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Multielectrode arrays (MEAs) allow for acquisition of multisite electrophysiological activity

with submillisecond temporal resolution from neural preparations. The signal to noise

ratio from such arrays has recently been improved by substrate perforations that allow

negative pressure to be applied to the tissue; however, such arrays are not optically

transparent, limiting their potential to be combined with optical-based technologies. We

present here multi-suction electrode arrays (MSEAs) in quartz that yield a substantial

increase in the detected number of units and in signal to noise ratio from mouse

cortico-hippocampal slices and mouse retina explants. This enables the visualization of

stronger cross correlations between the firing rates of the various sources. Additionally,

the MSEA’s transparency allows us to record voltage sensitive dye activity from a leech

ganglion with single neuron resolution using widefield microscopy simultaneously with

the electrode array recordings. The combination of enhanced electrical signals and

compatibility with optical-based technologies should make the MSEA a valuable tool

for investigating neuronal circuits.

Keywords: electrophysiology, multielectrode array, voltage-sensitive dye, neural interface, brain slice, retina,

leech

1. INTRODUCTION

Multielectrode arrays (MEAs, Gross et al., 1977; Gross, 1979; Pine, 1980; Obien et al., 2014) have
successfully been used to study a range of preparations including dissociated cortical cultures
(Wagenaar et al., 2006), retinal explants (Meister et al., 1991), and hippocampal slices (Steidl et al.,
2006). Obtaining strong voltage signals from most of these preparations is possible, but slices
continue to pose challenges, likely because of the presence of a layer of dead cells at the surface
of the slice and limited oxygenation through the slice to the living cells nearest to the array. The
introduction of perforated MEAs in polyimide is an improvement in regard to tissue oxygenation
and signal to noise ratio, but has limitations: Whereas glass-based MEAs are transparent (except
for the electrodes and sometimes the leads) (Gross et al., 1985), presently available commercial
perforated MEAs are not due to the translucent polyimide substrate (Egert et al., 2005). In an
age in which combination of MEAs with optical methods such as voltage- or calcium-sensitive
dyes (Peterka et al., 2011; Gaudry and Kristan, 2012) or optogenetics (Tye and Deisseroth, 2012)
becomes ever more desirable, this is a major disadvantage.

Previously, polyimide was preferred as the substrate for perforated MEAs because of the relative
ease of creating micrometer-sized perforations in an organic substrate vs. a glass-based substrate
(Egert et al., 2005). However, recent material processing advances in our lab have allowed for
the fabrication of thinned, optically transparent suspended membranes and though-hole arrays
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in fused silica (amorphous quartz, Nagarah et al., 2010; Nagarah
andWagenaar, 2012). The devices we present here, multi-suction
electrode arrays (MSEAs), feature electrodes placed immediately
around or in between suction holes in quartz (Figure 1).

We demonstrate the practical utility of these MSEAs firstly
by recording from mouse cortico-hippocampal slices, in which
suction resulted in a dramatic increase in signal-to-noise ratio
of recorded spikes and a concomitant increase in the number
of detectable units. We then show that applied suction also
substantially improves the quality of recordings from mouse
retina, a classic example of a preparation for which MEA
recordings have yielded important scientific results (Meister
et al., 1991; Ryan et al., 2013). Lastly, in a demonstration
experiment of their compatibility with optical recording
techniques, we use an MSEA to record from the nervous system
of the medicinal leech, in which a voltage-sensitive dye provides
simultaneous confirmation of intracellular electrical activity.

2. MATERIALS AND METHODS

2.1. MSEA Fabrication
The fabrication flow is summarized in Figure 2. Fused silica
slides, 50 × 50mm with a thickness of 0.2 or 0.5mm were used
as a substrate for the MSEA device (step 1). A trench was etched
in the backside of the substrate resulting in a 10–15 µm thick
suspended membrane (step 2, Nagarah and Wagenaar, 2012).
This allowed through-pores, 10–15 µm in diameter, to be plasma
etched into the fused silica membrane (step 3, Nagarah et al.,
2010). A transparent 100-nm-thick indium tin oxide (ITO) film
was sputtered onto the front-side of the substrate with a Denton
Discovery 550 sputterer (Denton Vacuum, LLC; Moorestown,

FIGURE 1 | Overview of multisuction electrode array (MSEA)

technology. (A) Artist’s impression of a multi-electrode array with suction

pores embedded within each electrode. Insets: Close-up of electrodes with

embedded pores (top) and alternative layout with pores between electrodes

(below). (B) Visible light image of MSEA with detail at larger scale (inset). Scale

bar: 100µm. (C) Visible light image of MSEA with suction pores between

electrodes. Scale as in (B).

NJ; step 4). The MSEA contacts, leads, and electrodes were
patterned with positive photoresist and transferred into the ITO
with a SLR 770 Unaxis ICP RIE (Oerlikon; Switzerland) with
Cl2/BCl3 chemistry (step 5). After stripping the photoresist in
PRX-127 (Rohm Haas; Philadelphia, Pennsylvania) at 70◦C, a 1–
1.5 µm thick low temperature oxide (LTO) film (SiO2 glass) was
deposited in a LPCVD tube furnace (Tystar; Torrance, CA; step
6). Positive photoresist was then spin-coated onto the substrate
to open the leads and electrodes through the LTO film. Before
spin-coating, adhesive tape was adhered to the underside of the
trench to prevent photoresist being drawn through the pores
by the spin-coater vacuum chuck. The exposed LTO film was
etched in an Advanced Oxide Etcher (SPTS; Newport, UK)
to expose the underlying ITO (step 7). The photoresist was
then stripped in PRX-127. Two designs of the MSEA were
used: A “circumferential design,” in which the through pores
were placed in the center of ring-shaped electrodes, and an
“intercalated design,” in which the through pores were placed
between disk-shaped electrodes. The electrodes were arranged in
a hexagonal lattice. The circumferential electrodes were 10–15
µm in diameter with 87.5 µm spacing between electrodes within
a row and between rows (Figure 1B). The intercalated electrodes
were 10 µm in diameter with 70 µm spacing (Figure 1C).

To lower the ITO electrochemical impedance in saline
solution, Pt black was electroplated onto the exposed ITO
electrodes (step 8): A Pt chloride solution (1% chloroplatinic acid
hexahydrate, 0.0025% hydrochloric acid, 0.01% lead ascorbate in
water) was used as an electroplating solution (Maher et al., 1999).
Before plating, the MSEA was exposed to an oxygen plasma to
clean the exposed electrodes. Current was sourced through the
ITO electrode with a 2.2-M� resistor parallel to ground and a
Pt wire as a counter electrode. Platinum black was electroplated
by pulsing current: –0.4 µA for 2 s, 0 µA for 8.5 s, 10 cycles.
To minimize breakage of Pt spines during an experiment, the
electrodes were immersed in 30% hydrogen peroxide so the
oxygen bubbling action from the Pt electrode will preventively
break the weak platinum spines beforehand (Maher et al., 1999).
This plating-peroxide treatment was conducted a total of five
times.

2.2. Tissue Preparation
All experimental procedures on mice were carried out in
accordance with protocols approved by the Institutional Animal
Care and Use Committee at the California Institute of
Technology.

2.3. Mouse Cortico-hippocampal Slice
Mice used for recordings were wild-type, aged P8–P17, sex
undetermined. To prepare slices, animals were anesthetized with
CO2 and then decapitated. The brain was dissected out, placed
in ice-cold ACSF for a few minutes for initial cooling and then
mounted on a vibratome. Coronal sections (250µm) were made
using a Vibratome (DTK-1000; Ted Pella, Redding, CA). Slices
were allowed to recover for 1 h in ACSF bubbled with 95%
O2/5% CO2 at 32◦C, then moved to room temperature. The
ACSF consists of, in mM: 124 NaCl, 3 KCl, 1.25 NaH2PO4,
26 NaHCO3, 10 glucose, 1.3 MgSO4, and 2.5 CaCl2. After
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FIGURE 2 | MSEA fabrication process flow. 1, Clean fused silica slide; 2, deep wet etching into fused silica; 3, etching 10–15µm diameter suction pores into

suspended fused silica membrane; 4, sputtering thin indium tin oxide (ITO) film on top of device; 5, patterning and etching leads and electrodes into ITO; 6, deposition

of silicon dioxide film on top of device to electrically insulate ITO; 7, patterning and etching silicon dioxide to expose ITO contacts and electrodes; 8, electroplating

platinum black onto ITO electrodes. Scale bar in step 8 applies to all four SEM images.

15min at room temperature, the slices were put into fresh room
temperature ACSF. Recordings were made in a chamber perfused
with ACSF at 32◦C, bubbled with 95% O2/5% CO2, at a rate
of 1–2mL/min.

2.4. Mouse Retina Explant
Mice retinae were prepared as previously described (Lefebvre
et al., 2008). Briefly, mice were euthanized and retinae dissected
out under infrared illumination to preserve dark adaptation.
As much vitreous humor was removed as practical. A piece of
retina was placed with ganglion cells facing down on an MSEA
on the stage of an upright microscope. The preparation was
continuously superfused with Ames’ medium (A1420; Sigma
Aldrich, St Louis, MO) equilibrated with 95% O2 and 5% CO2

gas at room temperature.

2.5. Leech Nervous System
Leeches (Hirudo verbana) were maintained as previously
reported (Harley et al., 2011). Nerve cords were extracted
following the procedures of Baljon and Wagenaar (2015), except
that here either a single ganglion or the entire nerve cord
(sans the head brain, which would inhibit fictive swimming)
was extracted rather than a short chain of ganglia. The leech
nervous system contains embedded muscle cells that tend to
cause strong motion artifacts. To prevent these and to ensure
contact with the entire curved surface of a ganglion, ganglia were
immobilized on a slab of polydimethylsiloxane (PDMS; Sylgard
184; Dow Corning Corporation; Midland, MI). Ganglia were
always desheathed before recording.

For leech tissue electron microscopy, desheathed ganglia were
fixed with osmium tetroxide and dehydrated using a graded

series of ethanol. The ganglia were then immersed in t-butyl
alcohol and frozen (4◦C). The t-butyl alcohol was sublimed under
vacuum to dry the ganglia (Inoue and Osatake, 1988).

2.6. MSEA Recordings
A custom-molded PDMS solution reservoir was adhered onto the
MSEA before filling with saline solution. A custom-built acrylic
o-ring holder was used to apply suction from the underside of the
MSEA substrate.

Cortico-hippocampal slices were transferred into the
recording chamber with a wide-mouth pipette and positioned
over the array with a small paint brush. Slices were immobilized
over the array using a harp-style anchor (64-1418, Warner
Instruments; Hamden, CT), with care taken to keep harp strings
away from the recording area. In select experiments, slices were
electrically stimulated using monophasic voltage pulses of up
to 600mV amplitude and 100 µs duration applied between
adjacent electrodes.

Mouse retinae were transferred into the recording chamber
in the same way. Since the mouse retina explant has strong
natural curvature, a custom-built harp with a stainless steel
rim and wide nylon mesh was used to keep the retina flat
over the array with minimal force. Retinae were stimulated
with full-field amber illumination using a LED (LED-30W0310,
SatisLED; Shenzhen, China) combined with an interference filter
(HQ590/60m, Chroma Technology Corp.; Bellows Falls, VT) at a
rate of 0.5Hz and 50% duty cycle.

Leech ganglia were placed over the array as follows: The
ganglion or nerve cord was immobilized on a PDMS slab. This
slab was then attached to a micromanipulator and lifted up
out of its saline solution while pulling along a large drop of
saline to keep the tissue covered in liquid. While held in the
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manipulator, the slab was translated to the recording area, and
coarsely positioned in the bath solution over the electrode array.
Finally, the ganglion was gradually lowered until it touched
the electrodes. One dorsal posterior nerve root (Kristan et al.,
1974) was aspirated into a glass suction electrode. Brief trains
of stimuli (0.5–1.0V, 50ms, 10Hz) were used to evoke fictive
swimming.

A MultiChannel Systems 60 channel amplifier (Model 1060)
was used to record from eachMSEA electrode. MCRack software
was used for the hippocampus slice recordings. For the mouse
retina and leech nerve cord recordings, voltage signals were
recorded with MEABench (Wagenaar et al., 2005).

2.7. Voltage-sensitive Dye Recordings
The voltage-sensitive dye VF2.1.Cl was prepared according
to standard protocol (Miller et al., 2012) and applied to the
target ganglion by perfusing for 20min using a peristaltic
pump (Cacciatore et al., 1999). A custom dual upright and
inverted microscope was used for imaging. It comprised an
Olympus upright BX WI fluorescence train mounted atop
an Olympus inverted IX51 microscope (Olympus America,
Inc., Center Valley, PA) with a custom-built stage. The
upright microscope was used for specimen placement over
the array while the inverted objective (Olympus 20x, NA 1.0)
was used for fluorescent imaging through the transparent
MSEA. Illumination was provided at 460 nm with a 5-W
LED light (LedEngin, San Jose, CA) that was stabilized using
optical feedback (Wagenaar, 2012). We used a 460/50 nm
band-pass excitation filter, 505 nm dichroic mirror, and
510 nm long pass emission filter (Chroma Technology
Corporation). Images were recorded with a cooled CCD
camera (QuantEM 512SC; Photometrics, Phoenix, AZ) and
custom software.

2.8. Data Analysis
All fluorescent imaging data and electrode MSEA recordings
were analyzed using custom Octave (Eaton et al., 2014) scripts.
The threshold for spike detection was set at 5x estimated RMS
noise. Spike sorting was accomplished with UltraMegSort2000
(Fee et al., 1996; Hill et al., 2011) with standard parameters.
The cross-correlations of the firing rates of the sources in
Figures 6B,C represent the maximum peak in the cross-
correlogram with 1ms bins extended to a maximum time lag of
50 ms. The coherence plot in Figure 8B was calculated using a
previously describedmethod (Taylor et al., 2003). All graphs were
generated using QPlot (Wagenaar, 2014).

2.9. Electrochemical Impedance
Spectroscopy
Electrode impedance measurements were recorded from an
MSEA with an intercalated electrode design with a VMP2
potentiostat and analyzed with EC-Lab software (BioLogic;
Claix, France). We applied a sinusoidal voltage with amplitude
10 mV centered at the open circuit voltage while recording
impedance between 0.1 Hz and 10 kHz. Chlorinated silver
wires were used for counter and reference electrodes. The
values for the circuit elements in the theoretical model in

Figure 7A are Rsol = 100 k�, Rct = 1 G�, Qint =

150 nF sa−1 where a = 0.85, leading to a complex
impedance Zint = 1/(iωaQint). In Figure 7C, each recorded
point represents the average of 10 recordings at a given
frequency.

3. RESULTS

3.1. Demonstration of Basic Functionality
We fabricated two types of MSEAs, one with a circumferential
electrode design and one with an intercalated electrode
design (Figure 1). We tested our MSEAs with three distinct
preparations: cortico-hippocampal slices from mice, explanted
mouse retinae, and isolated leech ganglia to determine, first of
all, whether neuronal activity could be observed successfully,
and secondly, whether applying suction made a difference to the
quality of the recordings.

3.2. Cortico-hippocampal Slices
We recorded spontaneous action potentials from the CA3
region in cortico-hippocampal slices with the MSEA with
the circumferential electrode designs (see Figure S1 for a
photograph). Substantial spiking activity was seen on many
electrodes after suction was applied and on few if any
before (Figure 3A). A heat map of firing rate vs. time
further demonstrates the dramatic impact of applying suction
(Figure 3B). After release of suction, detectable activity gradually
declined, but only fractionally and not to pre-suction baseline
levels. On many electrodes, spikes from different sources
(putatively different neurons) could readily be discerned
(Figure 3C). Similar results were also observed from slices
recorded with MSEAs with the intercalated electrode design
(Figure S2).

MEAs can be used not only for recording, but also for
stimulation. We tested whether electrical stimulation with
standard parameters can be used to elicit activity in slices on
MSEAs, and found that indeed it can. With applied suction,
stimuli evoked robust activity in a stimulation voltage–dependent
manner (Figures 3D,E). Before suction, no activity was observed
following stimulation, but our current setup does not allow us
to conclude whether this was because no activity was evoked, or
whether activity was evoked but remained undetectable.

3.3. Explanted Retinae
We used the MSEA to record from explanted retinae from wild-
type mice. Previous MEA experiments on retinae found the
optimal electrode diameter to be 10µm (Meister et al., 1991).
Accordingly, we used the intercalated electrode design, because
we found that suction pores with diameters of at least 10µmwere
necessary to apply adequate suction to the preparation.

In contrast to the brain slices, retinae exhibited ample activity
on many electrodes without suction, both spontaneously and in
response to flashes of light (Figure 4A, left). Following suction,
however, both the number of spikes and their SNR increased
(Figure 4A, right). The increase in recorded firing rate was
substantial on the great majority of electrodes (Figure 4B), and
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FIGURE 3 | Recording spontaneous activity from cortico-hippocampal slices with an MSEA with an intercalated electrode design. (A) Simultaneously

recorded traces from 60 electrodes before (left) and after (right) application of 80 mbar of suction. Each trace represents data from one electrode; traces in the graph

are laid out in the same geometry as electrodes in the array. Colors only serve to guide the eye. (B) Heat map of firing rates on each of 30 electrodes (sorted in order

of total spike count) with and without suction. Suction (110 mbar) was applied 5min after the start of the recording, released at 10min, and re-applied at 15min (green

marks). In this recording, no spikes were detected prior to suction at all. (C) Example from a single electrode of the waveforms of all spikes. Colors: units as identified

by UltraMegaSort2000 (see Section 2.8). (D) Peristimulus time histogram of array-wide firing evoked by stimuli of varying voltage (arrowheads), before (top), and after

(bottom) application of 80 mbar of suction. (E) Aggregate firing rates in the first 1s following stimulation before (open, gray) and after (solid, black) application of suction.

the fraction of spikes with SNR above 10 increased by 56%
(Figure 4C).

3.4. Isolated Leech Ganglia
The leech segmental ganglion has been a popular preparation
for neuroscientists because of the direct mapping between the
activity of readily identifiable neurons and specific behaviors
(Kristan et al., 2005). Furthermore, the accessibility of the
leech nervous system makes it an excellent test-bed for
new technologies (Ferguson et al., 2012; Miller et al., 2012).
Nevertheless, we are not aware of any previous publications
using MEAs to record from these ganglia. We found that MSEA
recordings from an isolated leech ganglion displayed ample
spontaneous activity, but that the activity did not appreciably
change after applying suction (Figure 5).

3.5. Analysis of Detected Spikes
Spike-sorted results for all specimens are summarized in
Figure 6. The number of isolated units (putative neurons)
per electrode and firing rate for each unit in a cortico-
hippocampal slice, a retina, and a leech ganglion before and after
application of suction are represented spatially at the location
of their respective recording electrodes in Figure 6A. Applying
suction reveals substantial long-distance temporal correlations
in the activity of neurons within the slice (Figure 6B). In
the retina explant, such correlations are evident even before
suction, but suction does increase their salience (Figure 6C).
In the leech ganglion, it was common for a single source
to produce spikes on multiple electrodes (data not shown).
This made it challenging to perform a meaningful correlation
analysis.
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FIGURE 4 | MSEA recordings from retinal explant. (A) Raw data from 60 electrodes before (left) and after (right) application of suction. White bars inside each

trace indicate timing of whole-field visual stimulation. (B) Heat map of array-wide response to visual stimuli (white bars) before (left) and after (right) application of

suction. (C) Histogram of observed spike amplitudes (normalized to units of RMS noise) before (gray) and after (red) application of suction.

FIGURE 5 | Recording spontaneous activity from an isolated leech ganglion with an MSEA. (A) Simultaneously recorded traces from 60 electrodes before

(left) and after (right) application of 32 mbar of suction. Each trace represents data from one electrode; traces in the graph are laid out in the same geometry as

electrodes in the array. Colors only serve to guide the eye. (B) Heat map of firing rates on each of 30 electrodes (sorted in order of total spike count) with and without

suction. Suction 8.3 mbar was applied after the start of the recording (green marks). (C) Example from a single electrode of the waveforms of all spikes. Colors: units

as identified by UltraMegaSort2000 (see Section 2).
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FIGURE 6 | Analysis of detected spikes. (A) Number of sources per electrode and firing rate for each source in a cortico-hippocampal slice, a retina, and a leech

ganglion (top to bottom), before and after application of suction (left and right). Each white circle represents an electrode, colored circles represent sources identified

on that electrode. The area of the circles represent the firing rate of the corresponding source; a circle with the same area as the underlying white circles represents a

firing rate of 20 spikes per second. (B) Cross correlations between the firing rates of the various sources in the slice of (A). The alternating white-and blue stripes along

the sides of the graphs indicate different electrodes. Only the 50 sources with strongest mutual cross correlations are shown in the graph. (C) Cross correlations

between the firing rates of the various sources in the spontaneous retina recording of (A). (D) Summary statistics of the number of isolated sources per electrode, the

percentage electrodes that was active (see text), the signal-to-noise ratio of the strongest unit on each electrode, and the firing rates of all isolated units; in

cortico-hippocampal slice (“hc”), retina in the dark (“ret–”), stimulated retina (“ret+”), and leech ganglion (“H.v.”). Boxes and whiskers indicate the 10th, 25th, 50th,

75th, and 90th percentiles of the distributions. Stars indicate significance: **p < 0.01, ***p < 0.001; Mann–Whitney U-test. Note that activity in the hippocampus

recording was minimal prior to suction, resulting in several invisible bars in this plot. (E) Comparison of spike detection with (red) and without (gray) suction in N = 15

cortico-hippocampal slices. From left to right: Percentage of electrodes that had at least one source with a firing rate above 0.1 Hz and SNR above 5; The total

number of such sources across all electrodes; the mean firing rate across all usable electrodes; the mean across all usable electrodes of the signal-to-noise ratio of

the strongest unit on that electrode; the mean across units of the rate of spikes attributable to that unit. ***p < 0.001; sign tests. Whiskers extend to 10th and 90th

percentiles; bars show 25th, 50th, and 75th percentiles.
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In all but the ganglion preparation, the average number of
units isolated per electrode and the SNR of the “strongest”
unit on each electrode increased significantly following suction.
The number of active electrodes (those that had at least
one isolated unit with SNR at least 5 × RMS noise) also
increased in all cases (Figure 6D). By contrast, the firing rate
of isolated units did not change, which is expected if suction
does not alter the activity patterns of individual neurons
and if spike sorting is correct. Note, though, that the unit
firing rate before and after suction is not quite an “apples-
to-apples” comparison, as many new sources are revealed
by suction.

Overall, in 15 recordings from cortico-hippocampal slices,
3 ± 5% (mean ± SD) of electrodes were active before suction
vs. 30 ± 20% after. Since the data were strongly non-normally
distributed (Shapiro–Wilk test, p < 0.0001 and p < 0.02,
respectively), we tested non-parametrically for differences that
followed the application of suction; these were highly significant
(Figure 6E; p < 0.001, sign test). This increase in number of
active electrodes was accompanied by commensurate significant
increases in the total number of sources isolated in the arrays,
in the total number of spikes detected per unit time, and the
signal-to-noise ratio of the spikes from the strongest unit for
each electrode. The firing rates for isolated units did not increase
significantly. (If the trend of a slight increase is real, it may
stem from spikes from units with relatively low SNR gaining
detectability after suction improved that SNR.) No significant
differences were seen in the performance of circumferential
vs. intercalated arrays; these were therefore analyzed
together.

3.6. Cause of the Improvements in
Recording Quality
In order to determine the mechanism of increased recorded
activity, we modeled the electrode–saline interface as a solution
resistance in series with a parallel combination of the electrode
charge transfer resistance and a constant phase angle impedance
representing the interface capacitance, with typical values for
the circuit components (see Section 2; Franks et al., 2005;
Figure 7A). In the model, the solution resistance dominates
the impedance at frequencies above 100 Hz, whereas the
charge transfer resistance dominates at frequencies below
10−4Hz. The interface capacitance controls the frequency ranges
of these different regimes (Figure 7B). We then measured
electrochemical impedance spectra from the MSEA electrodes
before and after suction, over a frequency range of 0.1 Hz to
10 kHz. Compared to the situation when the MSEA was merely
covered with saline, laying down a slice on it increased the
electrode impedance by 3.1± 4.2% (at 1 kHz, N = 6 electrodes),
whereas applying suction reduced it by 0.5 ± 14%. Changes in
the phase of the impedance were similarly small, indicating no
significant change in interface capacitance (Figure 7C). As these
changes fell within one standard deviation of repeated impedance
measurements of a single bare electrode (27%), it appears that
suction did not enhance the electrode–cell membrane coupling
per se. We hypothesize that the observed improvements resulted
from the sources being pulled closer to the electrodes.

3.7. Compatibility with Optical Methods
A critical motivation for developing MSEAs on a transparent
quartz substrate was to enable the combination of multisite

FIGURE 7 | Analysis of electrode-tissue interface. (A) Electrical equivalence model of electrode and solution with circuit elements: Rsol (solution resistance), Qint

(constant phase angle impedance representing the interface capacitance), Rct (electrode charge transfer resistance). (B) Theoretical model of absolute value (red) and

phase (blue, dashed) of electrode impedance as a function of frequency. (C) Actual measurements of absolute value (top) and phase (bottom) of electrode impedance,

before a slice was placed on the array (black squares), with a slice present but before suction was applied (blue crosses), and with a slice with suction applied (red

triangles).
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extracellular recording with optical methods. To demonstrate
compatibility with optical methods, we isolated most of the
central nervous system from a medicinal leech and applied the
voltage-sensitive dye VF2.1.Cl to one ganglion in the middle
of the nerve cord (see Section 2.7). This ganglion was then
placed on the MSEA and we imaged VSD signals through the
MSEA. Fictive swimming was evoked by electrically stimulating
the dorsal posterior nerve root of the imaged ganglion through a
glass suction electrode. Characteristic swim oscillations (Kristan
et al., 2005) could readily be discerned in the recording from this
electrode (Figure 8A, black trace). The VSD record contained
many traces of identifiable neurons that participated in the
swim rhythm at various phase delays (Figure 8A, colored traces).
Simultaneously recorded spiking activity from many MSEA
electrodes likewise was modulated along with the swim rhythm
(Figure 8A, rasters). The spike trains clearly comprised two
groups, one from putative neurons that were active in phase with
the root nerve recording, and one at a 120◦ phase lag (Figure 8B,

capitals). The neurons in the VSD record exhibited slightly more
diverse phase lags (Figure 8B, lower case letters), indicating that
the neuronal population sampled by the MSEA overlaps with but
is not identical to the neurons that are visible in the VSD image
(Figure 8C).

4. DISCUSSION

Multi-suction electrode arrays (and perforated MEAs) have the
potential to improve the electrical contact between neuronal

sources and electrodes and to improve tissue health by increased
perfusion with oxygenated medium.

We saw the most dramatic improvement in recordings
from mouse brain slices. These produced almost no recordable
spiking activity prior to suction, yet revealed copious activity
after suction. In experiments with standard MEAs, researchers
commonly use miniature “harps” comprising a metal ring with
several nylon strings to press the slice down onto the MEA so

FIGURE 8 | MSEA and VSD recordings from ex-vivo leech ganglion. (A) Activity recorded during fictive swimming simultaneously from a nerve that innervates

dorsal longitudinal muscles using a suction electrode (black, top); from somata in the ganglion using a voltage sensitive dye (lower case labels, middle); and

extracellularly in the ganglion using the MSEA (capitalized labels, bottom). Displayed signals are electrode voltage data (top); normalized VSD fluorescence (middle);

and detected spikes (bottom). Scale bars: 0.2% dF/F, 2 s. (B) Coherence of VSD (lower case letters) and MSEA signals with respect to the nerve signal. Red and blue

dotted lines are thresholds of significance for VSD and MSEA signals, respectively. (C) VSD and MSEA signals overlaid on a fluorescent image of the ganglion

obtained by imaging through the MSEA. Scale bar: 100 µm. Colors indicate phase lag of signals relative to swim rhythm in all panels.
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as to ensure tight contact between slice and electrodes. While
we could not dispense with harps entirely, to keep the slice
from floating away prior to suction, we were able to rearrange
the geometry so that the harp “strings” remained far from the
recording area (Figure S1) which reduces the potential of tissue
damage where it matters most and improves access to the tissue
for simultaneous intracellular recording.

The improvement in recording quality suggests that either
the tissue–electrode interface has changed, or neuronal sources
are brought closer to the electrodes, or both. Previous studies
found that culturing rat neurons on semiconductor electrodes
for 2–3 days resulted in an increase of the sheet resistance
between the neuronal membrane and electrode surface to 14
M� on average. On the basis of imaging experiments, this was
ascribed to a cleft forming between the membrane and electrode.
The cleft was approximately 50 nm in height and the liquid
in it has a resistivity close to that of bulk saline (Braun and
Fromherz, 2004). Similar results have also been observed with
cells cultured on gold electrodes (Lo and Ferrier, 1998). However,
on the basis of electrochemical impedance spectra, we ruled out
a change in interface impedance in our experiments (Figure 7C),
indicating the slice is effectively electrically “transparent.” Two
complementary mechanisms may provide an explanation for
the discrepancy with earlier studies. First, the transistor and
“bright” gold electrodes used in the cited studies are essentially
flat in contrast to the platinum black electrodes used here,
which are composed of nanoscale “ruffles” (Figure 2, step 8).
Thus, even if a slice touches our electrodes, the majority of the
electrode surface area most likely is not directly covered by a
cell membrane. Second, brain slices contain many dead neurons
and cellular debris on their surfaces (Buskila et al., 2014), which
may not favor large single neurons annealing onto the electrode
surface. In any event, such annealing would not be expected
to occur in the short time (30min) between the moment we
laid the brain slice onto the electrode array and the start of
recordings. These observations imply that the improvement in
recording quality following applied suction through the MSEA
is a result of the neuronal sources being pulled closer to
the electrodes.

Compared to the brain slices, the retina explant showed less
dramatic but still highly significant improvements in recording
quality following application of suction (Figure 6D). The fact
that the retina produced more recordable activity before suction
than the brain slice may be due to the fact that the retina
preparation does not have a layer of dead cells on its surface,
or because we started out with greater pressure from above: The
retina explant is curved, as it fits the eye cup in vivo. Typically,
retinae are pushed onto a MEA with a screw-like contraption.
Alternatively, with perforated MEAs, filter paper can be used to
keep the retina flat before applying suction (Reinhard et al., 2014).
We used a custom-built harp with wide-nylon strings that applied
minimal pressure to keep the retina almost flat and just barely
touching the array prior to suction. While we obtained ample
activity from the retina before suction, we still saw a 72% increase
of detectable spikes following suction, and a nearly three-fold
increase in spikes with SNR over 10. It has been hypothesized
that pulling the tissue toward the array using suction rather
than pushing it toward the array using applied pressure may be

beneficial to tissue integrity (Reinhard et al., 2014). Indeed, we
could record strong signals from this preparation for at least 4.5 h.

In the slice and especially the retina experiments, activation
of mechanosensory channels could be a contributing factor to
the increase in recorded activity (Tan et al., 2006). In particular,
such a mechanism could explain part of the transient increase
in activity at the moment suction was applied. However, it is
not likely that mechanosensory channels are a major factor in
the sustained effect of suction: In both brain slice and retina,
the number of recorded units and their SNR increased greatly
following suction, whereas the firing rates of individual cells
increased little if at all (Figures 6D,E).

The leech ganglia recordings benefited least from suction.
When recording from leech ganglia, we obtained fewer active
electrodes and fewer isolated spiking units than from the other
preparations, and applying suction hadminimal effect (Figure 5).
This may have to do with the structure of the ganglion, which
comprises a layer of cell bodies surrounding a central neuropil.
After the enclosing sheath is removed—which is required to
record any activity—the cell bodies are not very tightly held in an
extracellular matrix. Accordingly, it was necessary to physically
press the ganglion down onto the array, because suction—or
even continuous flow through the suction pores—was insufficient
to hold the tissue down. Our MSEA recordings contained
around 10 sources that oscillated rhythmically with swimming.
This is a small fraction of the total population of neurons
known to oscillate in this manner (Briggman and Kristan, 2006).
One possible explanation is that leech neurons generate action
potentials at some distance from their cell bodies at specific spike
initiation zones located along the neurite. From there, action
potentials only passively propagate into the soma. In our setup
the somata were closest to the electrode array, and it is possible
that somatic depolarizations were simply too small or too slow to
result in a detectable signal on the electrodes. Additionally, debris
from the membranes of large glial cells covers the ganglion even
after desheathing (Kuffler and Potter, 1964) which may further
distort signal propagation between individual neurons and the
recording electrodes (Figure S3).

Recording electrical activity from many neurons at once
with single-spike resolution is an extremely powerful capability.
While progress is being made to do this with VSDs alone
(Moshtagh-Khorasani et al., 2013), sensitivity and the speed of
VSD responses remain limiting factors in many experimental
situations. Additionally, phototoxicity limits the total amount
of recording time available before tissue health degrades to
an unacceptable degree. Combining VSD imaging with MSEA
recording has the potential of overcoming this limitation: By
correlating spike trains obtained from the MSEA with activity
obtained from the VSD in a modest amount of recording
time, the cellular identity of the sources of MSEA activity can
be established. After that, the MSEA can be used to obtain
recordings of practically unlimited duration of those cells’ spiking
activity. Our current experiments on the leech nervous system
(Figure 8) come part of the way toward attaining this potential.
Importantly, they demonstrate that MSEAs are fully compatible
with VSD imaging. There is no reason why this combination
could not be used to great advantage on brain slices. In that
same context, the transparent MSEAs’ implied compatibility
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with optogenetic stimulation (Häusser, 2014), combined with its
enhanced electrical recording capability, opens up many future
research opportunities.
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