice and representative on n = 3 experiments with similar results. *p < 0.05; **p < 0.01 vs. the 1st exposure. The left top and bottom

pictures show a schematic representation of the buried cookie test (top) and the habituation/cross-habituation test (bottom) described in details Materials and

Methods Section.

the OE and VNO, and migrate toward the brain apposed to
olfactory (OLF) and vomeronasal (VN) axons. To investigate
the mechanisms behind the olfactory deficits observed in the
RAG-1−/− mice, we first analyzed the development of the
main and accessory olfactory systems at day 14.5 (E14.5) by
staining coronal head sections with an anti-peripherin and
anti-GnRH antibodies as previously described (Cariboni et al.,
2011). As shown in Figure 2, we did not observe any defects
in either the fasciculation or the targeting of the olfactory
nerves toward the olfactory bulbs (OB) between wild-type and
RAG-1−/− embryos (Figures 2A,D, respectively). In addition,
the vomeronasal nerves, responsible for pheromone detection
in adulthood, were normal and comparable between the two
genotypes (Figures 2B,E) as it was the migration and the number
of the gonadotropin-releasing hormone neurons responsible for
reproduction (Figures 2C,F,G; total number of GnRH neurons:
wild-types 1317 ± 27.55 vs. RAG-1−/− 1303 ± 33.37, p = 0.76).
Consistent with this, the size of the gonads in 7 week-old mice
showed no gross difference between wild-type and RAG-1−/−

(Supplementary Figure 1, respectively).

Histological Analysis of the Olfactory Bulbs of
Newborn RAG-1−/− Mice
We next conducted a histological assessment of the olfactory
system at birth (day 21) just before the pups are exposed
to external and social stimuli. Analysis of the size and gross

FIGURE 2 | Normal GnRH neuron development in embryonic RAG-1−/−

mice. Coronal sections of embryonic day E14.5 mouse heads RAG-1−/− and

control C57/BL6 mice were stained for peripherin (A,B,D,E) or GnRH (C,F) as

described in Material and Methods. Black arrowheads indicate examples of

extending olfactory/vomeronasal axons (B,E) and of migrating GnRH neurons

in the nasal area (C,F). Quantitation of total GnRH neuron number is displayed

in (G). Pictures are representative of n = 4–6 mice of each genotypes. Scale

bars: 150µm (A,D); 100µm (B,C,E,F).

morphology of the olfactory bulbs in newborn RAG-1−/− mice
showed no differences compared to control wild-type mice
(Figures 3A,B, respectively). Immunostaining of the same tissues
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FIGURE 3 | Histological analysis of the olfactory system in newborn

RAG-1−/− mice. (A,B) Brains from male postnatal age (P) 0 newborn

RAG-1−/− and control C57/BL6 mice were photographed side-by-side to

demonstrate no differences in the size and gross morphology of the brain and

of the olfactory bulbs. (C,D) Coronal sections of the olfactory bulb from the

same mice immunostained with antibodies against OMP and Tuj1 revealed no

differences in the intensity and morphology of the projecting ORNs. DAPI was

used to counterstain the nuclei. (C′,D′) Show higher magnifications of the

same tissue sections. The organization of the olfactory bulb displayed in (C,D)

are labeled as following: gcl, granule cell layer; epl, external plexiform epithelial;

onl, olfactory nerve layer. Pictures are representative of n = 3 mice of each

genotypes. Scale bars: 1mm (A,B); 100µm (C,D).

for the olfactory marker protein OMP and the pan-neuronal
precursor marker Tuj1 confirmed these results and showed no
difference in the localization or level of expression of these two
markers (Figures 3C,D).

Impaired Olfactory System in Adult RAG-1−/−

Mice
Morphological analysis of the olfactory bulb of fully developed
(7 week-old) RAG-1−/− adult mice did not present any
differences in size compared to control age-matched wild-
type (Figures 4A,B, respectively). However, immunofluorescene
staining of the olfactory bulb for OMP showed disorganized
glomeruli (which are the initial sites for synaptic processing
of odor information coming from the nose, Zou et al., 2009;
Sakano, 2010) (Figures 4C,E) as well reduced expression of this
marker (Figures 4D,F). Quantitative analysis of OMP staining
over different sections confirmed these results and showed a
significant (p < 0.01; n = 3) reduction of about 50% of
the pixel intensity in RAG-1−/− mice (15.9 ± 1.7 mean pixel
intensity/area) compared to wild-type control (28.8 ± 2.3 mean
pixel intensity/area). No differences were observed in the size
of each glomerulus, expressed as mean of the area (wild type:
0.0224 ± 0.0017 vs. RAG-1−/− 0.0255 ± 0.0022, p = 0.72; Area
expressed as square mm).

On the opposite site of the glomeruli, olfactory neurons
innervate the olfactory epithelium (Leinwand and Chalasani,
2011; Murthy, 2011; Takeuchi and Sakano, 2014). These tissues
present in the turbinates of the nose act as “platform” for the

olfactory neurons and undergo continuous regeneration. Given
that olfactory bulbectomy has been shown to severely affect
olfactory epithelium regeneration (Suzuki et al., 1998; Makino
et al., 2009), we reasoned that the absence of fully functional
olfactory neurons would impact the status of OE in RAG-1−/−.
Consistent with our expectation, staining of sagittal paraffin
sections with haematoxylin and eosin showed reduced cellularity
and thickness of the MOE in RAG-1−/− tissues compared to
wild-type control (Figures 5A,B, respectively; Figure 5C, OE
thickness: wild type 0.1900 ± 0.01581 vs. RAG-1−/− 0.1000 ±

0.01558; p < 0.005) further supporting the idea that the absence
of immune cells may cause histological changes in olfactory
neurons and an impairment of olfaction mainly in adult mice.

Discussion

Immunodeficiencies have long being associated with a number of
physical manifestations that are not generally linked to immune
functions including anxiety and anosmia. Performing a study
on the behavioral profile of T and B cell-deficient RAG-1−/−

mice we have observed an increased level of anxiety-like and
surprisingly found significant changes in brain gene expression
profiles of these mice when compared with their wild-type
littermates. Pathways analysis of these genes revealed a number
of interesting links to different diseases and unexpectedly a defect
in the signaling pathways involved in the olfactory system. This
was a rather interesting finding since it suggested that RAG-1−/−

mice could represent an ideal experimental system to study the
simultaneous occurrence of anxiety and anosmia that has been
described in clinical cases of immunodeficiency.

To verify our hypothesis, we first tested the olfactory function
of RAG-1−/− mice using classical behavioral models based on the
ability of themouse to recognize the odor of “palatable” baits. Our
results from the buried cookie tests showed an increase in the
latencies to find the buried food and recognizing the stimulus in
RAG-1−/− mice compared to control. These differences in odor
recognition were further confirmed with the habituation/cross-
habituation test where the RAG-1−/− mice showed an impaired
pattern of habituation and cross-habituation to distinct and yet
volatile odors.

As common feature of both tests, RAG-1−/− mice showed
an overall difficulty in preforming the expected task provided
(finding the cookie or being interested in different odor
stimulations) and this might be linked to their increased level
of anxiety-like behavior that makes them distracted from the
task. Consistent with this, other authors have shown an increased
locomotor and exploratory activity and degree of anxieties in
chemically induced anosmicmice (Kudyakova et al., 2007; Glinka
et al., 2012).

Aiming to further understand the cellular mechanism behind
the impaired sense of smell of RAG-1−/− mice, we investigated
whether there were any defects in the cellular structure of the
olfactory organs at three key time points: at the embryo stage,
soon after birth and at adult age (6–8 weeks). Our results
show that RAG-1−/− had no differences in the development
of the olfactory nerves at embryonic day 14.5, which is the
stage of development that follows the establishment of the first
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FIGURE 4 | Impaired tissue structure of the olfactory system of adult RAG-1−/− mice. (A,B) Brains from male postnatal age (P) 21 RAG-1−/− and control

C57/BL6 mice were photographed side-by-side to demonstrate no differences in the size and gross morphology of the brain and of the olfactory bulbs (OB). (C,D)

Coronal sections of the olfactory bulb from the same mice immunostained with an anti-OMP antibody showed a reduced OMP signal in the mutant mice compared to

controls. DAPI was used to stain the nuclei. The funny arrow (E′′) highlights the disorganized structure of the glomerulus in the mutant OB. (D,F) are higher

magnification of the areas pointed by the arrows in (C′′,E′′). Pictures are representative of n = 3 mice of each genotypes. Scale bars: 1mm (A,B); 100µm (C,E).

olfactory sensory link between the olfactory epithelium and the
olfactory bulb. Same results were obtained in the expression of
key olfactory markers OMP and Tuj1 in the olfactory bulb at day
0 suggesting no involvement of RAG-1−/− in the development of
the olfactory system at this stage. Indeed, although we did not
perform any behavioral test for olfaction in newborn mice, at
observational level we did not see any difference in the ability of
the newborn RAG-1−/− to recognize the nipples of the lactating
mother. Nor we observed any difference in the weight of these
pups that would suggest an impaired ability to feed themselves
because of olfactory defects (data not shown).

Histological analysis of the MOE in adult mice provided us
with a completely different scenario featured by a significant
reduction in thickness and cellularity of the epithelium and a
disorganized architecture of the glomerular tissue of the olfactory
bulb in RAG-1−/− mice compared to control C57BL/6 mice.
These structural differences might explain the increased time
needed to track the volatile odor released by the chocolate chip
cookie in RAG-1−/− mice. The MOE is largely tasked with
smelling inherently “neutral odors” (Munger, 2009; Huckins
et al., 2013) and its dysfunction can be readily observed in
anosmic mice that are known to typically display a significant
reduction in the latency to identify an odor stimulus. Most
interestingly, the changes across the MOE might provide an
explanation for the increased anxiety behavior of RAG-1−/−

mice that we have previously reported (Rattazzi et al., 2013).
Congruently, recent studies have suggested that “functional
activation of the MOE but not the VNO causes elevated levels of
anxiety” (Glinka et al., 2012). The reverse might also be true since
studies in humans have also suggested that the induction of a state
of anxiety provoke a shift in the perception of a neutral odor (that
becomes unpleasant) and to an increase in time needed to detect
it (Krusemark et al., 2013).

We did not find any defect in the structure of the VNO (data
not shown) and this might also explain the unperturbed response

of RAG-1−/− mice to social odor. These results are consistent
with previous studies byMcgowan et al. (2011) where the authors
described an intact ability of RAG-1−/− mice to recognize social
odor. The same study, however, differs from our as the authors
have found no changes in the recognition of non-social odors by
RAG-1−/− mice. The differences in the results are most likely due
to the different experimental settings they used i.e., high volatile
odors (lemon and peppermint instead of almond and banana)
and much older mice (3–5 months as opposed to 7–8 week old).
In addition to this, in this study the authors showed no difference
in anxiety-like behavior in the open field test while previous
results from our and other research groups showed significant
difference in open field, marble burying and light/dark box. We
do not know how to explain these discrepancies except with
possible differences in the housing conditions and gut microbiota
that could account for difference in behavior.

The current study does not establish if the defects in olfaction
of the RAG-1−/− are due to the lack of immune system or
to an intrinsic role of RAG-1 gene in the development of the
olfactory system. Previous studies have shown that RAG-1 is
expressed in the olfactory neurons as well as in other brain
regions such as cerebellum and the hippocampal of mice (Chun
et al., 1991)—in the olfactory neurons contained in the two
placodes located anterior and dorsal to the eyes in zebrafish
(Jessen et al., 1999, 2001)—and in a subpopulation of zebrafish
olfactory neurons projecting to the lateral olfactory bulb (Feng
et al., 2005). Consistent with our findings, the study performed
in zebrafish showed that depletion of RAG-1 by morpholino-
mediated knockdown or mutation, did not affect axon targeting.
If we combine these observations together, it is possible to
exclude that RAG-1 plays a key role in OSN development during
the embryo stage.

Looking at the adult stage, our results differ from those
obtained in zebrafish since in these animals there was no changes
of odorant receptor expression or response of OSNs to amino
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FIGURE 5 | Decreased thickness and cellularity of the main olfactory

epithelium of RAG-1−/− mice. The pictures in (A,B) show the hematoxilin

and eosin staining of the MOE of 7 week-old RAG-1−/− and control C57/BL6

mice. The pictures in (A′,B′) are higher magnification of the boxed areas in

(A,B) and highlight the differences in thickness (black segments) between the

two tissues (arrowheads). The different cellular layers of MOE are indicated

with arrows and correspond to: cilia, chemosensory cilia; OSN, olfactory

sensory neurons; connective, connective tissue and cartilage. Quantitation if

OE thickness is displayed in (C). Pictures are representative of n = 3 mice of

each genotypes. Scale bars: 150µm (A,B).

acids. We do not know the reason behind this discrepancy and
we are tempted to think that T cells might be responsible for the
changes in odor perception. The full validation of this hypothesis
would require a full new set of investigations addressing a
number of specific questions. Nevertheless, we think that there
are considerations that can be taken into account in support of
this idea.

First of all, our previous study on the emotional behavior
of RAG-1−/− mice showed that RAG-1−/−/OT-II but not
RAG-1−/−/OT-I could “rescue” the gene expression profile and
behavior of the former (Rattazzi et al., 2013). This suggested
to us that T cells rather than B cells, and CD4+ T cells
(present in RAG-1−/−/OT-II) rather CD8+ T cells (present in
RAG-1−/−/OT-Imice), had a significant impact on the observed
impaired emotional behavior of RAG-1−/− mice. Looking at the
changes in olfactory transduction pathway of these very same
mice, a similar patter of regulation could be observed i.e., RAG-
1−/−/OT-II were similar to wild type supporting the idea that
CD4+ T cells might rescue the olfactory defect of RAG-1−/−

mice(Rattazzi et al., 2013).

In terms of the mechanism by which CD4+ T cells would
control the healthy state of the MOE, we speculate that this
might be linked to the impaired development of nasal-associated
lymphoid tissue (NALT) (Bienenstock and Mcdermott, 2005;
Ruddle and Akirav, 2009). Like all other mucosal-associated
lymphoid tissues, these are organized clusters of T and B
cells that act as patrolling stations and local reservoir of
the immune system in the mucosal districts. Studies on the
origin of NALT have shown these structures develop before
the other secondary lymphoid organs and start at postneonatal
age continuing till weaning (Bienenstock and Mcdermott, 2005;
Drayton et al., 2006; Ruddle and Akirav, 2009; Brandtzaeg, 2011).
Most interesting, the structural differentiation of the NALT has
been proposed to be completed after 6 weeks of age (which
is the age of the mice we have used in our tests) and to be
influenced by environmental stimuli. Given that the presence
of these structures has been shown to be important for the
release of factors regulating olfactory epithelium proliferation,
differentiation, and maturation (Schwob, 2002), it would be
tempting to assume that their absence is one of the main causes
of atrophy (reduced thickness and cellularity) of the MOE of the
RAG-1−/− mice and, as consequence of that, of the impaired
organization of the glomeruli in the olfactory bulb.

In conclusion, the results of this study provide first evidence
for an impaired olfactory function in adult RAG-1−/− mice.
Future studies using this animal model might help to identify
new therapeutic targets or experimental approaches to investigate
possible link between immunodeficiency, anxiety and anosmia.
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