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The mechanisms that link a transient neural activity to the corresponding increase of
cerebral blood flow (CBF) are termed neurovascular coupling (NVC). They are possibly
impaired at early stages of small vessel or neurodegenerative diseases. Investigation of
NVC in humans has been made possible with the development of various neuroimaging
techniques based on variations of local hemodynamics during neural activity. Specific
dynamic models are currently used for interpreting these data that can include biophysical
parameters related to NVC. After a brief review of the current knowledge about possible
mechanisms acting in NVC we selected seven models with explicit integration of NVC
found in the literature. All these models were described using the same procedure. We
compared their physiological assumptions, mathematical formalism, and validation. In
particular, we pointed out their strong differences in terms of complexity. Finally, we
discussed their validity and their potential applications. These models may provide key
information to investigate various aspects of NVC in human pathology.

Keywords: cerebral blood flow, computational modeling, magnetic resonance imaging, microcirculation,
hemodynamics

NEUROVASCULAR COUPLING IN FUNCTIONAL NEUROIMAGING

Functional Neuroimaging and Dynamic Models
Synaptic activity and activation of neurons increase energy consumption by local neurons and
astrocytes. This additional energy demand is mainly driven by activities of ion pumping (Attwell
and Laughlin, 2001) and by various associated metabolic processes (Iadecola and Nedergaard,
2007). This energy is produced locally from glucose and oxygen supplied by blood through local
small vessels. In response to transient neural activity nearby vessels dilate, substantially increasing
CBEF. The exact physiological function served by this large increase of flow remains unclear. This
mechanism, termed functional hyperemia, was initially thought to be driven by an oxygen debt
(Magistretti et al., 1999). This concept is now discarded in favor of complex mechanisms involving
different vasoactive agents (Iadecola and Nedergaard, 2007; Attwell et al., 2010).

Neurovascular coupling (NVC) can be defined as the phenomenon that links a transient neural
activity to the corresponding increase of CBF. The development of several functional neuroimaging
techniques for evaluating in vivo cerebral functions is based, at least partially, on NVC. Measured

Frontiers in Neuroscience | www.frontiersin.org 1

December 2015 | Volume 9 | Article 467


http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2015.00467
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2015.00467&domain=pdf&date_stamp=2015-12-18
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:clement.huneau@inserm.fr
http://dx.doi.org/10.3389/fnins.2015.00467
http://journal.frontiersin.org/article/10.3389/fnins.2015.00467/abstract
http://loop.frontiersin.org/people/212843/overview
http://loop.frontiersin.org/people/222227/overview

Huneau et al.

Dynamic Models of Neurovascular Coupling

ASL fMRI
Laser Doppler/

Speckle
Neuro- P

vascular
coupling

Blood flow

Neuronal
/Glial
activity

BOLD fMRI

NIRS
Neuro-

metabolic

coupling

Metabolic

rate

FIGURE 1 | Physiological mechanisms monitored in classical
functional neuroimaging. Neuronal/glial activity provokes, by a
neurovascular coupling, an increase of blood flow. In parallel, a neurometabolic
coupling increase the oxygen consumption. EEG, electroencephalogram;
MEG, magnetoencephalogram; LFP, local field potential (intracerebral
electrode); ASL, arterial spin labeling; BOLD, blood-oxygen-level dependent;
NIRS, near infrared spectroscopy.

in functional magnetic resonance imaging (fMRI), the blood
oxygenation level-dependent (BOLD) contrast has become
widely used to map brain activation in animals and humans
in response to multiple types of neural stimulations (Ogawa
et al,, 1990). At the voxel level, the BOLD signal is related to
changes of blood volume and deoxyhemoglobin concentration
at a typical spatial resolution of 1 or 2mm and temporal
resolution of about 1s (Buxton, 2013). Optical techniques, such
as near-infrared spectroscopy (NIRS), can also measure blood
oxygenation variations associated with transient neural activity.
Conversely to fMRI, optical techniques have worse spatial
resolution and are unable to explore deep brain structures but
have a high temporal resolution that can reach 1 ms (Strangman
et al., 2002). All these techniques are also noninvasive and can be
used in humans. Despite this advantage, oxygen-based methods
only perform indirect measurement of functional hyperemia
(Figure 1). More comprehensive investigations of NVC would
require additional information on hemodynamics. In animal
models, optical methods as laser Doppler or laser Speckle
flowmetry are currently used to measure blood velocity and flow
changes within the superficial cortical layers at depth of about
500 wm (Fukuda et al., 1995). In humans, the development of
fMRI led to other techniques that allow observation of purely
hemodynamic phenomena not sensitive to oxygenation level.
Mainly, arterial spin labeling (ASL) measures CBF variations but
at a lower temporal resolution than using BOLD contrast (>25).

The different imaging techniques sensitive to cerebral
hemodynamic changes are mostly used for inferring brain
functions although the exact physiological mechanisms linking
local blood flow and oxygenation changes to the corresponding
focal variations of neuronal activity are still debated (Attwell
et al., 2010; Hillman, 2014). Despite this imperfect knowledge,
functional neuroimaging methods have been previously
developed on the basis of more or less simple mathematical
models of NVC and oxygen consumption (Friston and Dolan,
2010; Buxton, 2012). Particularly in fMRI, dynamic models
are used to translate hemodynamic signal variations to neural

activity, hence, resolving an inverse problem. Most of these
models were primarily designed as descriptive models for
depicting the transient hemodynamic and oxygenation changes
in activated cerebral areas as the general linear model (Friston
et al., 1995). However, some of them are constructed to mimic
physiological mechanisms and offer the potential of estimating
various biophysical parameters related to fMRI signal changes.
Several are based on the hypothetical inflation or deflation
of cerebral venules secondary to variations of intravascular
pressure with inflow, as in the so-called Balloon model and
Windkessel model (Buxton et al., 1998; Mandeville et al., 1999;
Obata et al., 2004; Zheng and Mayhew, 2009). These models
are essentially explanatory models as they are used to explain
empirical observations in terms of theoretical underlying
mechanisms. They usually include several compartments
(Friston et al., 2000; Buxton et al., 2004; Huppert et al., 2007),
each modeling a particular step in the global process from neural
activity to observed signal (Figure 1). In the present review, we
focus on compartments that specifically model NVC, in both
descriptive and explanatory models developed for functional
neuroimaging.

Basis of Neurovascular Coupling

During neural activation, both neurons and astrocytes may
act on arteriole smooth muscle cells (SMC) in response to
glutamate release (Attwell et al., 2010). Neurons can play a direct
vasomotor role through the delivery of nitric oxide (NO) and/or
prostaglandin (PG), two potent vasodilators (Golanov and Reis,
1994; Li and Tadecola, 1994). Astrocytes can also dilate arterioles
by acting on SMC through many intermediates such as PG,
NO, epoxyeicosatrienoic acids (EET) or potassium release (Zonta
etal,, 2003; Takano et al., 2006). In addition, astrocytes are able to
produce arachidonic acid (AA) that can act as a vasoconstrictor
on the microvasculature (Metea and Newman, 2006) which
suggests that NVC may not be exclusively related to dilating
mechanisms. Finally, in addition to glutamate-mediated NVC,
y-Aminobutyric acid (GABA) was shown to have vasodilator
effects on the microvasculature in cortical and subcortical regions
but its exact involvement in NVC remains undetermined (Cauli
et al.,, 2004; Kocharyan et al., 2007). Recent data support that
neurons mainly contribute to the large and rapid vasodilation
during NVC (Nizar et al, 2013; Lacroix et al., 2015). This
mechanism of vasodilation is thought to start by neighbor
arterioles and to back-propagate through endothelium-signaling
along the vascular tree to reach larger arteries (Chen et al., 2014).
Other data suggest a slower contribution of astrocytes on blood
flow regulation that may be involved in the long-term functional
hyperemia as well as in the basal flow control (Kim et al., 2015;
Rosenegger et al., 2015). Traditionally, all these mechanisms are
thought to occur at the level of SMC in the wall of arteries and
arterioles considered as the unique location where local CBF
is controlled. Nevertheless, recent results suggest that pericytes
surrounding capillaries may also participate to vasodilation
during brain activation (Peppiatt et al., 2006). Pericytes might
be involved even faster than SMC in response to neural activity
(Hall et al., 2014). However, a significant contribution of capillary
pericytes to regional blood flow remains controversial (Hill
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et al., 2015). Their role may be restricted to a very local flow
distribution between different capillaries. Thus, both arterioles
and capillaries may participate in functional hyperemia but with
different spatial scales.

Various pathological conditions, particularly those disrupting
the neurovascular unit might alter the permanent adaptation
of blood supply to local energy needs at the cerebral level.
Accumulating evidence suggests that NVC is modified in
cerebrovascular and degenerative disorders occurring in humans.
In animal models of Alzheimer’s disease, functional hyperemia
was found impaired, as cerebrovascular autoregulation, long
before the occurrence of amyloid plaques (Girouard and
Tadecola, 2006). These dynamic changes were also detected in
the absence of amyloid angiopathy and reproduced in normal
mice with superfusion of amyloid-beta peptide (Ap1-40) on the
neocortex (Niwa et al., 2000; Park et al., 2004). In hypertensive
mice, a decreased response to whisker stimulation was also
detected after administration of angiotensin II (Kazama et al,
2003). Administration of losartan, an angiotensin II blocker, was
recently found capable of rescuing the NVC in these models
possibly through a reduction of oxidative stress and of superoxide
products within the microvasculature (Ongali et al., 2014). In
contrast, in APP mice, experimental data rather support that
alterations of NVC may result essentially from neuronal and not
from vascular dysfunction (Rancillac et al., 2012). In humans,
a significant attenuation of cerebral blood flow (CBF) response
to various stimulations was reported in-vivo before and after the
occurrence of dementia in Alzheimer’s disease (Hock et al., 1997).
Modifications of flow reactivity after stimulations have been
also reported in intracranial and extracranial vascular disorders
(Hamzei et al., 2003) or after ischemic stroke, remote from the

infarction related to transhemispheric diaschisis (Enager et al.,
2004) and following various heterogeneous patterns (Krainik
et al., 2005). Finally, functional or structural changes of arterioles
or capillaries might also alter the adaptive response of the cerebral
microvasculature. Dumas and coworkers recently reported
significant changes of CBF response after visual stimulations
in patients with probable cerebral amyloid angiopathy (Lin
et al,, 2011). Similar changes were detected in patients with
sporadic hypertensive small vessel disease (Dumas et al., 2012).
Modifications of pericytes surrounding capillaries or SMC in
arterioles might be involved in these reactivity changes (Monet-
Leprétre et al., 2013).

In previous human studies obtained in-vivo, various
alterations in flow response to specific stimulations were
previously recorded (Donahue et al, 2012), but these
neuroimaging observations remain difficult to interpret.
The lack of further insight into the underlying NVC mechanisms
is most likely related to methodological limitations such as the
major restrictions in pharmacological manipulation studies in
humans, the potential effects of medication used in pathological
conditions and also to the lack of validated models to extract
key physiological information from signal changes in functional
imaging studies. At the microscopic scale, NVC is based on a
complex system which is not fully understood (Figure2). In
vivo investigations in humans do not reach the microscopic
resolution. In functional neuroimaging, a spatial unit (voxel) can
include several dozens of arterioles and venules and hundreds of
capillaries (Lorthois et al., 2011b). Therefore, modeling such data
should be obtained at an intermediate level usually called the
“mesoscopic scale” that will explore a large population of cells
and vessels.
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FIGURE 2 | A conceptual one direction model of neurovascular coupling. Colored arrows represent the relationship between different activities: neurons, glia,
smooth muscle cells, pericytes, and blood flow. NO, nitric oxide; PG, prostaglandin; AA, arachidonic acid; EET, epoxyeicosatrienoic acids; K, potassium.
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This review is aimed at reporting the most recent dynamic
models of NVC used for interpreting functional neuroimaging
results and discussing their validity relative to the current
physiological knowledge. In order to link mesoscopic models
with the current knowledge of NVC, we proposed to analyze
these models based on a simplified representation of NVC
(Figure 2) assuming that all mechanisms occur essentially in one
direction but following different tracks from neural activity to
functional hyperemia. The first step begins in neurons or glia
and includes all mechanisms leading to changes observed in
SMC or pericytes (four potential tracks). The second step mainly
represents the effects of vessel changes on blood flow variations.
Finally, the potential usefulness of these models for exploring
NVC in cerebrovascular disorders is discussed from different
perspectives.

ANALYSIS OF DYNAMIC MODELS
INCLUDING NVC MODELING

In this review, dynamic models were selected based on the
following criteria: (1) the model should include modeling of
an explicit relationship between the neural activity and local
CBF changes; (2) the NVC modeling should correspond to the
mesoscopic scale and simulate variations of blood flow observed
at the fMRI voxel size; and (3) the model should contain less than
tens of parameters. Among 403 articles detected in the English
literature from 2000 to 2014 whose title contained the terms of
“model” with those of “fmri,” “hemodynamic,” “blood flow,” or
“(neuro) (electro)vascular,” we found 26 different models related
to the hemodynamic response after a transient neural activity.
Among them, we selected seven models that actually include
some modeling of NVC. The other models were discarded for
different reasons. A majority of models of the BOLD response
focus on oxygen exchange and simply consider the flow similar
to the neural activity or to the sensitive stimulus (Aubert and
Costalat, 2002; Sotero and Trujillo-Barreto, 2007). Other authors
proposed to model the propagation of blood pressure waves in
the microvasculature and focus on the relationships between flow
and volume in capillaries and veins (Kong et al., 2004; Drysdale
et al., 2010; Aquino et al., 2012). However, these models did not
provide any original approach of the control of arteriolar flow
by the neural activity. Finally, we also discarded very detailed
physiological models which were not relevant for neuroimaging
data in human (Bennett et al., 2008). The seven selected models
are listed in Table 1.

Each of these models was then reviewed following the same
procedure. We first addressed the central question behind
its construction and the underlying biophysical mechanisms
considered to model the NVC. Hence, we described each model
regarding the NVC scheme in Figure 2. Then, we analyzed the
mathematical formalism used for the most important parts of
each model and described whether they were considered as
linear or not. Although linearity may concern many aspects
of modeling, herein, we chose to focus on the linearity of
the relationships between the input and output amplitudes
of models, a controversial aspect in the modeling of NVC

TABLE 1 | The seven dynamic models of neurovascular coupling selected
from the literature.

Model name Publications Context

Friston flow (FF) Friston et al., 2000 Compartment of the Balloon

model

Neural and NVC
compartments of the
Balloon model

Buxton flow (BF) Miller et al., 2001;

Buxton et al., 2004

Arteriolar compliance Behzadi and Liu, 2005 ~ Compartment of the Balloon

(AC) model

Riera et al., 2006, 2007  Neural and NVC
compartments of the
Balloon model

Local electro-vascular
coupling (LEVC)

3 compartments
Windkessel (3CW)

Dilation-constriction
-0

Proximal integration (Pl)

Huppert et al., 2007;
Mesquita et al., 2009

Zheng et al., 2010

Compartment of a
Windkessel model

Independent model

Kim et al., 2013; Kim
and Ress, 2016

Compartment of a modeling
of BOLD signal

mechanisms. We also proposed to classify the main parts of
each mathematical model under review either as descriptive
or explanatory. For this purpose, one part of a model was
considered as purely descriptive when it only attempts to
reproduce data using mathematical functions and without any
hypothesis concerning the underlying physiological mechanisms.
Conversely, it was considered as explanatory when the modeling
was based on realistic underlying mechanisms, possibly using
biophysical parameters. Models can include both descriptive and
explanatory parts. Finally the validation obtained for each model
was described, regarding the type of measures, their use in animal
experiments or human studies and the number of individuals.

Friston Flow Model

Friston and coworkers proposed in 2000 a model of NVC for
analysis of fMRI data (Friston et al., 2000). Their initial objective
was to complete the hemodynamic and energetic compartments
of the Balloon model previously developed by Buxton (Buxton
et al,, 1998) that did not include NVC modeling, for improving
the prediction of neural activity from the BOLD signal.

In the Friston Flow (FF) model, a flow-inducing chemical
signal presumably controls blood flow variations at the arteriolar
level. Hence, in this model, the arteriolar activity results directly
from the input stimulus, assumed to be a good estimate of the
neural response in activated regions. The chemical signal also
depends on a blood flow feedback which simulates an auto-
regulation process. A second order ordinary differential equation
(ODE) is used to describe CBF variations resulting from the input
stimulus. It is presented as a simple linear explanatory model
using three parameters (Table 2): neural efficacy and feedback
regulation gain that are mainly scaling factors and time decay for
the chemical signal inducing arteriolar dilation.

These parameters were estimated in BOLD fMRI experiments
in four healthy individuals (Friston et al., 2000; Friston, 2002).
No explicit comparison of output signal was reported so far.
For validating the time decay, the only biophysical parameter
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TABLE 2 | Main aspects of complexity and validation in the selected models.

Model name NVC compartment parameters Validation data
Biophysical Scaling Input Output Specie
FF Chemical signal decay Neural efficacy Stimulus waveform BOLD Human
Feedback gain
BF . Amplitude Predicted neural activity ASL Human
Duration
Delay
AC Baseline muscle arteriolar compliance Neural efficacy Stimulus waveform BOLD Human
Baseline arteriolar radius Decay constant
Maximum arteriolar radius Feedback gain
Intravascular pressure
Flow exponent
Baseline arteriolar wall thickness
Baseline passive stress fraction
LEVC Neuronal energetic factors (x2) Delay EEG BOLD Human
Flow-inducing signal susceptibility (x2) Feedback gain
NO diffusion low-pass filter (x3) Scaling factors (x2)
NO signal decay
3CW Baseline arterial resistance Amplitude LFPmulti-unit activity Laser Speckle Rat
Baseline capillary resistance Duration
Grubb’s exponent Delay
Windkessel exponent
Flow exponent
Vascular transit time
D-C - Delay Current source density Laser Doppler Rat
Dilation factors (x4)
Constriction factors (x4)
PI - Flow change amplitude Stimulus waveform BOLD Human

Damping time
Flow oscillation
frequency

included in the model, the authors found the estimated value to
match the half-life of NO (between 0.1 and 1 s) but not that of K+
(about 5s; Friston et al., 2000). Hence, this model hypothesizes
that NO is the only vasoactive agent involved in NVC, contrary
to what is now recognized in physiology (Attwell et al., 2010).

Buxton Flow Model

After developing their initial model of venous inflated balloon
(Buxton et al., 1998), Buxton and coworkers proposed a model
that connects a neural compartment to the initial Balloon model
through both a neurovascular and a neurometabolic coupling
(Buxton et al., 2004). The Buxton flow (BF) model was proposed
mainly to complete the physiological path from the stimulus to
the BOLD response by taking into account experimental results
such as the initial dip (Yacoub and Hu, 2001) and temporal
nonlinearity of both flow and BOLD signals (Birn et al., 2001;
Miller et al., 2001).

The BF model is purely descriptive at the level of NVC.
Mathematically, this model consists in a linear convolution of
the neural activity (typically the local field potential —LFP) with
a flow response function. By definition this model makes no
other assumption than the global linearity of NVC. The response
function is a gamma-variate function, involving three parameters
(Table 2): the normalized amplitude, duration and order (shape
parameter) of the CBF impulse response (formalism equivalent

to an ODE). For the neural compartment, Buxton and coworkers
proposed a simple neural adaptation model linking excitatory
and inhibitory activity after an input stimulus of the subject.
This neural compartment can handle temporal nonlinearity
between the stimulus and CBF response (Miller et al., 2001).
For taking into account the possibility of a post-stimulus neural
undershoot, a threshold constraint was added to the neural
compartment.

Finally, no real data were provided in the 2004 article
to validate this NVC model that includes a nonlinear neural
adaptation. Nevertheless, previous experimental results (ASL
fMRI in human) were consistent with the hypothesis that
temporal nonlinearities are handled by the stimulus to neural
activity rather that NVC (Miller et al., 2001). This supports
the hypothesis of temporal linearity of the NVC compartment,
although it does not validate the shape of the CBF impulse
response used in the model.

Arteriolar Compliance Model

After experimental data repeatedly showed that CBF variations
and BOLD responses were modulated by the baseline level of
CBF (Matsuura et al., 2000; Kemna and Posse, 2001), Behzadi
and Liu proposed to include into the balloon model a specific
compartment of NVC based on the arteriolar compliance (AC)
for fitting experimental observations (Behzadi and Liu, 2005).
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The AC model considers a flow-inducing chemical signal
identical to that proposed in the FF model. Its originality is
based on a specific modeling of the arteriolar wall compliance
before generating the resulting blood flow (Davis and Gore,
1989; Lash et al, 1991). In this paradigm, arterioles have
two distinct compliance components: an active compliance
corresponding to SMC activities within the microvasculature
and a passive compliance mainly corresponding to the non-
contractile components of the vascular wall including the
endothelium. At rest, SMC constrain the arterioles thus
offering a low compliance to the flowing blood. During neural
activation, SMC are forced to relax, increasing AC in order
to increase blood flow. Once the arteriolar diameter reaches
a threshold value (corresponding to the largest expansion of
the endothelium wall), SMC are considered as totally relaxed
while arterioles are constrained only by passive compliance.
Mathematically, the authors used the linear ODE formalism
of Friston and coworkers in their model (Friston et al., 2000)
and added a nonlinear model based on mechanics formalism
and the Poiseuille equation (Fung, 1997). Overall, the model
is essentially explanatory and includes various biophysical
parameters such as the baseline muscle/total compliance
and the normalized maximum dilation radius of arterioles
(Table 2).

This model was evaluated using BOLD experiments in healthy
humans (Cohen et al., 2002; Behzadi and Liu, 2005). The baseline
signal was found to increase linearly with expired CO2 from
hypocapnic to hypercapnic levels. Conversely, the magnitude of
the BOLD response to visual stimulation was found to decrease
linearly with CO2. The (AC) model seems therefore capable of
fitting the BOLD signal under variable conditions. This fitting is
made possible by tuning, within constrained physiological range,
baseline parameters as the resting state CBF or vascular wall
compliance.

Local Electro-vascular Coupling Model

Riera and coworkers developed recently a framework combining
EEG and fMRI signals in the setting of NVC modeling
(Riera et al., 2006, 2007). They proposed a mesoscopic model
that connects the initial neural stimulus to BOLD signal
through a local electro-vascular coupling (LEVC) formalism.
The activity of cortex layer V was specifically modeled using
a neural mass approach with electrical dynamics considered
as membrane potentials originating from pyramidal cells, feed-
forward interneurons or feedback interneurons (Tagamets and
Horwitz, 1998). This electrical part of the model that allows
simulating realistic EEG signal was then coupled to the classical
Balloon compartment (Buxton et al., 1998) for generating BOLD
observations.

In this LEVC model, the authors assumed that NVC is
mainly mediated through NO signaling from neurons to SMC.
The NO calculation includes two steps corresponding to the
synthesis and diffusion of NO. Extra-cellular NO concentration
is first calculated based on a nonlinear weighted contribution
of membrane potentials from the three neuronal populations.
Diffusion of NO to SMC of nearby arterioles is thereafter
modeled by linear low pass filtering. Finally, CBF is calculated

using free NO concentration and a differential equation proposed
by Friston et al. (2000). The LEVC model relies on 12 parameters
for calculating CBF from membrane potentials (Table 2).

This model was validated by obtaining a nonlinear correlation
between the stimulation frequency and the hemodynamic
response. Indeed, the simulation showed a kind of resonance
frequency producing the highest response which corroborated
experimental observations in the rat barrel cortex (Hewson-
Stoate et al., 2005) or in the human visual cortex (Singh et al.,
2003). In a companion paper, Riera and coworkers applied
their model to EEG and fMRI data obtained in two subjects
(Riera et al., 2007). A numerical method was used for estimating
several physiological parameters integrated to the neural mass
and NVC parts of the model. These parameter estimations were
not validated yet using physiological measurements. However,
Rosa and coworkers have recently compared different variations
of this model for integration of the neural input (Rosa et al,
2011). The results obtained support the choice of using the
synaptic activity to control the flow during slow neuronal activity,
but also argue to consider the neuronal firing rate for faster
activity.

3-Compartments Windkessel Model

Huppert et al. extended the initial Windkessel model (Mandeville
et al, 1999) to a 3 compartments model (3CW; Huppert
et al., 2007). The 3CW model includes multiple compartments
separating arteries, capillaries and veins for calculating the flow
response. The model was further improved when the relevance
of a linear transfer function between the neural and arteriolar
changes was specifically investigated (Mesquita et al., 2009).

In the 3CW model, the NVC is obtained following two steps.
The first compartment is mainly descriptive and based on linear
functions from the neural activity to the arteriolar diameter.
The second compartment is more explanatory and models the
cascade influence of the arteriolar flow onto the capillary and
venous flow according to a vascular passive inflation mechanism
(so-called “Windkessel mechanism”). In the first part of the
model, the authors designed a linear convolution with a gamma-
variate impulse response function using three free parameters
(amplitude, onset time, and width) to calculate the arteriolar
diameter change related to the input stimulus (Table 2). In the
second part, the arteriolar resistance changes are derived from
vessel diameter variations and give access to the flow between the
arteriolar and capillary compartments. Like many models derived
from the Windkessel model, this model is based on electrical
circuits formalism for calculating the hemodynamics in brain
microvessels. In the 3CW model, the calculation is based on the
hypothesis of a constant pial arterial pressure, capillary resistance
and compliance, which was challenged by recent results (Peppiatt
et al., 2006; Hall et al., 2014).

The 3CW model was validated using laser Doppler flowmetry
(LDF) and local field potentials or multi-unit activities recorded
in rats (Mesquita et al., 2009). Parameters of the flow impulse
response were estimated for nine amplitudes of the same
stimulus. Model outputs were finally found well correlated to
experimental data but the nonlinearity pointed out using variable
stimulus amplitudes was not found reproducible. Since this
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model calculates blood flow in three compartments, it may be of
particular interest for discriminating and estimating functional
alterations of arterioles, capillaries, or veins.

Dilation-Constriction Model

The simple dilation-constriction (D-C) model has been initially
proposed by Zheng et al. (2010) for taking into account the
release of a vasoconstrictor agent that was recently observed
during brain activation (Metea and Newman, 2006; Filosa and
Blanco, 2007; Devor et al., 2008). Thus, this model integrates
the conflicting roles of various vasoactive substances that can be
responsible for dilation (NO, EET, PG, K1) or constriction (AA)
of microvessels (Attwell et al., 2010). Both of these mechanisms
that can occur simultaneously during brain activation are
considered in parallel for modeling NVC.

The D-C model integrates two linear third order dynamic
equations, one for dilation and the other for constriction of the
microvasculature. Each part includes four parameters for setting
the dynamics and efficacy of both effects. CBF is simply calculated
with summation of both responses with a certain delay. Finally,
the D-C model consists of two independent descriptive models
for distinct physiological pathways but including parameters that
have no biophysical meaning.

The D-C model was first tested using variations of current
source density and LDF during electrical stimulation of rat
whisker pad (Zheng et al,, 2010). Optimization of parameters
was performed to match experimental data. Parameters of the
model were thereafter validated using a stimulation paradigm
distinct from that initially used. The model provides excellent
fitting of experimental CBF measures obtained in rats using
Laser Doppler. The D-C model can also predict CBF changes in
different stimulation paradigms based on fixed parameters. Thus,
experimental validation obtained in this model further supports
the hypothesis of concurrent dilation and constriction during
neural activity (Metea and Newman, 2006).

Proximal Integration Model
Kim and coworkers recently proposed a new model based on
a mechanism called proximal integration (PI; Kim et al,, 2013),
similar to the emerging concept back-propagating vasodilation
from arterioles to larger arteries. In the PI model, neural activity is
assumed to generate a flow-inducing command that first reaches
the nearby capillaries and that propagates later to larger vessels
(arterioles then arteries) through astrocytes end-feet or pericytes
(Itoh and Suzuki, 2012). Kim and coworkers later integrated this
mechanism in a global model proposed to predict the oxygen
time course following a brief neural activation (Ress et al., 2009).
In the PI model, any neural activation is considered to
modify pericytes in the microvasculature and cause immediate
dilation of local capillaries. The vasodilation signal then back-
propagates through vascular branches to penetrating and pial
arteries. Mathematically, the model used the electrical formalism
for representing the blood flow resistance and compliance in the
whole microcirculatory circuit. The neural activity is assumed
to decrease suddenly the capillary resistance, hence leading
the associated circuit to behave as a damped oscillator. This
mechanism is actually translated as a convolution of the input

stimulus signal with a damped oscillatory impulse response.
The model requires three parameters which are not related to
biophysical values: the amplitude, damping time and oscillation
frequency.

To validate the corresponding overall model, outputs were
compared with tissue-oxygen measurements in the visual cortex
obtained from experiments in cats (Kim et al., 2013). A manual-
automatic procedure was performed to estimate the PI model
parameters but no fitting with flow measures for complete
validation has been reported. Very recently, the same team
included the PI model (now termed arterial impulse model) in
a global modeling of the BOLD signal (Kim and Ress, 2016), very
different from the so-called Balloon model. They exhibit better
fits with BOLD signal than the Balloon model. While encouraging
results, still no direct fits of the “pure” flow response are shown.

POTENTIAL AND LIMITATIONS OF
SELECTED DYNAMIC MODELS

The seven mesoscopic models of NVC reported in the literature
largely vary on different aspects. All models were based on the
most current knowledge of biophysical mechanisms presumably
involved in NVC. However, the understanding of functional
hyperemia has evolved considerably since the initial model
reported by Friston and coworker. Thus, the central role of
a primary NO signaling from neurons to arteriolar SMC in
the FF model or in the LEVC model (Friston et al., 2000;
Riera et al., 2006) is now challenged by the discovery of more
complex mechanisms involving new players such as astrocytes
or pericytes (Metea and Newman, 2006; Schummers et al., 2008;
Hall et al., 2014). The most recent models such as the dilation-
constriction (D-C) and PI models were built taking into account,
at least partially, these new elements (Zheng et al., 2010; Kim
et al,, 2013). The mathematical construction also largely differs
between these models. Some of them, the FE, BE, D-C, and PI
models, are mainly descriptive and only attempt to replicate,
using mathematical equations, the signal variations detected
experimentally. However, despite this intrinsic limitation, these
models may remain extremely useful for quantitative comparison
between different subjects and populations. In contrast, the AC,
LEVC, and 3 compartments Windkessel (3CW) models are more
explanatory and integrate biophysical parameters that may be
used for exploring various underlying biological processes. In the
D-C model, the parameter estimation may help to discriminate
alterations of mechanisms involved in dilation from those related
to the constriction of the microvasculature. In the AC model
as well as in the 3CW model, the Poiseuille equation used
for describing the relationships between the arteriolar activity
and the variations of CBF can provide detailed information
about the post-stimulus flow response in pathological conditions.
Although these methods are promising for investigating NVC in
cerebrovascular disorders, explanatory models present a higher
complexity than descriptive models, need a greater number
of parameters and can include nonlinear operations. All these
aspects will make the estimation of model parameters more
difficult.
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FIGURE 3 | Summary and comparison of selected dynamic models of neurovascular coupling. As for the rest of this review, only the neurovascular coupling
compartment is considered. For each model, a schematic represents the mathematical process proposed to calculate the output cerebral blood flow (CBF) from the
input (stimulus waveform or neural activity). Background colored arrows refer to the two steps of NVC described in Figure 2: chemical signal from neurons/glia to
contractile cells (green) and mechanical effect onto hemodynamic (orange). Boxes indicate either underlying equations are linear (light gray) or not (dark gray), and
report the overall mathematical complexity. On the right, blue scale orders models regarding their detail level. Selected model names: PI, proximal integration; FF,
Friston flow; BF, Buxton flow; D-C, dilation-constriction; AC, arteriolar compliance; 3CW, 3 compartments Windkessel; LEVC, local electro-vascular coupling.

Identifiability

Dynamic models can be used to reproduce real data with
simulations and to identify a specific parameter value that allows
the model output to fit real data. The identifiability of a model,
corresponding to its capacity to estimate all parameters with the
smallest variance, is a key property that was not systematically
assessed. Deneux and Faugeras evaluated the identifiability of two
models derived from the Balloon model including the FF model
for modeling the NVC compartment (Deneux and Faugeras,
2006). The sensitivity of model output to variations of free-
parameters was tested in this archetypal model. The results
showed that large variations of different parameters have almost

no effect on the output. The estimation of model parameters from
observed data is then largely compromised since many parameter
values will reproduce identical data. Hu and Shi pointed out also
that the parameter identifiability in fMRI models largely depends
on the complexity of temporal dynamics of model inputs and
therefore is strongly related to the stimulation paradigm (Hu and
Shi, 2010).

Validity

All models have been previously validated, i.e., they were shown
capable to fit in vivo data and to provide fitted values of
their biophysical parameters corresponding to values obtained
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with other methods and already reported in the literature. This
validation was made using different types of data. Human data
obtained from BOLD contrast were used for validation of the
FE, AC, LEVC, and PI models (Friston et al., 2000; Behzadi and
Liu, 2005; Riera et al., 2007; Kim and Ress, 2016). The balloon
model which plays a central part in most of these models is
now largely questioned since it is mainly based on a passive
venous expansion mechanism that is thought now to play a
negligible role (Lorthois et al., 2011a). Fitting fMRI measures
for investigating NVC would then require additional modeling
using the most recent assumptions concerning hemodynamic
changes or oxygen consumption mechanisms. The increased
global complexity with a higher number of parameters can
however reduce the global identifiability of the final model.
Finally, two models, the 3CW and D-C models were validated
at the individual level using direct measures with laser speckle
or laser Doppler measures of local CBF in rats (Mesquita et al.,
2009; Zheng et al., 2010). Excellent fits with real data were
obtained providing an external validation not obtained in the
other models. In addition, Zheng and coworkers used different
paradigms for estimating parameters in the D-C model (Zheng
etal,, 2010), however they did not report any confidence interval
of their estimates. In the PI model, most convincing validation
was obtained fitting BOLD signal measured in human (Kim and
Ress, 2016), as described above, but local blood flow signal was
not considered although it appears essential for exploring NVC.

Potential Use

Since the physiology of NVC is not yet fully understood, it
remains difficult to determine which dynamic model is actually
the best to capture a specific mechanism of NVC. The choice
of a model largely depends on the experimental paradigm used
for obtaining functional hyperemia as well as on the nature
and resolution of measured data. Furthermore, models including
a large number of unknown parameters (D-C and LEVC) are
more difficult to interpret particularly using a single stimulation
paradigm because of the limitation of identifiability. The choice
of a model to investigate NVC also depends on the context
and exact aim of the study. To compare NVC between different
populations, descriptive models fitting the data (Figure 3) may
be largely sufficient. The main advantage of descriptive models is
that they do not include physiological parameters that can vary
with the underlying pathological processes. Conversely, to infer
on a specific underlying NVC mechanism, the choice of a model
is particularly difficult when its validity is not fully established
in humans and in normal physiological conditions. The use of
multiple explanatory models with comparison of different results
may be then useful for better interpretation. Finally, the results
obtained using any model should be always interpreted with
caution, not as facts but only for raising new hypotheses that will
still require further validation.

CONCLUSION

Different models including a specific NVC compartment were
previously used in human and animal hemodynamic-based
studies. However, these models were rarely built for specifically
investigating NVC in normal or pathological conditions. While
descriptive models appear potentially usable for comparing
patients with cerebrovascular disorders from healthy subjects,
explanatory models may offer new hypotheses for investigating
in vivo some specific aspects of NVC in normal and pathological
conditions. Before using these models for exploring NVC in
healthy subjects and patients, the following aspects will need
however to be considered; (1) the advantage and risk of using
fixed parameter values obtained from the literature should be
carefully evaluated according to the study aim and underlying
pathological condition, (2) the number of variables needed and
complexity of dynamic processes should be reduced to the
minimum, (3) the linearity or nonlinearity of the underlying
mechanisms should be carefully examined, and (4) the validity
always discussed for both normal and pathological situations. We
recommend that, in first approach, modeling of NVC in human
should firstly restrict to the most macroscopic models (FF, BE, and
PI; Figure 3). But these models may fail to fit certain dynamic of
the blood flow response, for instance, occurring during longer
activation or in pathological NVC. In these cases, the need of
models with more parameters (D-C) or including nonlinearity
may reveal relevant (AC). Finally, the most complex explicative
models (3CW and LEVC) of NVC should be reserved to the
modeling of microscopic flow signal imaging in animals, like
two-photon imaging.

From our point of view, NVC has surprisingly been forsaken
in modeling functional neuroimaging, especially in humans.
This may be due to the poor understanding of the underlying
physiological mechanisms, in addition to the focus of fMRI
community on other aspects of the BOLD signal. Nowadays,
there are growing issues to specifically investigate NVC in
human pathologies such as neurodegenerative diseases. Recent
progress in the understanding of NVC underlying mechanisms
and development of new functional neuroimaging techniques
(ASL or ultrafast ultrasound imaging) allow the development and
validation of new and specific models of NVC. These models
will be necessary to find new and noninvasive biomarkers of
neurovascular diseases based on dynamic aspects of functional
hyperemia.
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