
ORIGINAL RESEARCH
published: 20 October 2015

doi: 10.3389/fnins.2015.00376

Frontiers in Neuroscience | www.frontiersin.org 1 October 2015 | Volume 9 | Article 376

Edited by:

Themis Prodromakis,

University of Southampton, UK

Reviewed by:

Michael Schmuker,

University of Sussex, UK

Christian G. Mayr,

Technische Universitaet Dresden,

Germany

Alexantrou Serb,

University of Southampton, UK

*Correspondence:

Martin Ziegler

maz@tf.uni-kiel.de

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 22 July 2015

Accepted: 28 September 2015

Published: 20 October 2015

Citation:

Ignatov M, Ziegler M, Hansen M,

Petraru A and Kohlstedt H (2015) A

memristive spiking neuron with firing

rate coding. Front. Neurosci. 9:376.

doi: 10.3389/fnins.2015.00376

A memristive spiking neuron with
firing rate coding
Marina Ignatov, Martin Ziegler *, Mirko Hansen, Adrian Petraru and Hermann Kohlstedt

Nanoelektronik, Technische Fakultät, Christian-Albrechts-Universität zu Kiel, Kiel, Germany

Perception, decisions, and sensations are all encoded into trains of action potentials in
the brain. The relation between stimulus strength and all-or-nothing spiking of neurons
is widely believed to be the basis of this coding. This initiated the development of
spiking neuron models; one of today’s most powerful conceptual tool for the analysis
and emulation of neural dynamics. The success of electronic circuit models and their
physical realization within silicon field-effect transistor circuits lead to elegant technical
approaches. Recently, the spectrum of electronic devices for neural computing has been
extended by memristive devices, mainly used to emulate static synaptic functionality.
Their capabilities for emulations of neural activity were recently demonstrated using a
memristive neuristor circuit, while a memristive neuron circuit has so far been elusive.
Here, a spiking neuron model is experimentally realized in a compact circuit comprising
memristive and memcapacitive devices based on the strongly correlated electron
material vanadium dioxide (VO2) and on the chemical electromigration cell Ag/TiO2−x/Al.
The circuit can emulate dynamical spiking patterns in response to an external stimulus
including adaptation, which is at the heart of firing rate coding as first observed by E.D.
Adrian in 1926.

Keywords: memristive devices, negative differential resistor, spiking neuron, neural coding, neuromorphic

systems

INTRODUCTION

In a brain the most prominent processing units are neurons. An archetypical neuron consists of
dendrites (the input), soma (the processing unit), and axon (the output) as schematically shown in
Figure 1A. Information between neurons is encoded into sequences of identical spikes or action
potentials, which appear in spatial and irregular temporal patterns. It is widely believed that in
neurons input stimuli are transacted into a firing rate of action potentials at the output. This
so-called firing rate hypothesis was first recognized in 1926 by E.D. Adrian (Adrian, 1926, 1928)
from the investigation of sensory neurons. Nowadays the firing rate hypothesis is generalized and
considered as the basic encoding scheme of neurons in the primary visual cortex, somatosensory
cortex, auditory cortex, place cells in the hippocampus andmany other brain regions (Barlow, 1961;
Laughlin, 1989; Maass and Bishop, 2001; Gerstner and Kistler, 2002; Natelson, 2013). An additional
important (and already observed by E. D. Adrian in 1926) aspect of neural signal processing is
that neurons only transiently sustain a (high) firing rate, even when the stimulus is permanently
applied (Adrian, 1926, 1928). In other words, the transiently decaying signal is encoded via a
variable action potential firing rate, as sketched in Figure 1B. Adrian interpreted his findings as
a general concept of adaptation in all living species. The decreasing firing rate, while applying a
timely constant stimulus, results in reduced sensation, or in other words the species adapts to the
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outer world (Mausfeld, 2013). In this way sensory adaptation
enables the subtraction of spatial and temporal steady signals
parts, which leads to a signal renormalization and facilitates
the consecutive coding. We would like to emphasize that the
firing rate code hypothesis is nowadays extended even to neurons
far from the receptor neuron and goes beyond the sensory
transduction concept. The concept of spiking neurons is applied
to neurons inmammalian brains, since those neurons are directly
involved in information processing (Bear et al., 2006; Shepherd
and Grillner, 2010).

In more detail, spikes or action potentials are result from
voltage controlled ionic currents in cell membranes and are
short electrical pulses in the millisecond range with a peak-to-
peak amplitude of about 100mV. Hodgkin and Huxley described
the spike generation for the first time, by using an electronic
equivalent circuit model (Hodgkin and Huxley, 1952), which
is essentially based on sodium and potassium ion channels
and enables the description of electrophysiological properties
relevant for the spike’s line shape. However, information in neural
networks is encoded by the number and timing of those spikes
rather than by the spike shape. Hence, simple phenomenological
spiking neuron models are of interest rather than detailed
conductance-based neuron models (Gerstner and Kistler, 2002),
because these kind of models already enable studying neuronal
coding, memory, and network dynamics in a simple circuit
model (Fitzhugh, 1955; Hindmarsh and Rose, 1984; Mead, 1989;
Izhikevich, 2003).

Archetypical neurons may formally be divided into three
functional parts, as sketched in Figure 1A: While dendrites serve
as input stage of the neuron, collecting signals from other
neurons, the cell body (soma) is the central processing unit
of a neuron, which generates a spike whenever the membrane
potential exceeds a certain threshold Vθ defined at the axon-
hillock. Finally, the axon serves as an active transmission line for
the generated spikes toward post-synaptic neurons (Bear et al.,
2006). A straightforward description of a neuron is given by the
integrate-and-fire model (Gerstner and Kistler, 2002), where a
resistor R is connected in parallel with a capacitor C and they are
driven by a current I(t), which can be expressed as

τm
du (t)

dt
= −u (t) + R(I, t)I (t) , (1)

where τm =RC is the time constant of the circuit and u(t) refers to
the membrane potential. Moreover, a threshold electronic circuit
is used, so that the neuron is firing whenever u(t) reaches a
defined threshold voltageVθ, whereafter the potential u(t) is reset
to a reset potential ur < Vθ (Gerstner and Kistler, 2002).

To realize compact, real-time, and energy efficient electronic
neuron circuits, the analog complementary metal-oxide-
semiconductor (CMOS) technology has been successfully
employed (Indiveri et al., 2011). This approach goes back to
the 80’s of the last century, initiated by Carver Mead (Mead,
1989), where the integration of those circuits into very large-
scale integration (VLSI) technology offers the possibility to
build up real-time autonomous (cognitive) systems (Chicca
et al., 2014). However, to further improve such bio-inspired

circuits, non-volatile electronic, and/or ionic devices are required
which improve the circuit design flexibility combined with a
reduced circuit complexity. Memristive devices may fulfill these
requirements. Although, theoretically predicted by Chua in
1971, researchers have just realized the useful functionalities of
those devices for neural computing in the last couple of years.
The ongoing research on memristive devices for neural systems
mainly concentrates on the emulation of biological synapses
and important synaptic functionalities (Hasegawa et al., 2010;
Jo et al., 2010; Ohno et al., 2011; Zamarreño-Ramos et al., 2011;
Jeong et al., 2013; Ziegler et al., 2015). In contrast, the entire
neural functionality has been studied less (Pickett et al., 2013;
Lim et al., 2015).

Mathematically, Equation (1) belongs to the class of van
der Pol oscillators (van der Pol, 1926) if R is replaced by
voltage-controlled or current-controlled devices with negative
differential resistance (NDR). Recently, Pickett et al. (2013)
showed that metal to insulator (MIT) phase transition materials
are highly attractive for such circuits, since they allow to design
inductor free circuits with the advantage of a reduced power
consumption, scalability to the nanoscale, and integrability in
complex neural network circuits (Lim et al., 2015). In particular,
their spiking circuit is an experimental implementation of the
neuristor (Crane, 1960) proposed by Hewitt Crane in 1960 and
it allows emulation of some important neuronal functions, as for
example the all-or-nothing spiking (Pickett et al., 2013; Lim et al.,
2015). However, a neuristor cannot be considered as an electronic
substitute of a neuron because a neuristor can only enable a
subset of neuronal functions. In particular a neuronal coding
scheme is missing, which represents the link between stimulus
and response (Adrian, 1926; Chapleau, 2007), as sketched in
Figure 1A.

In this work we combine the opportunities of memristive
devices with phenomenological neuron circuit models to
implement an analog memristive spiking neuron circuit. The
circuit consists of: (1) a non-linear resistor exhibiting a NDR,
(2) a memcapacitance sub-circuit derived from parallel/serial
connected capacitors and a memristive device, as well as (3)
a passive diode based output stage. We show that this circuit
allows to realize a spiking neuronal coding scheme including
firing frequency adaptation, where the amount and frequency
of generated spikes are depend on the intensity and duration
of an external current pulse, as well as on the number of
generated spikes. Therefore, the circuit can be considered as
a neuromorphic engineered version of the biological activity
pattern (significance of a response) to an external stimulus
principle, as first observed by A.D. Adrian in 1926 (Adrian, 1926,
1928). For the experimental realization of the neuron circuit the
strongly correlated electron material VO2 patterned in a lateral
device structure is used. We show that this device exhibits a
S-type shape NDR in a section of his I-V curve. Moreover, a
memristive behavior of the neuron circuit is obtained using a
memcapacitance, which has been experimentally realized using
a capacitive divider with a memristive device in parallel to the
second capacitor. Here, we used Ag-doped TiO2−x as memristive
device, which inherent stochastic nature additionally introduces
stochastic noise to the neuron model.
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FIGURE 1 | Response to a stimulation principle: (A) Schematic of a single neuron, which can be divided into three functional parts: Dendrites, collect

signals from other neurons; cell body (soma), the central processing unit of a neuron; axon, neuronal output stage. (B) Relationship between firing rate of
a neuron and the strength of input stimulation reflecting the response to a stimulation principle as proposed by E. D. Adrian in 1926 (Adrian, 1926, 1928; Maass and
Bishop, 2001).

The paper is organized as follows: In the Materials and
Methods Section particular features of the applied materials
are summarized and the film patterning techniques for device
fabrication are explained. In the subsequent Section entitled
Circuit Layout and Device Characterization the engagement of
the individual circuit element to function as firing rate adapter is
presented. The most prominent features of our circuit, i.e., fire
rate coding, adaptation, and refractoriness, are summarized in
the Section Results and Discussion followed by a Conclusion.

MATERIALS AND METHODS

Device Fabrication
Memristive devices used for the memcapacitive circuit were
fabricated from Ag/TiO2−x /Al planar capacitor structures (a
sketch of the material stack is shown in the inset of Figure 5A).
The 45 nm Ag bottom electrode was deposited by thermal
evaporation on thermally oxidized Si substrates. Standard optical
lithography was used to define 50× 50µmwindows. Afterwards,
an 17.6 nm thick TiO2−x layer was deposited by reactive
sputtering, followed by the deposition of a 140 nm Al top
electrode and a subsequent lift-off in acetone.

Vanadium dioxide (VO2) devices were fabricated in a lateral
Au/VO2/Au geometry, as shown in Figure 3B. Therefore, VO2

films were grown directly on single crystal TiO2 substrates by
Pulsed Laser Deposition (PLD) using a KrF excimer laser of
248 nm in wavelength (Kim and Kwoka, 1994; Petraru et al.,
2014). A commercially available sintered ceramic V2O5 target
was used. During deposition, the temperature of the substrate was
kept at 380◦C with an oxygen pressure of 1 × 10−2 mbar in the
PLD chamber. The energy density of the laser at the target was
about 2.5 J/cm2. After VO2 thin film deposition, electrodes with a
separation of 2–4µmare defined by optical lithography, followed
by the deposition of a 40 nm thick Au film and a subsequent
lift-off in acetone.

Electrical Measurements
The neuron circuit was realized on a breadboard using
commercially available metal-film resistors and polyester film

capacitors with a tolerance of, respectively, 1 and 10%. The
custom-made electronic devices are externally connected to the
circuit board. Therefore, a Süss wafer prober was employed,
where the individual memristive cells are electrically contacted
through tungsten probe tips. The transient behavior of the
neuron circuit was measured using a Tektronix TDS 7104
oscilloscope. As an input signal of the neuron circuit constant
current pulses were applied. Therefore, an Agilent E5263A source
measurement unit (SMU) was employed. The oscilloscope was
used to record the voltage response of the circuit.

Current–voltagemeasurements (I–V curves) on single devices
were obtained using an Agilent E5263A SMU by sweeping the
applied current (voltage) and measuring the voltage (current)
simultaneously. Additionally, a current (voltage) compliance was
set in order to avoid a breakdown of the investigated device by
electrical stress.

CIRCUIT LAYOUTS AND DEVICE
CHARACTERIZATIONS

Memristive Spiking Neuron Circuit
The here proposed memristive spiking neuron circuit is shown
in Figure 2. The main parts of this circuit are an integrator
circuit (in accordance to Equation 1) with a negative differential
resistor (blue box in Figure 2) and a spike output branch (red
box in Figure 2) used to generate the output spike vout(t) from
the oscillating voltage u(t). In particular, the negative differential
resistor causes a breakdown of u(t), when its negative differential
regime is reached. This results in an oscillation of u(t) during
constant current input i(t). Furthermore, a memcapacitance
CM is used for the integrator circuit, which allows varying
the frequency of oscillation in dependence of the charge flow
history, i.e., the number of generated voltage spikes. Thus, CM

defines the memristive behavior of the proposed neuron circuit
model. At the output stage of the neuron circuit the serial
connection of D with R1 and R2 allow to emulate a desired
line shape of the generated output voltage spikes vout(t) across
R2 (cf. Figure 2), including a refractory period (labeled by tref
in the inset of Figure 2). A constant voltage source VB is
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FIGURE 2 | Circuit scheme used to emulate neuronal functionalities: The circuit consists of an integrator circuit (blue) based on a negative differential

resistor and a memcapacitor CM, as well as on an output branch with a diode D in series with two ohmic resistors R1 and R2 (red) which deliver the

spikes vout(t) from the oscillating voltage u(t). Inset: Typical oscillation for a constant input current of 0.25mA. While the constant voltage source VB shifts the
base voltage to a negative value, the voltage divider with the diode D cause a constant output voltage vout(t) in an interval (labeld as tref ) in which u(t) is smaller than
the build-in voltage of the diode. The used device parameters of the circuit were R1 = 47 k�, R2 = 10 k�, CM = C0 = 0.068 µF, VB = −3.5 V.

added in series to the negative differential resistor which allows
resetting the capacitance ofCM after the external current stimulus
disappears. The inset of Figure 2 shows typical obtained voltage
characteristics for vout(t) and u(t) for a constant current input
i(t) = i0. In detail, the voltage source VB causes a shift of u(t)
to a negative base voltage, while the diode D builds with R1 and
R2 a voltage divider which helds vout(t) constant (defining tref ) as
long as u(t) is smaller than the build-in voltage ofD (VD = 0.7V).
If u(t), however, exceedsVD a spike vout(t) is initiated with a spike
width of∼2ms, which is in accordance to biological spike times.

The key devices of this circuit are the strongly correlated
electron material vanadium dioxide (VO2), which provides a
NDR and the memcapacitor CM , which has been realized by a
sub-circuit containing a capacitive divider and an Ag/TiO2−x/Al
electrochemical metallization cell (cf. Figure 4A). Both devices
are discussed in the following first, before going deeper in the
analysis of the neuron circuit. In the following both devices are
discussed individually, with a subsequent deeper analysis of the
complete neuron circuit in the Results and Discussion section.

VO2-based Negative Differential Resistor
As resistor R for the presented spiking neuron circuit (cf.
Figure 2) a current-controlled VO2 device was used, which
exhibits a NDR. In particular, VO2 belongs to the class of strongly
correlated electron materials and exhibits a MIT phase transition
(Mott—Peierls transition) at approximately 60◦C (Morin, 1959;
Nakano et al., 2012; Natelson, 2013) accompanied by a structural
phase transition from the high-temperature tetragonal phase to
the low-temperature monoclinic phase. A typical resistance vs.
temperature curve of the here fabricated VO2 film is shown in
Figure 3A. A constant voltage of 1V was applied to the film,
while the current was recorded simultaneously. The temperature
was ramped from 30 to 95◦C and back to 30◦C. In particular, we

found the Mott transition temperature at 58◦C during heating
(red curve in Figure 3A) together with a hysteresis of ∼10◦C
during cooling (blue curve in Figure 3A). Moreover, a resistance
change of more than four orders in magnitude was observed
which reflects a good quality of the VO2 film. The quality of
the VO2 could be further verified by using X-ray diffraction
spectroscopy (see inset of Figure 3A), which exhibits peaks
corresponding to the (001) crystal orientation of the TiO2

substrate and to the VO2 (40-2)M1 monoclinic phase M1, as
expected at room temperature (Andersson, 1956).

Instead of increasing the substrate temperature to introduce
the Mott transition also electrical stress can be used, where
Joule heating of local filamentary grain structures has been
identified as the origin of the resistance switch (Driscoll et al.,
2012; Guénon et al., 2013). Recently, such two terminal devices,
in which the Mott transition can be introduced by electrical
stress, were identified as memristive devices (Chua, 1971) with a
transient memory (Pickett et al., 2013). A typical current-voltage
characteristic of our device is depicted in Figure 3B together with
a sketch of the device structure. Therefore, the applied current
was ramped between 0 and 1.5mA, while simultaneously the
voltage was measured. Starting from the initial high resistance
of the device (RH

VO2 = 55 k�), the device resistance decreases
gradually to a lower resistance of RL

VO2 = 2–14 k� if the applied
current-voltage threshold 2thr is exceeded (cf. Figure 3B).

Ag-doped TiO2-x -based Memcapacitive
Device Circuit
In analogy to memristive devices (Chua, 1971), memcapacitors
are defined by a capacitance which depends on the charge flow
history, i.e., CM = CM(q,t). The memcapacitor was theoretically
proposed by Di Ventra et al. (2009) in 2009 and shows promising
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FIGURE 3 | Electrical characteristics of the VO2 device: (A) Resistance versus temperature characteristic. Inset of (A): X-ray 2θ-ω scan of the VO2 film on a
TiO2 (001) substrate measured with Cu Kα radiation. The observed peaks correspond to TiO2 (002) and to VO2 (40-2)M1 (insulating phase, space group P21/c,
aM1 = 5.743 Å, bM1 = 4.517 Å, cM1 = 5.375 Å, and βM1 = 122.618◦) (B) Current voltage characteristic of a lateral VO2 device together with a schematic sketch of
the device structure. In all sub-figures indicating the red arrows the heating cycle and the blue arrows showing the cooling direction.

functionalities for adaptive circuits (Traversa et al., 2013). To
experimentally realize a memcapacitance, we used the sub-circuit
shown in Figure 4A. This circuit consists of two individual
capacitances C1 and C2 arranged in a capacitive divider with
a single memristive device RM connected in parallel to C2,

(labeled as C
eff
2 in Figure 4). In this configuration the resistance

of the memristive device can be varied in accordance to the
charge flow history, i.e., RM = RM(q,t). The therefore obtained
memcapacitive behavior (depending on the resistances of RM)
can be seen by regarding the total capacitance CM of the sub-
circuit, which can be expressed as

CM =
C1C

eff
2

C1 + C
eff
2

withC
eff
2 (um,RM, t)

=
1

um

(

q (t) − qm (um,RM, t)
)

. (2)

Here um defines the voltage drop across C
eff
2 , while q and qm are

the total charge of the capacitive branch and the charge stored

in between C1 and C
eff
2 , respectively. Hence, C

eff
2 depends on

RM(q,t) which provides a memcapactive behavior as proposed
theoretically by Di Ventra et al. (2009).

In order to gain some more insight into the functionality of
the memcapacitive circuit and to give advices for the design of
memristive devices it is worth to look at the total impedance of

C
eff
2 , which reads.

ZRM ||C2 (RM) =
1

1
RM

+jωC2

. (3)

In particular, Equation (3) implies that C
eff
2 (and therewith CM) is

affected whenever the impedance phase ϕRM||C2 between C2 and
RM is less than 90◦. However, to fulfill this condition RM must
be varied in accordance to C2. In this investigation C1 and C2

have been selected in respect to biological time scales, which is
for a single spike in the range of a few ms. By further taking the
resistance of the VO2 negative differential resistor (cf. Figure 3)
into account, C1 and C2 have been chosen to 0.165 and 0.068
µF, respectively. Hence, to ensure that 1ϕRM||C2 is less than
90◦, RM must be variable in between 1 and 100 k�, as depicted

in Figure 4B. In particular, the impedance phase of C
eff
2 will be

most sensitive to RM changes when RM and C2 contribute to the
overall impedance magnitude roughly equally. As we will show
as next, a Ag-doped TiO2−x based memristive device fulfills this
requirement.

In Figure 5A typical current-voltage characteristic (I-V curve)
obtained on a single Ag/TiO2−x/Al memristive device is shown
together with a sketch of the device structure. By sweeping the
bias voltage between 1.4 and –0.5V the device resistance changes
at a positive set voltage of Vset = 0.95V from the initial high
resistance state of 1 M� to the low resistance state of 1 k� and
vice versa at negative voltage at a reset voltage ofVReset = −0.2V.
In order to avoid a device breakdown a current compliance
of 0.1mA was set. To analyze the resistance switching of the
memristive device in some more detail single voltage pulses of
10V in height and 2ms in width are applied to an individual
Ag/TiO2−x/Al cell. In particular, that voltage pulse corresponds
to the maximal possible voltage which can be dropped across
the memristive cell when the cell is operating in the neuron
circuit of Figure 2. The obtained change in resistance is shown
in Figure 5B. We found that the device resistance is decreased
from initially 1–0.8 k� under such voltage pulses. Therefore,
the recorded resistances are within the memcapacitive interval
estimated from Equation (3) and marked by two red dashed lines
in Figures 4B, 5B.

We would like to mention that the resistive switching process
in the used Ag/TiO2−x/Al memristive cells has an inherent
stochastic nature (Gaba et al., 2013), where the needed number
of voltage pulses to set the device resistance depends on local Ag
migration processes. A more detailed analysis of the stochastic
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FIGURE 4 | Experimental realization of a memcapacitor: (A) Schematic drawing of the memcapactitive circuit including a memristive device. (B)

Calculated impedance phase ϕRM||C2 between the memristive device and the capacitor C2 as function of the resistance RM.

FIGURE 5 | Electrical characteristics of the memristive device: (A)

Measured I-V curve of an Ag-doped TiO2-x -based memristive device

together with a sketch of the layer sequence of this cell. A current
compliance of 0.1mA has been set. (B) Measured resistance variation of the
device by applying 2ms voltage pulses with an amplitude of 10V. The dashed
red lines show the desired memcapacitive range obtained from Figure 4B. (C)
Distribution of the set voltage obtained from 620 identically voltage sweeps
using a current compliance of 0.1mA. The red curve is a Gaussian data fit.

behavior of the used Ag/TiO2−x/Al memristive device is shown
in Figure 5C. Therein, the set voltages Vset of 620 consecutive
current-voltage cycles are shown, which has been obtained from
I-V measurements in which the voltage was ramped from 0
to 2V and a current compliance of 0.1mA was set. By fitting
the experimental data with a Gaussian function, an average set
voltage of 0.64 V was obtained with a full width at half maximum
of 0.25 V. In particular, the device stochastic influences the

transient dynamics of the neuron circuit, as we will discuss it
below.

RESULTS AND DISCUSSION

In the following we discuss the memristive spiking neuron model
(depicted in Figure 2) in detail. For a clearer presentation of
this circuit we split the analysis in two parts. First, we discuss
the emulation of fire-rate coding, i.e., how the circuit emulates
dynamical spiking patterns in response to an external stimulus.
Thereafter, the emulation of adaptation and refractoriness will
be addressed. We therefore like in particular to focus on the
adaptive/ memristive behavior of our neuron circuit.

Firing Rate Coding
The relevant mechanisms for the emulation of spike rate coding
of our proposed neuron circuit scheme (Figure 2), can be
dissected in that the memcapacitance (CM) is fixed. By replacing
the TiO2 based sub-circuit with a constant capacitor C0 this
can be achieved and we obtain a circuit as shown in Figure 6A.
The therewith recorded voltage characteristics u(t) and vout(t)
for different current inputs i(t) are shown in Figure 6B, while
the used parameters of the circuit devices read as R1 = 47
k�, R2 = 10 k�, CM = C0 = 0.068 µF, VB = −3.5V. As a
result we found that a current strength up to 0.15mA will affect
no spike generation within the investigated time interval, while
current strengths of 0.25 and 0.4mA triggers the circuit to spike
with different numbers of spikes. In order to study this point
in some more detail, single constant current pulses of 20ms
and amplitudes ranging from 0 to 0.95mA were applied to the
neuron circuit. The circuit produced fire frequencies (number of
spikes per second) as function of the applied currents are depicted
in Figure 6C. While for i(t) smaller then the VO2 threshold
current I2 (cf. Figure 3B) no oscillations are evoked, input
currents above I2 generate a spiking of the circuit. Moreover, the
generated frequency of spikes increased linearly with increasing
current which allows to directly relat the spike frequency to the
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FIGURE 6 | Emulation of fire frequency coding: (A) Circuit layout to emulate firing frequency coding. In contrast to Figure 2 CM was replaced by a constant
capacitance C0. (B) Recorded spike pattern for different current inputs. (C) Measured oscillation frequencies as function of the input current i(t). I2 denotes the
threshold value for the spike initiation. Parameters used for the circuit: R1 = 47 k�, R2 = 10 k�, C0 = 0.068 µF, VB = −3.5 V.

intensity of the stimulus. This represents the biological firing rate
mechanism, as sketched in Figure 1B (Adrian, 1926; Chapleau,
2007). In technical terms, the linear increase in the fire frequency
is related to the slope of the negative differential branch of the
VO2 device (cf. Figure 3B). Consequently, the total interval for
the frequency coding is defined by the length of the negative
differential branch which is for the here realized VO2 cells for
current strengths varying in between 0.4 and 0.95mA. Because
the firing rate is constant for a constant given stimulus (i.e., the
firing rate exhibits no transient decay), the onset f0(I) and steady
f∞(I) curve are identical (Benda and Herz, 2003).

Adaptation and Refractoriness
As furthermore recognized in 1926 by Adrian (Adrian, 1926,
1928), the firing rate of neurons transiently decreases rather
than staying constant (cf. Figure 1B), if both the receptor and
organisms habituate to a persistent stimulus. In particular, Adrian
expected that the post transient decrease in the firing rate might
reflect the degree of habituation of the stimulus, i.e., adaptation
of an external stimulus (Adrian, 1928). Nowadays, adaptation is
believed to be the essential process of a signaling system to be
better suited to environmental changes and it can be observed at
nearly any level of biological systems (Maass and Bishop, 2001).
In the spike trains of regularly firing neurons, the adaptation of
their firing frequency during sustained current input is believed
to be fundamental in forward masking, selective attention, and in
the synchronization of neuronal assemblies (Maass and Bishop,
2001; Fuhrmann et al., 2002).

In order to emulate fire frequency adaptation the capacitance
C0, shown in Figure 6A, has been replaced by a memcapacitance
CM = CM(t) (cf. Figure 4) which leads to the circuit presented
in Figure 2 and Figure 7B. In Figure 7A the therewith obtained
voltage characteristics for u(t) and vout(t) for a constant current
input of 0.5 mA are presented. The used device parameters of the
circuit were R1 = 1 M�, R2 = 47 k�, C1 = 0.165 µF, C2 = 0.068

µF, VB = −5.5V. As a main result we found that the frequency
of spike initiation is clearly decreased after the first eight spikes,
while the amplitude of the individual spikes is nearly unaffected.
This finding can also be observed in Figure 7C, where a close-up
view of two of the spikes of Figure 7A is shown. While the black
curve in Figure 7C corresponds to one of the first spikes of the
voltage course of vout (compare also Figure 7A), the second spike
(red curve) is cut from the last part of Figure 7A. In particular,
their amplitudes of roughly 0.36V and their resting potentials
of ur = −15 mV are varying slightly, while their particular
spike widths and refractory period widths vary significantly. This
differences in the spike width can be directly related to Equation
(1), where the memconductance (cf. Equation 2) introduces a
memristive time constant τm = RVO2(i,t) CM(RM ,um,t) for the
current integration. The effect of such amemristive time constant
can be further analyzed from experimental data (depicted in
Figure 7C) by regarding the corresponding phase plots, as shown
in Figure 7D. From this plot it can be seen that the rate of the
voltage change of vout varies little. However, the initial phases
vary significantly when CM changes, as it can be seen from
the enlarged parts of the phase plots, depicted in the insets of
Figure 7D (see yellow frame). In particular, we observed a much
stronger rise in the rate of the voltage change of vout for the initial
spike (black curve) compared to the final spike (red curve). In
this context it is worth mentioning that these features are also
observed in cortical neurons and it is believed that the dynamics
of spike initiation is a unique feature, which can qualitatively
change the nature of neuronal encoding (Naundorf et al., 2006).

We would like to remark that in contrast to biological findings

an abrupt switch rather than a gradually, continuous decrease

of the fire frequency was obtained. This, in fact, belongs to
the switching mechanism of the memristive device and might
change if the Ag/TiO2−x/Al cell is replaced by a memristive
device which shows a more gradual change in device resistance.
However, the principles of the proposed adaptation emulation
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FIGURE 7 | Emulation of adaptation: (A) Measured spike pattern for a constant current input based on a memcapacitance CM(t). (B) Layout of the
investigated circuit which corresponds to the one depicted in Figure 2. (C) Characteristics of two individual spikes and corresponding phase diagram (D), where the
insets show the initial phase of the spikes. Parameters used for the circuit: R1 = 1M�, R2 = 47k�, C1 = 0.165µF, C2 = 0.068µF, VB = −5.5 V.

can be directly transferred to other types of memristive devices.
A further important aspect of the used memristive cell is the
inherent stochastic nature of the resistance switching process
(cf. Figure 5C). In particular, this device behavior introduces
stochastic noise to both the pulse width of a single spike and
the number of spikes needed before a pulse frequency adaptation
occurs (cf. Figure 7A). For example, for the spike course shown
in Figure 7A, the width of the second and third spike is larger
than those of spike number four, while a “real” adaptation of the
firing frequency was obtained after eight voltage spikes. However,
such a stochastic behavior might be of interest for a variety
of network applications and are in agreement with biological
neurons (McDonnell and Ward, 2011).

In general, adaptation of the neurons firing rate has to
be balanced with refractoriness. Refractoriness is a general
characteristic of neurons to ensure that consecutive spikes are not
overlapping and defines the (forward) direction of spikes in nerve
cells. In order to incorporate a refractory period, a diode was
connected in series with R1 and R2 in the output branch of the
neuron circuit of Figure 2 (red column). Further of importance
for the emulation of a refractory period was a negative base
voltage which has been generated by the constant voltage source
VB (cf. Figure 2). In particular, VB causes a negative offset of
the circuit induced oscillation of u(t), while the diode D affects
that all voltages of u(t) smaller than the built-in voltage of the
diode (V = 0.7V) leading to a constant output voltage vout(t) (see
for example inset of Figure 2). Therefore, the resistances R1 and
R2 have been chosen much smaller than resistance value of the
diode below the built-in voltage, so that most of the voltage u(t)
is dropping acrossD below 0.7V. A refractory period can then be
defined by the time interval for which vout(t) is stabilized by the
diode (labeled as tref 1,2 in Figure 7C), i.e., the time at which u(t)

is smaller than 0.7V. Hence, in the framework of an I-F neuron
model (according to Equation 1) the built-in voltage of the diode
defines the threshold voltage for the spike initiation.

CONCLUSION

In conclusion, a memristive spiking neuron circuit has
been experimentally realized by using a VO2-based negative
differential resistor and a memcapacitor based on an
Ag/TiO2−x/Al memristive cell. The circuit allows emulation of
basic neuronal functionalities, including spike coding, firing
frequency adaptation in real time and shows a refractory
period. Moreover, the obtained spike times are consistent
with the spike duration in biological systems. Further, we
have shown that the combination of a memristive device
and a capacitive divider allows to experimentally realizing a
memcapacitance. Therewith, we were able to show that the use
of a memcapacitance in an NDR oscillator allows to mimic
dynamic neuronal components in which the circuit induced
oscillation is changing in dependence of the charge flow history,
i.e., on the number of spikes generated before. Thus, the use
of a memcapacitance introduces a memristive behavior of an
I-F neuron. Since such spiking neuron models are important
conceptual tools for the analysis and emulation of neuronal
dynamics, a memristive neuron might open important new
opportunities for the realization of neuronal networks.
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