@ARTICLE{10.3389/fnins.2015.00355, AUTHOR={Nafissi, Nafiseh and Foldvari, Marianna}, TITLE={Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools}, JOURNAL={Frontiers in Neuroscience}, VOLUME={9}, YEAR={2015}, URL={https://www.frontiersin.org/articles/10.3389/fnins.2015.00355}, DOI={10.3389/fnins.2015.00355}, ISSN={1662-453X}, ABSTRACT={Neurotrophic factor genome engineering could have many potential applications not only in the deeper understanding of neurodegenerative disorders but also in improved therapeutics. The fields of nanomedicine, regenerative medicine, and gene/cell-based therapy have been revolutionized by the development of safer and efficient non-viral technologies for gene delivery and genome editing with modern techniques for insertion of the neurotrophic factors into clinically relevant cells for a more sustained pharmaceutical effect. It has been suggested that the long-term expression of neurotrophic factors is the ultimate approach to prevent and/or treat neurodegenerative disorders such as glaucoma in patients who do not respond to available treatments or are at the progressive stage of the disease. Recent preclinical research suggests that novel neuroprotective gene and cell therapeutics could be promising approaches for both non-invasive neuroprotection and regenerative functions in the eye. Several progenitor and retinal cell types have been investigated as potential candidates for glaucoma neurotrophin therapy either as targets for gene therapy, options for cell replacement therapy, or as vehicles for gene delivery. Therefore, in parallel with deeper understanding of the specific protective effects of different neurotrophic factors and the potential therapeutic cell candidates for glaucoma neuroprotection, the development of non-invasive and highly specific gene delivery methods with safe and effective technologies to modify cell candidates for life-long neuroprotection in the eye is essential before investing in this field.} }