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Effects of age on electrophysiological
correlates of speech processing in a
dynamic “cocktail-party” situation
Stephan Getzmann*, Christina Hanenberg, Jörg Lewald, Michael Falkenstein and
Edmund Wascher

Aging Research Group, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany

Successful speech perception in multi-speaker environments depends on auditory scene
analysis, comprising auditory object segregation and grouping, and on focusing attention
toward the speaker of interest. Changes in speaker settings (e.g., in speaker position)
require object re-selection and attention re-focusing. Here, we tested the processing of
changes in a realistic multi-speaker scenario in younger and older adults, employing
a speech-perception task, and event-related potential (ERP) measures. Sequences
of short words (combinations of company names and values) were simultaneously
presented via four loudspeakers at different locations, and the participants responded to
the value of a target company. Voice and position of the speaker of the target information
were kept constant for a variable number of trials and then changed. Relative to the
pre-change level, changes caused higher error rates, and more so in older than younger
adults. The ERP analysis revealed stronger fronto-central N2 and N400 components in
younger adults, suggesting a more effective inhibition of concurrent speech stimuli and
enhanced language processing. The difference ERPs (post-change minus pre-change)
indicated a change-related N400 and late positive complex (LPC) over parietal areas
in both groups. Only the older adults showed an additional frontal LPC, suggesting
increased allocation of attentional resources after changes in speaker settings. In sum,
changes in speaker settings are critical events for speech perception in multi-speaker
environments. Especially older persons show deficits that could be based on less flexible
inhibitory control and increased distraction.

Keywords: speech perception, attention, cocktail party, aging, event-related potentials

Introduction

The ability to listen to one talking person while other people are talking or laughing at the same
time is “probably the best-known real life example of selective attention” (Pashler, 1998, p. 37) and
has been termed “cocktail-party” effect (Cherry, 1953; for review, see Bronkhorst, 2000). Successful
speech perception in multi-speaker environments requires (a) auditory scene analysis, including
auditory stream segregation, and grouping (Bregman, 1994) and (b) focusing auditory attention
on the speaker of interest while simultaneously suppressing concurrent sound sources (for review,
see Shinn-Cunningham, 2008). It is assumed that auditory object formation and selective attention
are closely related (Ihlefeld and Shinn-Cunningham, 2008; Shinn-Cunningham and Best, 2008).
Moreover, the two processes are not automatic or invariant, but (at least partly) attention-based and
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time-consuming (Cusack et al., 2004; Shinn-Cunningham and
Best, 2008; for electrophysiological evidence, see Kerlin et al.,
2010; for review, see Fritz et al., 2007). Accordingly, continuity in
auditory scenery has been found to result in increasing efficacy in
object selection and in continuous focusing of attention toward
the features of a relevant source (e.g., a speaker’s position or
voice). In contrast, changes in auditory scenery require renewed
object formation and attentional re-focusing (Best et al., 2008).

In addition to changes triggered by the auditory environment,
a deliberate switch from one speaker of interest to another,
previously unattended speaker also requires attentional re-
focusing. Employing a dichotic-listening paradigm with two
spatially separated speakers, Koch et al. (2011) examined
the mechanisms of intentional switching of selective auditory
attention. The authors found substantial switch costs in trials
after a change, indicated by higher error rates and reaction
times relative to the pre-change level. A temporal preparation
of the attentional re-focusing (by providing cues indicating
changes) reduced these switch costs only in part, suggesting
a form of sluggishness (“inertia”) in the cognitive control of
selective attention (Koch et al., 2011; regarding re-focusing of
auditory spatial attention, see also Mondor and Zatorre, 1995;
Kidd et al., 2005; Singh et al., 2008). In addition, switch costs
are assumed to result from a persisting activation of a previously
attended sound source as well as from a persisting inhibition of a
previously unattended sound source (for review, see Koch et al.,
2010). Finally, costs of reconstruction of speech information
(that are missed due to the change of attention) may play a role
(Shinn-Cunningham and Best, 2008). Thus, a recent study in
which listening costs associated with shifts in spatial attention
were tested in a dynamic multi-speaker environment emphasized
the role of working memory in maintaining goal-relevant
information and meaning extraction (Lin and Carlile, 2015).
In sum, changes in dynamic auditory sceneries and switches
of auditory attention appear to be critical events for speech
perception in the presence of concurrent speech information.

This may be true especially in aging. Older adults typically
show reduced speech-in-noise perception abilities (Burke and
Shafto, 2008), and often report difficulties in understanding
what has been said in cocktail-party situations (for review, see
Wingfield and Stine-Morrow, 2000). These deficits are mainly
based on age-related changes in peripheral hearing (presbycusis)
and in central auditory processing (Humes and Dubno, 2010).
In addition, declines in general cognitive abilities such as
working memory capacity, inhibitory control, and information
processing speed (Van der Linden et al., 1999) are assumed to
contribute to deficits to manage speech perception in multi-
speaker environments (for review, see Schneider et al., 2010). In
particular, reduced inhibitory control might lead to attentional
deficits, according to the inhibition deficit hypothesis (Hasher
and Zacks, 1988; Hasher et al., 2007). In line with this hypothesis,
we observed age-related differences in event-related potentials
(ERPs) in two recent studies, in which we investigated speech
perception in a simulated multi-speaker scenario. In these
studies, older adults showed reduced attentional and inhibitory
control and reduced speech processing abilities relative to
younger adults, as indicated by a less pronounced N2 and N400

complex (Getzmann et al., 2014a). Moreover, a comparison of
older high-performing and low-performing adults revealed a
pronounced frontal P2 component in the high-performing group
(Getzmann et al., 2015a). In line with the decline-compensation
hypothesis (Wingfield and Grossman, 2006), this was interpreted
as an increased allocation of mental resources for compensation
of deficiencies in peripheral and central auditory processing.
Together with previous work (for review, see Schneider et al.,
2010), these findings showed that focusing attention on a speaker
of interest (while suppressing irrelevant auditory information in
multi-speaker environments) could bemore challenging for older
than younger adults.

Assuming that speech-perception in a more dynamic (i.e.,
highly variable) multi-speaker environment requires extra
cognitive resources for auditory object formation and selective
attention (e.g., Lin and Carlile, 2015), it could be expected
that older adults have even more difficulties with changes in
speaker settings than younger ones. In line with this assumption,
the results of a recent study indicated that rare and irregular
shifts in target-speaker position decrease performance of older
adults more than that of younger adults, probably due to a
delay in the attention switching mechanism (Getzmann et al.,
2015b). Thus, reduced attentional flexibility in combination
with reduced inhibitory control could result in deficits in re-
orientation (Salthouse, 1996; Wecker et al., 2005; for review, see
Kok, 2000) that may lead to a potential loss of speech information
after a change in speaker setting. Accordingly, segregation of
speech signals of interest from concurrent speech in the presence
of a speech masker appeared to be more “sluggish” in older than
in younger adults (Schneider et al., 2010; Ezzatian et al., 2015).

In the present study, we addressed this issue and tested
the ability of younger and older adults to switch between
various speakers in a multi-speaker environment. The focus
was on the effect of changes in target speaker settings on
speech perception. For this purpose, we analyzed behavioral
and electrophysiological measures obtained prior to and after
a change. As in our previous studies, a simulated stock-market
situation was employed in which sequences of short company
names and values were simultaneously presented via four
different loudspeakers at different locations (Getzmann et al.,
2014a, 2015a). The participants attended to the name of a target
company and judged whether the value of the target company
was above or below a given level. While in the previous studies
the target speaker changed in every trial, here we established a
situation in which the target speaker setting was kept constant for
a while and then changed. Thus, the target company was spoken
by the same speaker and at the same position for a variable
number of trials, and then the target-speaker voice or position,
or both, changed. These changes required (a) the re-focusing of
attention to the new, previously irrelevant, speaker of interest and
(b) the inhibition of concurrent speakers that might have been
relevant in pre-change trials. By comparing the error rates in
trials before and after a change, we determined the switch costs
in younger and older participants. We assumed that there is a
decrease in performance in post-change trials relative to the pre-
change level and that this decrease is stronger in the older, than
in the younger, group.
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The electrophysiological correlates of change processing were
investigated by analysis of ERPs. The most prominent ERPs
associated with early stimulus processing are the P1, reflecting
rather exogenous influences (Grunwald et al., 2003), and the
N1, reflecting the earliest stages of attentional focusing and
orientation to novel stimuli (Hillyard et al., 1973; Näätänen
and Picton, 1987). Correlates of subsequent processing stages
are represented by the P2, N2, and N400 deflections that
depend more on the listener’s attentional state: The P2 is
associated with target detection and attentional allocation (Potts,
2004), while the N2 usually reflects inhibitory control and
suppressing irrelevant information (Folstein and Van Petten,
2008). Correlates of language perception and extraction of
semantic speech information are given by the N400 (e.g., Kutas
and Federmeier, 2011; Davis et al., 2013). Finally, the late positive
component (LPC) was analyzed, which has been associated with
context updating and evaluation and processing of stimulus
meaning (Juottonen et al., 1996). This component has recently
been found to be sensitive to age in speech perception (Davis and
Jerger, 2014).

Materials and Methods

Subjects
A total of 22 younger (11 female, mean age 24.0 years, age
range 18–35 years) and 22 older (11 female, mean age 64.3
years, age range 55–72 years) adults participated in the study.
The younger subjects were students at local universities; the
older subjects were recruited by advertisements in regional
daily newspapers. All participants reported to be healthy, free
of medication during the experimental sessions, and without
any history of neurological, psychiatric, or chronic somatic
problems. All participants wrote with their right hand. Subjects
underwent a pure-tone audiometry (Oscilla USB 330; Inmedico,
Lystrup, Denmark) at 125–8000Hz. Audiograms indicated mild
to moderate presbyacusis in the older group. However, in all
participants hearing was normal (thresholds ≤30 dB hearing
level) in the range below 4000Hz. Prior to experimentation,
all subjects gave their written informed consent to participate
in the study. The study conformed to the Code of Ethics of
the World Medical Association (Declaration of Helsinki) and
was approved by the local Ethical Committee of the Leibniz
Research Centre for Working Environment and Human Factors,
Dortmund, Germany.

Apparatus, Stimuli, and Task
Experiments were conducted in a dimly illuminated, video-
controlled, electrically shielded, and sound-proof room (5.0
× 3.3 × 2.4m3) with pyramid-shaped foam acoustic panel
on ceiling and walls. The floor was lined with a sound-
absorbing woolen carpet. The ambient background noise level
was below 20 dB(A). The subject was seated in a comfortable,
vertically adjustable chair in the center of the room. The
position of the head was held constant by a chin rest. To
create a free-field scenario, stimuli were presented via four
broad-band loudspeakers (SC 5.9, Visaton, Haan, Germany),
mounted in front of the subject at a distance of 1.5m from

the center of the head (Figure 1A). The loudspeakers were
arranged at ear level in the horizontal plane and were located
at −45◦, −15◦ (left), 15◦, and 45◦ (right) azimuth. The
loudspeakers were selected on the basis of similar efficacy and
frequency response curves to minimize output and fidelity
differences. Loudspeakers were controlled by custom-made
amplifiers and software. Speech stimuli were digitally recorded at
48 kHz sampling rate and 16-bit resolution in a sound-proof and
anechoic environment using a freestanding microphone (MCE
91, Beyerdynamic, Heilbronn, Germany), a mixing console
(1202-VLZ PRO, Mackie, Woodinville, WA), and an external
soundcard (Terrasoniq TS88 PCI, TerraTec Electronic, Nettetal,
Germany). Stimuli were processed offline using CoolEdit 2000
software (Syntrillium Software Co., Phoenix, AZ, USA) and
converted to analog form via a computer-controlled external
soundcard (Terrasoniq TS88 PCI, TerraTec Electronic, Nettetal,
Germany).

The speech stimuli consisted of eight one or two syllable
names of companies (Audi; Bosch; Deutz; Eon; Gerri; Otto;
Merck; Tui) and eight one or two syllable German numerals
(Eins [1]; Zwei [2]; Drei [3]; Vier [4]; Sechs [6]; Sieben [7]; Acht
[8]; Neun [9]). These stimuli were spoken by two male and two
female monolingual native German adults of young and middle
age, without any dialect or speech disorders. The fundamental
frequencies of their voices were 123 and 126Hz for the male
speakers, and 162 and 171Hz for the female speakers. The overall
duration of each company name and each number was 500ms.

Word pairs of a company’s name and a numeral simulating
its stock price (e.g., “Bosch—eins” [“Bosch—one”] or “Deutz—
acht” [“Deutz—eight”]) were presented to the participants.
Company names and numerals were separated by a 100-ms
silent interval, such that the overall duration of each word pair
was 1100ms. The word stimuli were presented at a level of
65 dB(A). Each company name was combined with each of the
eight numerals, thus resulting in 64 word pairs. Participants
were instructed to attend to a given target company (either
“Bosch” or “Deutz,” balanced across participants). Using a two-
alternative forced-choice paradigm, they had to press the upper
button of a keypad when the value of the target company
was above five (values “6,” “7,” “8,” or “9”; each in 12.5% of
trials), and the lower button when the value was below five
(values “1,” “2,” “3,” or “4”; each in 12.5% of trials), using
the index and the middle finger of the dominant hand. The
participants were instructed to respond after presentation of
the company value, but before the onset of the next trial. Each
combination of target company and numeral was spoken by
the same speaker and was presented via the same loudspeaker
for a variable number of trials. Concurrent company names
paired with different numerals were simultaneously presented
via the three other loudspeakers (Figure 1B). The onsets and
offsets of the mixture of the four company names and numbers
were approximately aligned in time (Figure 1C). The subjects
were instructed to ignore this concurrent speech information.
To generate a dynamic multi-speaker scenario, speakers and
locations of the concurrent companies and numerals randomly
changed between trials in a way that within each trial (a) all four
speakers were active, (b) each company name and value occurred
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FIGURE 1 | Schematic illustration of the simulated stock-price monitoring scenario. (A) Four loudspeakers were mounted at different locations to the left and
right of the subject’s median plane. Stimuli were displayed simultaneously via all loudspeakers. (B) Stimuli were spoken by two female (f1, f2) and two male (m1, m2)
speakers and consisted of sequences of short company names and numbers. The participants responded to the value of a given target company (here “Bosch,” in
bold print), while all other company names had to be ignored. The location of the target company (Location Change), the speaker voice (Voice Change), or both
(LocVoice Change) changed following a pseudo-random scheme. Analyses were focused on sequences preceding (Pre) and following a change trial (Post1, Post2,
Post3). (C) Superimposed acoustic waveforms of the four streams of words (here: company names “Bosch,” “Deutz,” “EON,” and “Audi,” and numbers “eins,” “vier,”
“sechs,” and “sieben”) presented at different locations.

only once, and (c) always two numerals were above and below
the critical value of five. After three, four, five, or six subsequent
trials (4.5 trials on average) the speaker or the location of the
target company, or both speaker and location changed following
a pseudo-randomized scheme.

In each session, a total of 1472 trials was presented in four
blocks, each lasting about 20min. The four blocks were separated
by short rest breaks. Each trial lasted for 3 s, leaving 1.9 s after
the end of the numeral for response. Among the 1472 trials,

there were 324 change trials, in which either the speaker voice
(108 trials), the speaker location (108 trials), or both voice and
location (108 trials) changed. Among the 324 change trials, there
were 81 changes in which the Post3 trial coincided with the
Pre trial of the subsequent change. These Pre trials were not
included in the analysis. No feedback was given at any time
during the experiment. Prior to experimentation, the participants
were familiarized with the task in a practice block of about 20
trials, in which sequences of target companies and numbers were
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presented isolated, without concurrent stimuli. The timing of
the stimuli and the recording of the participants’ responses were
controlled by custom-written software.

Data Recording and Analysis
Behavioral Data
The present study was focused on age-related differences in
the processing of changes in dynamic multi-speaker scenarios.
Therefore, the three change conditions (voice, location, both)
were pooled to improve the signal-to-noise ratio of the EEG
data and to reduce the complexity of the analysis. The rates of
correct responses of younger and older subjects were analyzed
for trials preceding a change (Pre) and following a change (Post1,
Post2, Post3). The rates of correct responses were subjected to
a Two-Way repeated-measures analysis of variance (ANOVA)
with the between-subjects factor Age (younger, older) and the
within-subjects factor Sequence (Pre, Post1, Post2, Post3). In
addition, possible effects of changes in speaker setting were
assessed by subjecting the differences in correct responses (post-
change minus pre-change) to a Two-Way ANOVA with the
between-subjects factor Age (younger, older) and the within-
subjects factor Sequence (Post1, Post2, Post3). Given that the
participants were instructed to wait with their response until
the company value was presented, we refrained from analysing
response times. For comparison between sequence conditions,
Bonferroni-corrected Post-hoc t-tests were applied, and only
the corrected p-values are reported. Levene’s tests were used
to assess the homogeneity of variance, and the degrees of
freedomwere adjusted if variances were unequal. Only significant
differences in homogeneity of variance between the groups were
reported. Effect sizes were computed to provide a more accurate
interpretation of the practical significance of the findings, using
the partial eta-squared coefficient (η2

p).

EEG Data
The continuous EEG was sampled at 2048Hz using 64
electrodes and a BioSemi amplifier (Active Two; Biosemi,
Amsterdam, Netherlands). Electrode positions were based on the
International 10–10 system. The amplifier bandpass was 0.01–
140Hz. Horizontal and vertical eye positions were recorded by
electro-oculography (EOG) using 6 electrodes positioned around
both eyes. Two additional electrodes were placed on the left and
right mastoids. Electrode impedance was kept below 10 k�. The
raw data were downscaled offline to a sampling rate of 1000Hz,
digitally band-pass filtered (cut-off frequencies 0.5 and 25Hz;
slopes 48 dB/octave), and re-referenced to the linked mastoid
electrodes. The data were segmented into 2900-ms stimulus-
locked epochs covering the period from−100 to 2800ms relative
to speech onset. Data were then corrected for ocular artifacts
using the Gratton, Coles, and Donchin procedure (Gratton
et al., 1983). Individual epochs exceeding a maximum-minimum
difference of 200μV and a maximum voltage step of 50μV per
sampling point were excluded from further analysis (automatic
artifact rejection as implemented in the BrainVision Analyzer
software, Version 1.05; Brain Products, Gilching, Germany). The
remaining epochs were baseline corrected to a 100-ms pre-
stimulus window relative to the onset of the speech stimulus.

Trials containing correct responses were averaged for each
participant.

Peaks of the different ERP deflections were defined as
maximum positivity or negativity within particular latency
windows of the specific waveforms with reference to the onset
of the company name (P1: 10–110ms at FCz; N1: 60–160ms
at Cz; P2: 145–245ms at FCz; N2: 245–345ms at FCz; N400:
380–480ms at FCz). In addition, ERP deflections to the onset
of the numeral were defined (P1n: 20–120ms at FCz; N1n: 80–
180ms at Cz; time ranges relative to the numeral onset). ERP
peak latencies were measured at electrode positions chosen to
be commensurate with previous knowledge of the topographical
scalp distribution of specific ERPs (Smith et al., 1980; Barrett
et al., 1987; Näätänen and Picton, 1987; Lovrich et al., 1988;
Friedman et al., 1993). The choice of these positions was
confirmed by visual inspection of the grand average waveforms.
Topographies of all seven ERPs were plotted for both age-groups
and for Pre, Post1, Post2, and Post3 trials to underline possible
differences in activation. In addition, difference waveforms (Post-
change minus Pre-change) were computed for each participant
and for Post1, Post2, and Post3 trials. The amplitude of the
change-related ERPs (N400diff, frontal and parietal LPCdiff; see
below) were determined for each participant as the mean value of
a 100-ms period centered at the peak latencies (N400diff: 390ms
at Pz; frontal LPCdiff: 550ms at AFz; parietal LPCdiff: 740ms at
Pz). These latencies were determined as mean values averaged
across all participants.

The ERP latencies were subjected to ANOVAs with the
between-subjects factor Age (young, old) and the within-
subjects factor Sequence (Pre, Post1, Post2, Post3). In order
to test potential differences in topography, the ERP amplitudes
were analyzed within arrays of 3 × 3 electrodes around the
electrode position of maximal activation. These nine electrodes
were grouped in form of a rectangular grid that consisted of
three adjacent electrode positions in the frontal dimension and
three adjacent electrode positions in the horizontal dimension.
Electrode arrays around FCz (F3, FC3, C3, Fz, FCz, Cz, F4, FC4,
C4) were used for P1, P2, N400, and P1n, arrays around Cz (FC3,
C3, CP3, FCz, Cz, CPz, FC4, C4, CP4) for N2 and N1n, and an
array around CPz (C3, CP3, P3, Cz, CPz, Pz, C4, CP4, P4) for N1.
In addition, arrays around Pz (CP3, P3, PO3, CPz, Pz, POz, CP4,
P4, PO4) were used for N400diff and parietal LPCdiff, and an array
around FCz (AF3, FC3, CP3, AFz, FCz, CPz, AF4, FC4, CP4)
for the frontal LPCdiff. This resulted in two additional within-
subjects factors, Frontality and Laterality, with Frontality being
composed of frontal (e.g., F3, Fz, F4), fronto-central (FC3, FCz,
FC4), and central (C3, Cz, C4) positions, and Laterality being
composed of left (F3, FC3, C3), middle (Fz, FCz, Cz), and right
(F4, FC4, C4) positions. The amplitude values of the ERPs were
subjected to Four-Way ANOVAs (Age, Sequence, Frontality, and
Laterality).

Results

Performance
Changes in target speaker location, target speaker voice, or both
decreased the rates of correct responses of younger and older
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subjects, relative to the pre-change level. Although the amount
of this decrease in performance differed between the different
types of changes (withmost pronounced effects after changes in
location and changes in both location and voice), the overall
pattern was the same, namely a decrease in Post1 trials and
a re-approach to the pre-change level thereafter (Figure 2A).
Aggregated across the different types of changes, it lasted up
to the Post3 trial until the rate of correct responses had re-
approached the pre-change level (Figure 2B; left panel). A 4 × 2
ANOVA with Sequence (Pre, Post1, Post2, Post3) as within-
subjects factor and Age as between-subjects factor indicated a
main effect of Sequence [F(3, 126) = 120.8; p < 0.001; η2

p =
0.74]. Post-hoc Bonferroni-corrected t-tests revealed significant
differences in correct responses between all four sequences (Pre:
86.8%; Post1: 73.5%; Post2: 79.7%; Post3: 84.4%; all p < 0.001).
Older participants performed slightly worse than the younger
ones (78.6 vs. 83.6% correct responses), but the main effect of
Age failed to reach clear statistical significance [F(1, 42) = 3.8;
p = 0.057; η2

p = 0.08]. There was no interaction of Age
and Sequence (p > 0.05). Also, an additional t-test did not
indicate a significant difference in the rates of correct responses

between younger and older adults in Pre trials [t(42) = 1.43;
p < 0.05].

In order to further analyze the effect of Sequence on
performance, the percentage decrease in correct responses in
Post1, Post2, and Post3 trials (relative to Pre trials) was computed
and these normalized data were submitted to a Sequence by
Age ANOVA. There was a main effect of Sequence [F(2, 84) =
85.1; p < 0.001; η2

p = 0.76], resulting from the recovery
of performance in post-change trials (Figure 2B, right panel).
Post-hoc t-tests revealed significant differences between all three
sequences (Post1: −15.4%; Post2: −8.2%; Post3: −2.7%; all p <

0.001). Furthermore, there was a main effect of Age [F(1, 42) =
4.6; p < 0.05; η2

p = 0.10], indicating that the older participants
showed a stronger decline in performance in trials following a
change than the younger ones (−10.2 % vs. -7.3 %). Even though
the ANOVAdid not indicate an interaction (p > 0.05), additional
t-tests indicated significant differences between younger and
older participants in the percentage decrease of correct responses
in Post2 trials [t(42) = 2.54; p < 0.05] and in Post3 trials
[t(42) = 2.804; p < 0.01], but not in Post1 trials [t(42) = 0.97;
p > 0.05].

FIGURE 2 | Behavioral results. (A) Rates of correct responses of younger and older adults for Pre, Post1, Post2, and Post3 sequences, and for changes in target
speaker location, voice, and combined changes in location and voice (LocVoice). (B) Rates of correct responses (left panel) and changes in the rate of correct
responses (same data normalized with reference to pre-change levels; right panel) of younger and older adults, averaged across all types of changes, shown for Pre,
Post1, Post2, and Post3 sequences. Error bars are standard errors across participants (N = 22; ***p < 0.001).
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Event-related Potentials
The onset of the company names produced a typical fronto-
central P1-N1-P2 complex that peaked at 60, 112, and 198ms,
respectively (averaged across all sequences and both age groups;
Figure 3). Thereafter, there were two negative peaks at 300ms
(N2) and 429ms (N400), which were especially pronounced in
the younger group. About 600ms after the company onset, the
number onset elicited a second complex of ERPs that mainly
consisted of the P1n and N1n components, peaking at 71 and

130ms after the number onset. In the analyses described below,
all these ERP components are compared between groups and
sequences.

P1
The topography of the P1 showed a frontal positivity for the
younger group, and a fronto-central positivity for the older
group (Figure 3; Table 1). There was an increase in P1 amplitude
immediately after the change that was followed by a decrease

FIGURE 3 | Grand-average ERPs. (A) ERPs at Fz, Cz, and Pz plotted as a function of time relative to the speech onset and (B) topographies of the ERP
components to the onset of the company name (P1, N1, P2, N2, and N400) and value (P1n and N1n) for Pre, Post1, Post2, and Post3 sequences, and for younger
and older participants.
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(Figure 4A). Post-hoc t-tests indicated a larger Post1 than Pre
amplitude (p < 0.05). There were no effects of Age or Sequence
on P1 latency.

N1
The topography of the N1, showed a centro-parietal negativity
and the older group a central negativity (Figure 3; Table 1).
Older participants had a much larger N1 than the younger ones.
There was a slight decrease in N1 amplitude after a change
that appeared to be more pronounced in Post1 trials in the

younger group, and in Post2 trials in the older group (Figure 4B).
However, separate Post-hoc t-tests for the two age groups did not
indicate significant differences between sequences, neither for the
younger, nor for the older, group. There were no effects of Age or
Sequence on N1 latency.

P2
The P2 topography showed a central positivity for the
younger group, and a fronto-central positivity for the older
group (Figure 3; Table 1). Older participants showed a broader

FIGURE 4 | Amplitudes of (A) P1, (B) N1, (C) P2, (D) N2, (E) N400, (F) P1n, and (G) N1n (averaged across the displayed electrode arrays) for Pre, Post1,
Post2, and Post3 sequences, shown for younger and older participants. Error bars are standard errors across participants (N = 22). Significance bars and
asterisks indicate significant differences between sequences in the younger group (solid), in the older group (dotted), or averaged across both groups (bold; *p < 0.05;
**p < 0.01).
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distribution than the younger ones. There was an increase in P2
amplitude after the change followed by a decrease. Post-hoc t-
tests indicated a larger P2 amplitude in Post1 trials than in Pre
trials and in Post3 trials (both p < 0.05). This pattern differed
between age groups: While the increase in Post1 amplitude was
pronounced over mid-frontal scalp areas mainly in the younger
group, in the older group the increase in P2 amplitude was visible
in Post1 and Post2 trials and showed a broader topographical
distribution (Figure 3B). In addition, P2 latency was generally
shorter in younger, than older, subjects (192 vs. 206ms).

N2
The topography of the N2 showed a mid-central negativity
(Figure 3; Table 1) that was much stronger in the younger, than
in the older, group, in particular over frontal scalp areas). The N2
amplitude increased in Post1 trials and decreased again in Post2
and Post3 trials (Figure 4D). In both age groups, this pattern was
especially pronounced over centro-parietal areas, where Post-hoc
t-tests indicated a significant N2 increase in Post1 trials (relative
to Pre, Post2, and Post3 trials), and a N2 decrease in Post 2 trials
(relative to Post3 trials; all p < 0.05). Younger subjects had a
shorter N2 latency than the older ones (293 vs. 307ms).

N400
The N400 topography showed a mid-fronto-central negativity
(Figure 3; Table 1), which was stronger in the younger, than
in the older, group. There was an increase in N400 amplitude
after a change that was followed by a decrease (Figure 4E). This
pattern was more pronounced in younger, than older, subjects.
Accordingly, Post-hoc t-test indicated a significant increase in
N400 amplitude over central areas in Post1 trials (relative to Pre,
Post2, and Post3 trials) in the younger group (all p < 0.005),
while amplitudes in Post2 trials were reduced relative to Post1
and Post3 trials in the older group (both p < 0.05). There was
a slight effect of Sequence on N400 latency, although Post-hoc t-
tests did not indicate significant differences between sequences.
Also, there was no effect of Age on N400 latency.

P1n
The P1n to the onset of number had a maximum over left-
central areas (Figure 3; Table 1), and was stronger in older, than
younger, subjects. Moreover, the age groups differed in the effect
of Sequence (Figure 4F): While younger subjects showed a P1n
decrease in Post1 trials (and an increase thereafter), older subjects
showed a slight P1n increase in Post1 and Post2 trials. Post-hoc t-
tests indicated significant differences in P1n amplitude between
Post1 and Post2 trials in the younger group (p < 0.05), but no
differences in the older group. Older subjects had an earlier P1
than younger ones (664 vs. 677ms).

N1n
The N1n topography showed a fronto-central negativity
(Figure 3; Table 1). Older subjects had a larger N1n than the
younger ones, and the N1n showed a broader distribution across
the scalp. There was a strong decrease in N1n amplitude after
the change, with a following recovery. This pattern was more
pronounced in the older, than younger, group. Accordingly, Post-
hoc t-tests indicated an N1n reduction in Post1 and Post2 trials

relative to Pre and Post3 trials in the older group (all p < 0.005),
but no differences in the younger group. There were no effects of
Age or Sequence on N1n latency.

Difference Waves
The analysis of the difference waveforms (Post minus Pre)
mainly revealed two deflections, that were most pronounced
over parietal scalp areas: a negative deflection peaking at
about 390ms after speech onset (N400diff) and a late positive
component (parietal LPCdiff) peaking at about 740ms (Figure 5).
In addition, the older subjects showed a prominent positive
deflection over right-frontal scalp regions (frontal LPCdiff) that
peaked about 550ms after speech onset and that was not found
in the younger group. For analysis of these deflections, the
mean amplitudes within 100-ms time windows around the peak
latencies were computed and subjected to Four-Way ANOVAs
with the between-subject factor Age (younger, older) and the
within-subject factors Sequence (Post1, Post2, Post3), Frontality,
and Laterality.

N400diff
The topography of the N400diff showed a parietal negativity for
the younger subjects, and a centro-parietal negativity for the
older adults (Figure 5B; Table 2). The N400diff mainly occurred
in Post1 trials (mean −0.82μV, SE 0.14μV), turned into a slight
positivity in Post2 trials (0.41μV, SE 0.09μV) and disappeared in
Post3 trials (0.02μV, SE 0.07μV; Table 1; Figure 6A). Post-hoc t-
test indicated significant differences between all three sequences
(all p < 0.001). The N400diff in Post1 trials was lateralized to the
left in the younger group and to the right in the older group. No
further main effect or interaction was found.

Parietal LPCdiff
The topography LPCdiff showed a mid-parietal maximum for
the younger group, and a mid-centro-parietal maximum for
the older group (Figure 5B; Table 2). The maximum amplitude
was measured in Post1 trials (mean 1.19μV, SE 0.18μV) and
decreased in Post2 trials (0.86μV; SE 0.11μV) and in Post3
trials (0.18μV, SE 0.09μV). Post-hoc t-tests indicated significant
differences between all three sequences (all p < 0.05). No further
main effect or interaction was found.

Frontal LPCdiff
In the older group, a strong frontal LPCdiff with a right anterior-
frontal maximum occurred in the time window between 500 to
600ms after speech onset, i.e., immediately before the number
stimulus started. This frontal LPCdiff did not occur in the younger
group, where a left-lateralized centro-parietal negativity was
found (Figure 5B; Table 2). The positivity and the negativity
were apparent only in Post1 trials and disappeared in Post2 and
Post 3 trials. Moreover, there were Age × Sequence (Figure 6C)
and Age × Sequence × Frontality interactions. Separate Post-
hoc t-tests were conducted for the older group at anterior-
frontal electrodes and for the younger group at centro-parietal
electrodes. These t-tests indicated a significantly larger frontal
LPCdiff in Post1 trials (mean 1.25μV, SE 0.26μV) than in Post2
trials (0.27μV, SE 0.19μV) and in Post3 trials (0.09μV, SE
0.18μV) for the older group (both p < 0.005), but no difference

Frontiers in Neuroscience | www.frontiersin.org 10 September 2015 | Volume 9 | Article 341

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Getzmann et al. Age and speech perception

FIGURE 5 | Change-related ERPs. (A) Difference waveforms (Post minus
Pre) at AFz, Cz, and Pz plotted as a function of time relative to the speech
onset and (B) topographies of the change-related ERPs (N400diff , frontal and
parietal LPCdiff ) for Post1, Post2, and Post3 sequences, shown for younger
and older participants.

between Post2 and Post3 trials (p > 0.05). For the younger
group, the amplitudes in Post1 (−0.62μV, SE 0.29μV), Post2
(0.83μV, SE 0.18μV), and Post3 trials (0.14μV, SE 0.15μV)
all differed significantly (all p < 0.01). Finally, to test whether
the anterior-frontal positivity of the older group was related
to performance in speech perception, the Pearson correlation
between the amplitude of the frontal LPCdiff (averaged across the
anterior-frontal electrodes) and the individual rates of correct
responses (averaged across Post1, Post2, and Post3 trials) was

computed. There was a slight, but significant positive correlation
(r = 0.43; p < 0.05), indicating that a higher rate of correct
responses was associated with a greater frontal LPCdiff.

Summary of ERP Results
Changes in speaker settings resulted in increased P1, P2, N2,
and N400 amplitudes. Moreover, the difference waveforms (Post
minus Pre) revealed a pronounced N400diff and a parietal LPCdiff
complex in trials immediately after the change, which decreased
in amplitude between trials Post1 and Post3. Older participants
showed larger N1, P1n, and N1n amplitudes than younger
participants, whereas younger participants showed larger N2 and
N400 amplitudes than the older participants. In addition, the
younger group showed an increase in N400 amplitude after the
change that was not found in the older group. The older group
showed a decrease in N1n amplitude after the change and a
prominent frontal LPCdiff that did not occur in the younger
group.

Discussion

A change in speaker settings in a multi-speaker scenario declined
the performance in speech perception immediately after the
change, as was evident by the profound decrease in the rate of
correct responses. This decline is in accordance with the switch
costs assumed by Koch et al. (2011). The present findings are
also in line with results of a recent study in which switch costs
associated with conversational turn-taking were investigated
in a sentence-recall task in younger adults (Lin and Carlile,
2015). Here, relative to a non-changing condition, shifts in
spatial attention from one speaker position to another within
a sentence decreased the performance of word recall by about
11%. The switch costs could result from re-selection of the target
speaker among the concurrent speech information and from re-
focusing of attention on the new target. As suggested by Shinn-
Cunningham and Best (2008), it may took some time for the
processes of re-selection and re-focusing to be performed, as
indicated by a rather slow recovery of performance in trials
following a change. In fact, the rate of correct responses was
reduced even in Post2 trials and re-approached the pre-change
level not until Post3 trials. These results also show that continuity
in an auditory scene increases the efficacy of object selection and
focusing of attention (Best et al., 2008), at least until the next
change occurred.

Similar as in our recent study (Getzmann et al., 2015a), the
older participants showed a slightly worse performance than
the younger ones in general, suggesting that they had more
difficulties extracting the relevant information out of the stream
of concurrent speech stimuli. However, this difference failed to
reach statistical significance. Most important is that the older
adults had more difficulties with a change in speaker setting,
as indicated by the stronger decline in performance in trials
following a change. While the age groups did not significantly
differ before and immediately after a change, the older group
showed a stronger decrease in performance (relative to the pre-
change level) than the younger group in Post2 and Post3 trials.
In fact, even in the third sequences after a change the older
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TABLE 2 | Main effects (F-values and η2p) of Age and Sequence as well as Age × Sequence interactions on amplitudes (additional factors Frontality and
Laterality) of the difference ERP (Post minus Pre).

Amplitude N400diff Parietal LPCdiff Frontal LPCdiff

df F η2p F η2p F η2p

Age 1, 42 3.2 0.07 0.3 0.01 3.9 0.09

Sequence 2, 84 58.3*** 0.58 32.6*** 0.44 4.0* 0.09

Age × Sequence 2, 84 0.5 0.01 1.8 0.04 12.7*** 0.23

Laterality 2, 84 3.0 0.7 5.7** 0.12 14.5*** 0.26

Age × Laterality 2, 84 0.1 0.1 0.3 0.01 0.2 0.01

Frontality 2, 84 2.3 0.5 3.9* 0.09 0.4 0.01

Age × Frontality 2, 84 5.1** 0.11 3.9* 0.09 3.0 0.07

Laterality × Frontality 4, 168 1.5 0.04 0.7 0.02 3.1* 0.07

Sequence × Laterality 4, 168 0.8 0.02 1.4 0.03 2.7* 0.06

Sequence × Frontality 4, 168 1.6 0.04 8.3*** 0.16 29.8*** 0.42

Age × Lat × Front 4, 168 1.4 0.03 1.5 0.04 1.1 0.03

Age × Seq × Lat 4, 168 3.7* 0.08 1.7 0.04 0.3 0.01

Age × Seq × Front 4, 168 0.3 0.01 2.7* 0.06 2.9* 0.07

Seq × Lat × Front 8, 336 1.3 0.03 1.2 0.03 2.1* 0.05

Age × Seq × Front × Lat 8, 336 1.6 0.04 1.8 0.04 2.0 0.05

Significant effects are in bold.
*p < 0.05; **p < 0.01; ***p < 0.001.

group performed worse than the younger group, indicating that
it obviously took longer for the older participants to recover from
the distraction resulting from the change.

This observation is in line with previous findings, in which
the processing of relevant auditory stimuli before and after the
occurrence of a task-irrelevant event was investigated in younger
and older adults. In a cross-modal oddball task, the increase in
response times to standard stimuli following a distracting deviant
stimulus (relative to standards preceding the deviant) was larger
in older, than in younger, participants (Parmentier and Andrés,
2010). Recent ERP findings from a dynamic speech perception
task indicated that this prolonged post-deviance distraction was
associated with a reduced and delayed attentional and inhibitory
control, affecting both the handling of a distracting event as such
and the auditory input following the distracting event (Getzmann
et al., 2014b). The results also suggested that the processing
of a task-irrelevant, distracting stimulus feature (i.e., a change
in the spatial location of a target speaker) was prolonged in
the older group (Getzmann and Wascher, under review). The
analysis of the ERPs in the present study revealed that age-related
differences in the handling of changes in speaker settings were
associated with differences in electrophysiological measures.
These differences were mainly found in the later components
(N400, P1n, N1n) and frontal LPCdiff, while modulation of the
earlier components (P1, N1, P2, and N2) and the parietal N400diff
and LPCdiff by changes in speaker settings were quite similar in
younger and older subjects (cf. Figures 4, 6).

Age-related Differences in Change Processing in
N400, P1n, and N1n
The younger group had a greater fronto-central N400 amplitude
and, even more important, showed an increase in N400

amplitude after a change in speaker settings that was not found
in the older group. Age-related declines in N400 have also been
found in previous studies, e.g., in semantic categorization tasks
(Woodward et al., 1993; Kutas and Iragui, 1998; Federmeier et al.,
2002), in a multi-speaker word-pair semantic categorization task
(Davis et al., 2013), and in a speech-in-noise perception task,
in which the N400 was nearly absent in the older group and in
which the N400 mainly occurred in a multi-speaker condition
(Getzmann et al., 2015a). TheN400 is assumed to be a correlate of
processing of meaningful (or potentially meaningful) stimuli that
is typically linked to language perception. It has been related to a
wide range of cognitive functions, comprising orthographic and
phonological analysis such as word recognition, integration of a
word’s meaning into the preceding context, as well as activation
of access to semantic memory within a comprehension network
(for review, see Kutas and Federmeier, 2011). The N400 has
also been related to inhibition (Debruille, 2007). In a study of
knowledge inhibition, the N400 elicited by distractors was greater
when distractors had to be ignored than attended. Moreover,
participants who performed well in ignoring the distractors
had a larger N400 amplitude than poor ignorers (Debruille
et al., 2008). In a related study, words elicited a more negative
N400 when their meanings were task inappropriate than when
these meanings had to be used (Shang and Debruille, 2013).
These results were interpreted in a way that the N400 could
reflect processes of inhibition of representations that have been
inappropriately activated. In the present task, the increase in
N400 amplitude that was found after a change in the younger
group could indicate increased speech processing and enhanced
extraction and processing of meaningful speech information as
well as increased inhibition of the concurrent speech content in
trials following a change. The absence of an N400 increase in the
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FIGURE 6 | Amplitudes of the change-related ERPs [(A) N400diff,
(B) parietal and (C) frontal LPCdiff; averaged across the displayed
electrode arrays] for Post1, Post2, and Post3 sequences, shown for
younger and older participants. Error bars are standard errors across
participants (N = 22). Significance bars and asterisks indicate significant
differences between sequences in the younger group (solid), in the older group
(dotted), or averaged across both groups (bold; *p < 0.05; **p < 0.01;
***p < 0.001).

older group, on the other hand, suggests that these subjects did
not adapt these processes to the changing speaker settings.

The P1n and N1n components were elicited by the second
speech stimulus, i.e., the numerals following the company names.
Older participants had an overall greater P1n than the younger
ones. Moreover, younger subjects showed a P1n decrease in Post1
trials (and an increase thereafter), which was not found in the

older group. A decrease in P1 amplitude has been observed when
a target stimulus was presented at a location contralateral to the
side of attention (e.g., Mangun and Hillyard, 1991; Van Voorhis
and Hillyard, 1977). Within the theoretical framework of the
“cost of attention” (Luck et al., 1994), the P1 decrease could
indicate the cost of attending to an incorrect location. Thus,
the suppression of P1n could be interpreted as representing the
process of stopping to attend to one location or speaker and of
shifting the attention to the location or speaker where the target
stimulus was currently located. This interpretation should be
treated with caution, however, because the decrease of the Post1
P1 could—at least in part—result from a temporal overlap with
the increase in Post1 N400 that was observed in the younger, but
not in the older, group (cf. Figure 3).

Older participants showed a strong decrease in N1n amplitude
after a change and a recovery thereafter, while no significant
decrease in N1n was found in the younger group. Assuming the
greater N1n of the older group (as seen in the N1 and in the
pre-change N1n; cf. Figures 4B,G) to reflect attentional processes
related to a compensatory increase of early stimulus processing,
the decline in N1n observed after a change could indicate that
older adults had difficulties tomaintain this activation in the trials
following a change.

Change-specific Processes as Revealed by
Difference Waveforms
The subtraction of post-change waveforms from the pre-change
waveforms eliminated genuine processes of speech perception
(as were present in pre- and post-change trials) and allowed to
study ERPs related to the processes of changes in speaker setting.
There was a pronounced frontal positivity (the frontal LPCdiff)
that only occurred in the older group. The frontal LPCdiff had
a right anterior-frontal maximum and was most pronounced in
Post1 trials and disappeared in Post2 and Post 3 trials. A frontal
LPCdiff was also observed by Davis and Jerger (2014) who related
it to an age-related frontal shift that is typically found in older
populations (for review, see Friedman et al., 1997). In the present
context, the frontal LPCdiff could indicate a stronger orientation
to (and perhaps distraction by) the change in speaker setting
of the older participants that—consequently—would result in
a prolonged capturing of attention toward the task-irrelevant
change in speaker settings. However, there was a significant
positive correlation of the amplitude of frontal LPCdiff and speech
perception of older participants, indicating that higher individual
performance came along with a greater frontal activation. This
is in contrast to the assumption that the frontal LPCdiff reflects
a negative effect, i.e., in form of a distraction by the change
in speaker setting. It appears more plausible that an age-
related compensatory mechanism was at work that has also been
observed in related speech-perception tasks for the fronto-central
P2 (Getzmann et al., 2015b) and P3a components (Getzmann
and Falkenstein, 2011). Increased prefrontal activation is usually
related to the allocation of attentional resources, and the frontal
LPCdiff could reflect a more effortful processing of speech
stimuli, based on recruitment of frontal areas. Consistent with
the decline-compensation hypothesis (Wingfield and Grossman,
2006), the frontal LPCdiff can therefore be interpreted within the
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theoretical framework of a compensation approach (e.g., Cabeza
et al., 2002; for review, Schneider et al., 2010), in which deficits in
speech perception are compensated by increased of allocation of
general processing resources.

In addition to the frontal LPCdiff, there was a parietal
negativity and positivity (i.e., the parietal N400diff and LPCdiff,
respectively) that were observed in both age groups. As already
discussed above, the N400 may be related to different aspects of
speech perception (for review, see Kutas and Federmeier, 2011).
The pronounced N400diff found here could be associated with the
mismatch between the current and the expected linguistic input
that occurred when the target speaker changed. There is evidence
that a repeated presentation of words reduces the N400, whereas
a violation of the repetition increases the N400 (for review, see
Kutas et al., 2006). The mismatch between the expected target
speaker/target location and the current speaker setting could have
triggered an increase in speech processing, that is, an enhanced
phonological analysis of the linguistic input, possibly associated
with the search of the relevant information after the target
speaker has changed. Here, differences between the N400diff (as
observed after a change) and the N400 (as observed in each trial)
should be noted: The N400diff has a parietal topography and
occurred in younger and older adults, while the N400 showed a
fronto-central topography and was much stronger in the younger
group. Thus, the processes reflected by the parietal N400diff did
obviously not differ between the younger and older group, while
the processes reflected by the N400 appeared to be declined in
the older group. However, further research will be necessary
to determine the specific characteristics of the change-related
N400diff in the context of speech perception in multi-speaker
environments.

The N400diff was followed by the parietal LPCdiff. A similar
observation has recently been reported in a multi-speaker word-
pair semantic categorization task, in which younger and middle-
aged adults responded to an attended stream of words while
ignoring competing speech from a different location (Davis
and Jerger, 2014). The LPC is usually found to be maximal
over parietal scalp areas and is assumed to reflect decision-
making and target selection (Picton, 1992; Kok, 1997) as well
as context updating and evaluation and processing of stimulus
meaning (Juottonen et al., 1996). In the present task, the parietal
LPCdiff could reflect a shift of attention toward the new target
speaker and/or location. In this regard, the role of posterior
parietal cortex (PPC) for voluntary attention switching has to
be discussed. There is evidence from neuroimaging studies that
switching attention in the auditory domain recruits similar
cortical networks as engaged by switching attention between
visual objects (Corbetta et al., 2008). When listeners switched
attention between two streams of different voices or between
the two ears, activation in the PPC was higher than in a non-
switch condition (Shomstein and Yantis, 2006). Similarly, the
right temporo-parietal junction was more engaged in switched,
than non-switched, trials (Larson and Lee, 2013, 2014; for review,
see Lee et al., 2014). This finding is consistent with evidence from
vision, in which the right temporo-parietal junction operates as
a “filter” for incoming stimuli by suppressing attention switching
to distractors (Shulman et al., 2007) and by acting as a “circuit

breaker” to trigger the spatial reorientation of the focus of
attention to the new speaker and location of interest (Corbetta
and Shulman, 2002). Although it is clear that ERP topographies
cannot directly be related to underlying brain structures, it
might be conceivable that the parietal N400diff and LPCdiff reflect
electrophysiological correlates of such processes. Given that there
were no differences between younger and older participants, it
seems as if these processes were preserved in the older group.

Effects of Age and Change Processing on P1, N1,
P2, and N2
The P1 was increased in trials following a change, relative to
pre-change level, independent of the subjects’ age. The P1 is
known to be elicited relatively early in the auditory cortical
processing stream (e.g., Grunwald et al., 2003) and is mainly
driven by physical characteristics of the auditory stimulus. Given
that changes in speaker settings occurred in each trial (as the
concurrent speaker voices and locations changed between trials;
cf. Figure 1B), it appears unlikely that changes in the physical
characteristics of the target speaker were related to the increase
in P1. Rather, the increase in P1 amplitude suggests that the
early stimulus processing was affected by a (pre-)attentional
detection of a change in the speaker scenario (for evidence of an
attention-based modulation of the visual P1, see, e.g., Luck et al.,
2000).

While there were no differences in P1 amplitudes, the N1
was greater in older, than younger, participants. The N1 is
usually regarded as a correlate of early, automatic processing
of incoming auditory stimuli (Näätänen and Picton, 1987) that
depends on early attentional processes (Hillyard et al., 1973;
Wascher et al., 2009; Wascher and Beste, 2010; Schneider et al.,
2012; for review, see Luck et al., 2000; Eimer, 2014). Within a
theoretical framework of an early selection model of attention,
the N1 could reflect a sensory gating mechanism of attention,
which facilitates the further processing of the relevant stimulus.
The greater N1 of the older participants is in line with previous
studies (e.g., Yordanova et al., 2004; Getzmann et al., 2015a) and
could indicate stronger early attentional processes that might
be interpreted in accordance with the decline-compensation
hypothesis (Wingfield and Grossman, 2006; Schneider et al.,
2010). Given that there was no effect of sequence, this appeared
to be a more general strategy of the older participants that was
not modulated by changes in speaker settings.

In both age groups, the P2 and N2 amplitudes increased in
trials following a change and decreased thereafter. The functional
significance of the P2 is still not fully understood yet, although
this component is usually assumed to reflect processes of stimulus
evaluation, indexing some aspects of attentional allocation or
stimulus classification (Potts, 2004). The N2 is assumed to
reflect control processes in general (for reviews, see Patel and
Azzam, 2005; Folstein and Van Petten, 2008) and has been
related to conflict processing or inhibitory control of irrelevant
information (e.g., Falkenstein et al., 2002; Melara et al., 2002;
Bertoli et al., 2005). In the present context, the greater P2 and N2
components could reflect the allocation of attentional resources
and the inhibition of the concurrent speech stimuli that was
increased when the target speaker changed. This interpretation
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is in accordance with results of neuroimaging studies in which
correlations between the activation of fronto-temporal cortical
areas and intelligibility of distorted speech stimuli were found
(Davis and Johnsrude, 2003; Hannemann et al., 2007;MacDonald
et al., 2008; Obleser and Kotz, 2010).

The P2 did not differ between age groups in amplitude,
but had a more frontal topography and was delayed in the
older, than in the younger, group. This frontality is in line
with the PASA hypothesis (posterior–anterior shift with aging),
holding that aging is associated with increasing activity over
prefrontal areas that may reflect functional compensation (Davis
et al., 2008). In contrast, the younger group showed a greater
and earlier N2 than the older group, which is in line with
previous studies in which an overall N2 reduction was observed
with aging (e.g., Anderer et al., 1996; Wascher et al., 2011;
Wascher and Getzmann, 2014). This could indicate a less efficient
inhibitory control over the concurrent speech information in the
older group, which may be related to an overall inefficiency to
suppress neural activity associated with irrelevant and distracting
information (for review, see Gazzaley and D’Esposito, 2007),
according to the inhibitory deficit hypothesis (Hasher and
Zacks, 1988). In line with this interpretation, older adults
showed—in contrast to the younger group—a pronounced
frontal LPC in the difference waveform, possibly reflecting
increased attention to, or distraction by, a change in speaker
location (as discussed in Change-specific Processes as Revealed
by Difference Waveform). It should be noted, however, that
the reduction of N2 in the older group was not modulated
by sequence, suggesting that the inhibitory deficits were not

directly related to the deficits found in speech perception after
a change.

Conclusions
Changes in speaker settings in a complex multi-speaker
environment resulted in a decline of the performance in speech
perception that was more serious in older, than younger, adults.
This decline is based on different characteristics of the aging
brain: While the change-related processes of increasing effort in
speech processing and attention switching (as reflected by the
parietal N400diff and LPCdiff) appeared to remain unaffected by
age, older adults showed a stronger allocation of mental resources
to the processing of the speech stimuli after a change in the
auditory environment (indicated by the frontal LPCdiff) and
obviously had a lesser flexible adaptation of speech processing
and inhibition of concurrent speech content (indicated by the
N400) than younger adults. In addition, older persons showed
difficulties in maintaining compensatory activation (indicated by
the N1) that might subserve speech perception in non-switch
trials.
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