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Oxytocin (oxy) is a pituitary neuropeptide hormone synthesized from the paraventricular

and supraoptic nuclei within the hypothalamus. Like other neuropeptides, oxy can

modulate a wide range of neurotransmitter and neuromodulator activities. Additionally,

through the neurohypophysis, oxy is secreted into the systemic circulation to act

as a hormone, thereby influencing several body functions. Oxy plays a pivotal role

in parturition, milk let-down and maternal behavior and has been demonstrated to

be important in the formation of pair bonding between mother and infants as well

as in mating pairs. Furthermore, oxy has been proven to play a key role in the

regulation of several behaviors associated with neuropsychiatric disorders, including

social interactions, social memory response to social stimuli, decision-making in the

context of social interactions, feeding behavior, emotional reactivity, etc. An increasing

body of evidence suggests that deregulations of the oxytocinergic system might be

involved in the pathophysiology of certain neuropsychiatric disorders such as autism,

eating disorders, schizophrenia, mood, and anxiety disorders. The potential use of

oxy in these mental health disorders is attracting growing interest since numerous

beneficial properties are ascribed to this neuropeptide. The present manuscript will

review the existing findings on the role played by oxy in a variety of distinct physiological

and behavioral functions (Figure 1) and on its role and impact in different psychiatric

disorders. The aim of this review is to highlight the need of further investigations on this

target that might contribute to the development of novel more efficacious therapies.

Keywords: oxytocinergic system, autism, eating disorders, anxiety, mood disorders

INTRODUCTION

History and Structure of Oxytocin
The neuropeptide oxytocin (oxy), was discovered in 1906 by Henry Dale, who observed that
extracts from human posterior pituitary gland were able to induce uterus contractions in a pregnant
cat; the name oxy, derives from the Greek words “ωκνξ τoκoxξ,” meaning “swift birth.”

In 1984, Ivell and Richter elucidated the structure of the oxy gene (Ivell and Richter, 1984),
and in 1992 the sequence of the oxy receptor (oxyr) was reported (Kimura et al., 1992). Oxy is a
nonapeptides with a disulfide bridge between Cys residues 1 and 6 that creates a six-amino acid
cyclic structure and a COOH-terminal α-amidated three-residue tail.
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FIGURE 1 | Oxytocin regulatory control of different and complex

processes.

Synthesis and Localization
Oxy is synthesized as a preprohormone precursor protein that
includes the oxy carrier protein neurophysin I (Brownstein
et al., 1980). Although neurophysin is apparently devoid of any
biologically activity, different observations suggests that it might
exert a protective role against oxy enzymatic damage and it has
been extensively studied for its involvement in the regulation of
oxy neurosecretory pathways (Legros and Geenen, 1996; de Bree,
2000). The inactive preprohormone protein is hydrolyzed by a
variety of enzymes in small fragments and the last reaction that
generates oxy is catalyzed by a peptidylglycine alpha-amidating
monooxygenase (Brownstein et al., 1980; Burbach et al., 2001;
von Eggelkraut-Gottanka and Beck-Sickinger, 2004). The oxy
gene, located on chromosome two in mice, three in rats, and 20
in humans (Dutil et al., 2001), is composed of three exons, each
of them encoding for a particular portion of the peptide (Gimpl
and Fahrenholz, 2001).

The Oxytocinergic System
Hypothalamus-Hypophysis
The hypothalamic-neurohypophysial system represents
the major oxy neurosecretory system and consists of the
paraventricular (PVN) and supraoptic (SON) nuclei (Swanson
and Kuypers, 1980; Rhodes et al., 1981) and their axons reaching
the neurohypophysis. However, the neurons of PVN and SON
project extensively also to other brain areas such as the arcuate
nucleus (Arc), the median eminence (ME), the lateral septum
(LS) and the medial amygdala nucleus (MeA; Pittman et al.,
1981). Within the PVN, two populations of oxy neurons have
been identified: “magnocellular” and “parvocellular” neurons.
Oxy is mainly synthesized in the magnocellular portions of the
PVN and SON (Swaab et al., 1975). Oxytocinergic magnocellular
neurons terminate in the posterior lobe of the pituitary gland and
also innervate the Arc, the LS, the MeA, and the ME (Pittman
et al., 1981). Once activated, magnocellular oxytocinergic
neurons, release oxy from the nerve terminals to the posterior
pituitary; from here oxy is secreted into the bloodstream,

so that it can produce its effect on organs expressing oxyrs
located in the rest of the body (Gimpl and Fahrenholz, 2001).
The release of oxy from the neurohypophysis into the blood
stream is not accompanied by an increase of the peptide at the
central level, thus indicating that oxy does not readily cross the
blood brain barrier (BBB). In accordance with this observation,
peripheral stimulation of oxytocinergic system such as during
milk suckling or vaginal dilatation may not change oxy levels in
the central nervous system (CSF; Gimpl and Fahrenholz, 2001).
Moreover, while stimulation of the PVN evokes oxy release at
both central and pheripheral level, electrical stimulation of the
rat neurohypophysis only evokes oxy release into the blood
(Harris et al., 1981); moreover oxy circulating levels are reduced
after hypophysectomy in rats while its concentration increases
in the CSF (Dogterom et al., 1977). The oxy half-life is 28min in
the CSF, compared to 1–2min into the blood; in the CSF, oxy is
normally present at concentrations of 10–50 pM, slightly higher
than those in plasma (Jones and Robinson, 1982; Meyer et al.,
1987). Moreover, oxy release has been shown to occur not only
at the axonal levels but also locally from dendrites in both the
PVN and SON (Neumann et al., 1996).

Furthermore, oxy can act as an intrinsic self neuromodulator;
oxy release within the SON is pivotal for the coordinated
depolarization of oxy neurons during lactation and for the
positive feedback mechanism mediated by oxyrs on its own
release during parturition (Neumann et al., 1996).

The parvocellular neurons, that are smaller than
magnocellular neurons, are located in the dorsal-caudal
portion of the PVN and terminate principally to the nucleus
of solitary tract (NST), the dorsal motor nucleus of the vagus
(DMNV), the rostral ventrolateral medulla, and the sympathetic
centers in the spinal cord (Amico et al., 1990; Rinaman, 1998;
Tóth et al., 1999).

Finally, it has been proposed that oxy may participate in
the physiological regulation of the adenohypophysial hormones
prolactin adrenocorticotropic hormone (Page et al., 1990), and
gonadotropins (Robinson and Evans, 1990). This hypothesis
is supported by evidence demonstrating that hypothalamic
oxytocinergic fibers reach also the anterior part of the pituitary
gland via the hypophyseal portal system (Amar andWeiss, 2003).

Oxytocin Receptor
The oxy receptor (oxyr) is a 389 aminoacid polypeptide
belonging to the G-protein coupled receptor family with seven
transmembrane domains. Specifically this receptor is coupled to
a Gq/11α protein that stimulates the activity of phospholipase
C. This leads to the generation of second messengers, release of
Ca2+ from the intracellular storages, and activation of protein
kinase type C. These two conditions can trigger several cellular
events such as the contraction of smooth cells, cellular excitation,
and modification of gene expressions (Gimpl and Fahrenholz,
2001).

The oxyr has been identified not only in the brain but also in
several peripheral organs. In the rat CNS, oxyrs are present in
several regions, including the olfactory system, cortex, thalamus,
basal ganglia, ventromedial region of the hypothalamus, bed
nucleus of the stria terminalis, central amygdala, ventral
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subiculum, hippocampus, nucleus accumbens, brain stem, and
spinal cord (Gimpl and Fahrenholz, 2001). Interestingly, their
expression density changes according to the age (Gimpl and
Fahrenholz, 2001).

In human brain oxyrs are not present in the olfactory bulbs,
entorhinal cortex nor in the amygdala or hippocampus but they
are mainly expressed in the pars compacta of substantia nigra and
globus pallidus, as well as in the anterior cingulate and medial
insula (Gimpl and Fahrenholz, 2001). In peripheral organs oxyrs
are expressed in the uterus, mammary gland, ovary, kidney,
heart, bone, and endothelial cells (Gimpl and Fahrenholz, 2001).
Through the activation of oxyrs in the bone tissue oxy was shown
to be implicated in bone growth and in the remodeling of bone
structures (Breuil et al., 2011).

Neuromodulatory Control Exerted by Oxytocin
Similarly to other neuropeptides, oxy is able to influence
neurotransmission within the nervous system in a manner that
is different from other classical neurotransmitters such as GABA,
serotonin and dopamine (reviewed by Ludwig and Leng, 2006).
The first main difference between the action of neuropeptidergic
and classical neurotransmitters is linked to their very different
turnover: neuropeptides show a much longer half-life (about
20min) than neurotransmitters (about 5ms), due to their much
slower degradation (Mens et al., 1983). As a consequence,
neuropeptides can produce their effects in the CNS at longer
distances and in broader regions of diffusion (Landgraf and
Neumann, 2004; Ludwig and Leng, 2006).

The second main difference concerns the modality of their
release, being neuropeptides stored in core-dense vesicles that
are released not only at the axonal endings but also at the
somatodendritic levels and are much larger than synaptic vesicles
that store and release classical neurotransmitters at the synaptic
terminals (Morris and Pow, 1991). Both these two aspects
make the neuromodulatory actions of neuropeptides much
broader and less spatial/temporal specific with respect to classical
neurotransmitters. However, at the same time, neuropeptidergic
neurons form also synaptic connections with other neurons and,
therefore, neuropeptides are able to play also a more specific
action at their axon terminal that is more similar to the function
of other classical neurotransmitters. The oxytocinergic system
shares these common aspects with many other neuropeptides.

How oxy can actually affect neurotransmission in different
brains areas and the effects that this modulation can produce
on behaviors and neuronal function has started to be elucidated
recently.

Oxy is able to rapidly change brain state to modulate
synaptic plasticity in specific areas. These includes the mouse
auditory cortex, which has been recently demonstrated (Marlin
et al., 2015), or the hippocampus (Mühlethaler et al., 1984;
Zaninetti and Raggenbass, 2000; Owen et al., 2013), or the
nucleus accumbens (Dölen et al., 2013). In particular it has
been emerging that in these areas oxy neuromodulation acts
sharpening neuronal responses to increase the salience of specific
stimuli. This action is the result of a dual action: at the signal
generation that is increased and at the background noise that is
dampened. For example, Marlin and colleagues have studied the

role of oxy in the mouse maternal behavior of pup retrieval and
demonstrated that oxy is able to regulate the neuronal responses
induced by pup calls in the auditory cortex of the mothers. This
action is not symmetrical in both hemispheres and leads to a
lateralization of the response with a greater stimulation of the
left auditory cortex, where a higher density of oxyr is observed
mostly on inhibitory interneurons expressing parvalbumin and
somatostatin. The activation of these receptors by oxy released
from projections of PVN neurons seems to be required mainly
to trigger, rather than to maintain, the retrieval behavior and it is
able to produce a specific equilibrium of the degree and timing
of inhibitory signal with excitatory signal, which produces and
increase of the salience of pup calls.

A similar mechanism was demonstrated also in the
hippocampus. At this level oxyr are mostly expressed in
the soma and dendrites of GABAergic interneurons, whose
firing is increased by their activation. Interneuron firing, in
turn, suppresses the activity of pyramidal neurons (Mühlethaler
et al., 1984; Zaninetti and Raggenbass, 2000). Owen et al. (2013)
showed how this positive effect of oxy on the firing of fast-
spiking interneurons is able to enhance the signaling to cortical
structures while concurrently lowering the background noise.
In fact, the increased firing of fast-spiking interneurons is able
to suppress the spontaneous firing of pyramidal hippocampal
neurons. At the same time, a use-dependent depression develops
at the synapse between the fast-spiking interneuron and the
pyramidal cell that leads to the enhancement of spike throughput.
This circuitry, which can be activated by any manipulation able
to stimulate fast-spiking interneurons, leads to a significant
enhancement of the fidelity and timing of spike transmission
through the network.

In the nucleus accumbens oxy was demonstrated to act
causing a presynaptic long term depression (LTD) of excitatory
inputs that plays a key role in the positive reinforcing properties
of social interaction in rodents (Dölen et al., 2013). In particular,
Dölen and collaborators demonstrated the expression of oxyr
on the axon terminals of serotonergic neurons arising from
the dorsal raphe nucleus. The activation of oxyr at these
terminals is able to induce a presynaptic form of LTD in
medium spiny neurons through the involvement of the subtype
5HT1B of serotonergic receptors and such mechanism plays a
necessary role for social reward in mice. Recent findings from
the Piomelli’s laboratory demonstrated that this mechanism of
synaptic plasticity triggered by oxy in the nucleus accumbens
involves also another important neural component of the
circuitry: the endocannabinoid system. In fact, the activation of
oxyr is able to trigger the synthesis and release of anandamide
in the nucleus accumbens that, in turn, activates local CB1
receptors (Wei et al., 2015). The involvement of these receptors
appears necessary in mediating the rewarding properties of
social interaction. This observation suggests the hypothesis that
CB1 activation in the nucleus accumbens might participate in
the oxy-triggered synaptic plasticity that mediates oxy effects
in this behavioral context, as the activation of CB1 receptors
has been demonstrated to induce presynaptic LTD in other
brain stuctures (Robbe et al., 2002; Gerdeman and Lovinger,
2003).
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These mechanisms of oxy action in different brain structures
provide insight into how a diffusely distributed neuromodulatory
signal can specifically influence the performance of complex
networks in a manner that ensure synapse specificity and
millisecond definition.

Physiological Role of Oxytocin
Oxytocin in the Lactation and Parturition
The oxytocinergic system plays a crucial role in the induction of
labor, due to its uterotonic action exerted on the endometrium
smooth muscle. Therefore, selective oxy receptor antagonist
may be useful for the prevention of premature delivery and
dysmenorrhea (Williams et al., 1998; Blanks and Thornton, 2003;
Leng et al., 2005).

During parturition, the mechanical stimulation of the uterus
provokes, via the vagal and pelvic nerves, the activation of
the NST via A2 adrenergic cells (Russell et al., 2003) and the
ventromedial medulla, which, in turn, projects to magnocellular
neurons. During lactation, oxy induces milk ejection, acting
on myoepithelial cells of the mammillary glands (Blanks and
Thornton, 2003). A reflex response to the stimulation of the
nipple by suckling is able to activate oxy secretion not only
from the axons reaching the neurohypophysis, but also from the
soma and dendrites of oxy neurons in the SON, where oxy acts
in a paracrine manner to trigger and maintain a synchronized
bursting (Richard et al., 1997; Ludwig, 1998). This mechanism
occurs in concert with other important factors that contribute to
milk ejection, such as the sight, smell, and sound of the newborn
(Leng et al., 2005).

Oxytocin and Social Behavior
Oxy seems to be implicated in several and complex social
behaviors in a range of mammals (Carter, 1992; Bosch and
Neumann, 2012). One of the most studied aspects is the
regulation of maternal behavior (Bosch and Neumann, 2012).
In particular, oxy promotes maternal care in lactating rats
and plays a key role in bond formation between mother and
offspring (reviewed by Ross and Young, 2009). When central
oxy production is blocked or after the central administration
of an oxyr antagonist the maternal bond formation is impaired
(Ross and Young, 2009). In addition, oxy is also critical for the
formation of the bond from the infant to his mother, as suggested
by the experimental observation that mouse pups lacking oxy
gene fail to prefer their biological mother over a foster ones (Ross
and Young, 2009).

Oxy is also involved in the mechanisms regulating the
development of adult-adult pair; in fact, oxy plays a role in the
partner preference of monogamous prairie voles. In particular, in
female prairie voles central administration of oxy induces pair-
bonding without prior mating (Williams et al., 1994) and this
behavior is blocked by the treatment with oxyr antagonist given
before mating (Insel and Hulihan, 1995). The identification of
conspecifics is a crucial requirement for the formation of pair
bonds (Insel and Fernald, 2004); oxy takes part to the processes
that regulate social memory, in terms of social learning and
social recognition (Benelli et al., 1995; Engelmann et al., 1998)
and the pretreatment with an oxyr antagonist prevents this

ability (Benelli et al., 1995; Engelmann et al., 1998; Lukas et al.,
2013).

Interestingly, the administration of a low dose of oxy,
within the amygdala, re-establish normal social behavior in
oxy null mice (Ferguson et al., 2002). The observation that
this effect occurs when oxy administration precedes the first
exposure to a conspecific during the test of social recognition
suggests that the oxytocinergic system in mice is crucial for
the memory processes associated with the acquisition of the
social information rather than the consolidation (Ferguson
et al., 2002). In accordance with such hypothesis, the central
administration of an oxyr antagonist in the medial part of the
amygdala results in impairment of recognition of conspecifics
encountered previously (Ferguson et al., 2002). The effects of
oxy on social behavior are complex and may be dependent on
the context in which they occur. In fact, oxy seems to promote
sociality when social cues in the environment are interpreted
as “safe” and oxy may induce defensive behavior when the
social cues are interpreted as “unsafe” (Bartz et al., 2011; Olff
et al., 2013). This latter effect is also present when oxy is
administered to subjects with an adverse early history (Bhandari
et al., 2014).

Finally, it is well known that “mind reading” is an essential
basis of human social interaction and the role that oxy plays in the
formation of social bonds is also related to its role of promoting
the understanding of the mental state of individuals from the
interpretation of their facial cues (Domes et al., 2007).

Oxytocin and Stress
Oxy release from the pituitary gland occurs also in response
to different stressful stimuli, such as conditioned fear,
pain, electric footshock, exposure to novel environments,
restraint stress, etc. The stimulation of oxy release under these
circumstances is mediated, at least in part, by noradrenergic
neurons containing prolactin-releasing peptide in the NST
(Onaka, 2004). Also in humans acute psychologically
stressful stimuli have been shown to increase plasma oxy
concentrations (Sanders et al., 1990; Pierrehumbert et al.,
2010).

A large body of evidence indicates that oxy displays potent
anxiolytic properties and dampens the neuroendocrine response
of the hypothalamic-pituitary-adrenal (HPA) axis to stress
(Viero et al., 2010). Intriguingly Dabrowska and collaborators
(Dabrowska et al., 2011) have shown the presence of a potential
reciprocal interaction between the hypothalamic oxytocinergic
system and the corticotrophin-releasing factor (CRF) system.
The authors demonstrated that CRF neurons of both PVN and
bed nucleus of stria terminalis would be highly responsive to
local oxy release, leading to the onset of an inhibitory circuit,
which could reduce the HPA axis activation in response to
stress.

Oxytocin and Sexual Behavior
Oxy has been strongly linked to the stimulation of sexual
behavior and it is released in response to sexual interactions
in rats (Carter, 1992). Also in humans, both man and
women, oxy plasma levels are increased during orgasm
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and sexual arousal (Carmichael et al., 1987; Carter, 1992).
In male rats oxy facilitates copulation, when injected into
the medial preoptic area and this effect is abolished by
the pre-administration of an oxyr antagonist (Gil et al.,
2011). Moreover, oxy injection in the ventral tegmental
area (VTA) induces penile erection by interacting with the
dopaminergic system (Melis et al., 2007; Baskerville et al.,
2009). Interestingly, intranasal oxy administration evokes in
women a marked increase of sexual desire, which is associated
with vaginal transudate (Anderson-Hunt and Dennerstein 1994,
1995).

Finally, oxy levels fluctuate throughout the menstrual cycle in
fertile women not using oral contraceptives; in particular during
the luteal phase oxy plasma levels are lower compared to those
observed in the ovulatory phase (Altemus et al., 2001; Salonia
et al., 2005). Moreover, during the ovulation, the endogenous oxy
activity is suppressed (Evans et al., 2003).

Oxytocin and Cardiovascular Control
Both magnocellular and parvocellular PVN neurons are involved
in the autonomic control of the heart and vessels and a
role of central oxy with respect to cardiovascular control
has been established (Coote, 2005) demonstrating also the
expression of oxyrs in cardiomyocytes and in the wall of
large blood vessels (Gutkowska et al., 1997; Jankowski et al.,
1998, 2000); the content of oxyrs in the heart is lower
than in the uterus, but the size of the receptor is similar
(Gutkowska et al., 1997; Cicutti et al., 1999). The rat heart
is a site of oxy synthesis and release; in particular oxy was
detected in all four chambers with the highest concentration
in the right atrium. The heart oxy is structurally identical,
to the oxy found in the hypothalamus (Jankowski et al.,
1998).

The oxytocinergic system in rat heart is physiologically
relevant for a number of reasons:

1) oxy is a cardiomiogenic factor. In fact oxy induces the
differentiation of the so called “side population” (SP)
progenitor cells into beating cardiomyocytes (Oyama et al.,
2007); moreover oxy treatment of the progenitor cells
expressing the stem cell antigen-1 (Sca-1) induces the
gene expression of cardiac transcription factors, contractile
proteins, and stimulates spontaneous beating (Matsuura et al.,
2004).

2) oxy exerts a cardioprotective action by stimulating the heart
release of the atrial natriuretic peptide (ANP; Favaretto
et al., 1997; Gutkowska et al., 1997) a well established
cardioprotective agent (Kasama et al., 2008).

3) oxy produces a negative cronotropic effect which is protective
on ischemia-reperfusion-induced myocardial damage. In
particular, Ondrejcakova and his collaborators showed that
perfusion with oxy before ischemia resulted in a reduction of
the infarct size (Ondrejcakova et al., 2009). Both central and
peripheral administration of oxy induce a long-term decrease
of blood pressure in rats (Petersson et al., 1996) and cause
a concentration-dependent reduction in both heart rate and
force of contraction of isolated atria (Favaretto et al., 1997).

Interestingly, changes in brain oxy content were found in
spontaneously hypertensive rats (SHRSP). In particular, oxy
content was markedly reduced in the hypothalamus, the brain
stem and spinal cord of SHRSP, compared to age-matched
normotensive rats (Gaida et al., 1985) and SHRSP rats were
found to express lower levels of oxy mRNA in the SON and
PVN (van Tol et al., 1988).

Oxytocin and Analgesia
The analgesic properties of oxy seem to derive mostly from its
interaction with the central endogenous opioid system (Gu and
Yu, 2007; Han and Yu, 2009).

From the hypothalamus, oxy is transported not only to
the pituitary gland but also to other brain areas involved in
the nociceptive signaling such as the amygdala (Gimpl and
Fahrenholz, 2001; Crock et al., 2012) and to the spinal cord in
the dorsal horn (Zimmerman et al., 1984), where it modulates
pain perception (Yang et al., 2007a) Several behavioral studies
in rodents demonstrated that intrathecal administered oxy
may exert antinociceptive effects in a dose-dependent manner
(Lundeberg et al., 1993; Xu and Wiesenfeld-Hallin, 1994; Yang
et al., 2007a). Similarly, oxy was found to induce a dose-
dependent increase in the hindpawwithdrawal latency to noxious
thermal and mechanical stimulation in rats, when injected into
the nucleus accumbens or in the central amygdala, whereas
the administration of the oxyr antagonist atosiban in this latter
area was able to block oxy antinociceptive effect (Gu and Yu,
2007; Han and Yu, 2009). Intraperitoneal administration of oxy
was able to decrease the licking/biting response of the formalin
injected pow in a model of tonic continous pain in mice and such
effects was shown to involve opioid receptors (both κ and δ) and
voltage-gated calcium channels (Reeta et al., 2006). Moreover,
endogenous oxy was shown to attenuate the vocalization induced
by electrical whisker pad stimulation in decerebrated newborns
by inducing a reduction of the depolarizing action of GABA
on nociceptive neurons; an effects that was blocked by the
administration of an oxyr antagonist (Mazzuca et al., 2011).

A variety of non noxious stimuli stimulate the oxytocinergic
system; thermal stimulation (40◦C), vibration (100Hz), and
electro-acupuncture (2Hz) induce a significant increase of oxy
levels in plasma and/or in CSF of rats (Uvnäs-Moberg et al.,
1993). On this regard Yang and his collaborators demonstrated
that central oxy administration enhances acupuncture analgesia,
while central administration of anti-oxy serum weakened
acupuncture analgesia in a dose-dependent manner (Yang et al.,
2007b). Oxy was also shown to exhibit antinociceptive effects in
neuropathic animals where it reduced post-discharge produced
by electrical stimulation (Condés-Lara et al., 2005). A fewer set
of data is available in support of the analgesic role of oxy in
humans. One study indicated that low oxy levels are significantly
associated with ratings of greater pain, stress, and depression
in patients affected by fibromyalgia (Anderberg and Uvnäs-
Moberg, 2000). In another clinical study intrathecal oxy acute
administration was able to relieve from low back pain (Yang,
1976), through a mechanism likely involving the endogenous
opiate system, as suggested by the effects of naloxone pre-
administration in the prevention of such effect.
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OXYTOCIN AND NEUROPSYCHIATRIC
DISORDERS

Oxytocin and Autism
Autism spectrum disorders (ASD) refer to a group of complex
and prevalent developmental impairments characterized by
deficits in social interaction, verbal skills, repetitive behavior, and
reduced range of interests and activities (Muhle et al., 2004). As
already described in previous paragraphs, oxy is implicated in
social recognition, attachment, and stereotyped behaviors (Insel
et al., 1999; Ferguson et al., 2000; Takayanagi et al., 2005);
moreover oxy has a recognized role in anxiety (Labuschagne
et al., 2010; Amico et al., 2014), which is often a comorbid feature
of autism (South et al., 2011; Vannucchi et al., 2014).

Deficits in oxy signaling mechanism have been proposed to
contribute to the onset of several behavioral abnormalities of
ASD (Insel et al., 1999; Insel and Young, 2001). Given the
potential link between oxy functions and core deficits in ASD, oxy
has received increasing attention in the last years as a potential
therapeutic target for these disorders.

Human studies have demonstrated that oxy promotes
retention of social information and reduced repetitive behaviors
(Hollander et al., 2003, 2007) in individuals with ASD. Moreover,
studies performed on children and adolescents with ASD
subjected to intranasal oxy administration over a period of 2–6-
month suggest that oxy improves social communication in these
individuals (Kosaka et al., 2012; Tachibana et al., 2013).

A direct involvement of oxy in autism has been suggested
already in 1998 by Modahl et al. (1998), who reported decreased
plasma oxy levels in autistic children, as compared with age-
matched healthy controls. In this study, a decrease in oxy levels
correlated to a low development of social and communication
skills.

Interestingly, it has been shown that individuals with autism
display a defect in processing of the peptide oxy; in these subjects
the decreased plasma oxy levels were associated with an increase
of oxy-extended peptide inactive form (Green et al., 2001). This
inactive peptide form, which is normally detected during the fetal
life, is present in high quantity in the blood of autistic children
(Green et al., 2001), thus possibly interfering with the functioning
of the oxytocinergic system.

However, oxy levels did not correlate with impairments in
social interaction, communication, or stereotyped behavior in
adult subjects suffering of ASD, as measured by the Autism
Diagnostic Interview-Revised (ADI-R) (Lord et al., 1994). On the
same line, Jansen et al. (2006) found that ASD adults showed
increased basal oxy plasma levels. Based on these observations, it
seems that the oxytocinergic systemmight become dysfunctional
during different developmental stages (adults vs. children) over
the lifespan of individuals with ASD, but further studies are
necessary to confirm these findings.

Several large-scale studies have demonstrated the association
between genetic vulnerability on the gene encoding oxyr and
ASD. Specific gene polymorphisms for oxyr gene were associated
to autism in the Han Chinese population (Wu et al., 2005).
On the same line, Jacob et al. (2007) revealed a similar finding
in autistic Caucasian children and adolescents. These findings

were extended by Lerer et al. (2008), who demonstrated not
only a significant association between SNPs and ASD but they
also reported an association between oxyr variants, intelligence
quotient and scores of the Vineland Adaptive Behavioral Scales
(VABS), an effective assessment tool to evaluate the social abilities
of an individual. Moreover, Yrigollen et al. (2008) found a
significant association of both the oxy gene (two SNPs) and
oxyr (three SNPs) and autism diagnosis as well as Campbell
et al. (2011) and his collaborators reported an association of oxyr
genetic polymorphisms with social communication dysfunction
in ASD subjects.

Conversely, Tansey et al. (2010) failed to demonstrate an
association between 18 single nucleotide polymorphisms (SNPs)
in oxyr gene and ASD, although, the authors did not evaluate
the SNP mostly involved (rs2254298) in the studies performed
before.

Interestingly, oxyr gene expression may be affected by
epigenetic modifications, as suggested by the observation of
a significant association between methylation of oxyr and
decreased oxyr mRNA levels in the temporal cortex tissue
collected post mortem from individuals affected by autism
(Gregory et al., 2009).

The evidences reported above suggest that there is still lack of
consistency among different studies and probably this is due to
the heterogeneous nature of ASD and to the enormous quantity
of genes to consider.

A large number of studies have investigated the impact of
exogenous oxy administration in individuals with ASD. Oxy
intravenous administration reduced repetitive behaviors in adults
with ASD compared to placebo (Hollander et al., 2003). In
a second experiment (Hollander et al., 2007), adult subjects
diagnosed with autism were treated with intravenous oxy and
were subjected to a task in which they had to identify the mood of
the personwho held the speech which pronounced four sentences
of four emotional intonations (happy, indifferent, angry, sad).
All subjects treated with oxy improved the comprehension of
affective speech from pre- to post-infusion and the authors
interpreted this result as oxy increasing retention of social
cognition.

Intranasal oxy administration has been demonstrated to
improve the performance of both adolescent (Guastella et al.,
2010) and adult (Domes et al., 2007) males with ASD on the so-
called “Reading theMind in the Eyes Task” (RMET) that provides
the identification of emotions on the basis on the observation
of the eyes of a face. Moreover, intranasal oxy administration
increased total gaze time spent on face regions by increased
fixation time on the eye region displayed by adults with ASD
(Andari et al., 2010). Finally, long-term daily intranasal oxy
administration improved social behaviors in both male and
females with ASD (Anagnostou et al., 2012; Kosaka et al., 2012).

In accordance with this large set of clinical data, subcronically
administered oxy was able to improve the social deficits and
the repetitive behavior that can be observed in two inbred
mouse strains (Teng et al., 2013), which exhibit some of the
behavioral abnormalities of subjects suffering from ASD, such
as the BALB/cByJ mice (Moy et al., 2007) and the C58/J mice
(Ryan et al., 2009). Another preclinical evidence in support of
the role of oxy in ASD derives from studies conducted on mice
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lacking the gene that codifies for the cell-adhesion molecule
contactin-associated protein-like 2 (Cntnap2), which in humans
is associated to a syndrome characterized by cortical dysplasia,
focal epilepsy and, in most cases, ASD. These mice have a
decreased number of oxy neurons in the PVN and a general
reduction of oxy levels and show deficits of social behavior that
an acute intraperitoneal treatment with oxy is able to restore
(Peñagarikano et al., 2015).

The distribution of oxyrs in specific brain areas involved
in social behavior, overlap with µ-opioid receptors and this
observation suggest the existence of an interaction between
the two systems that might play a role in ASD. Gigliucci and
collaborators, contributed to the understanding of the role of oxy
in ASD by testing oxy effects in mice lacking µ-opioid receptors,
which are considered an experimental model of autism since they
display abnormal social interaction, increased self-grooming,
stereotyped behavior, and a general a of sociability (Gigliucci
et al., 2014). These mice display an increase in oxyrs expression in
the nucleus accumbens, medial and central amygdala, and in the
medial anterior olfactory nucleus; intranasal oxy administration
to these mice was able to rescue the social impairments observed
in different behavioral tests (Gigliucci et al., 2014).

Importantly, it is known that there is a window of time in
post-natal life of the rodent, during which there is a peak in the
concentration of oxyr in the neocortex (Hammock and Levitt,
2013) and administration of oxy in this age can be responsible
of several behaviors that the individual can develop later in
adulthood. On this line it has been reported that when oxy is
administered daily in the first postnatal week can prevent deficits
in social behavior and learning abilities in mice deficient for
the melanoma antigen family L2 (Magel2), a gene which has
been found mutated in patients with autism (Meziane et al.,
2014).

Recent advances in understanding possible neural systems
implicated in the etiopatogenesis of autism have highlighted that
some forms of autism might be caused by an imbalance between
excitation and inhibition at various neuronal systems. It has been
reported that both autistic human subjects and animal models
of autism display dysfunction in GABA signaling (Rubenstein
and Merzenich, 2003; Gogolla et al., 2009; Blatt and Fatemi,
2011). Interestingly, GABA which in adults has an inhibitory
role, during early development plays an excitatory action (Ben-
Ari et al., 2007). The shift from excitatory to inhibitory, occurs
at birth, and has been shown that oxy plays a key role in this
process, causing a reduction in the intracellular concentration
of Cl− (Tyzio et al., 2006) and this effect disappears in CA3
hippocampal neurons of two mouse model of autism: mouse
in utero exposed to valproate and mice carrying the fragile x
mutation (Tyzio et al., 2014). In the same study, the authors also
reported that prenatal treatment with the oxy receptor antagonist
SSR126768A in naïve animals induces alterations similar to
those observed in both mouse models of autism (Tyzio et al.,
2014).

In summary, all these evidences point toward oxy potential as
an agent to improve social cognition, functioning and repetitive
behavior in ASD, although the literature still very tentative due to
methodological constraints.

Oxytocin and Eating Disorders
Several lines of evidence have established a link between oxy
signaling and food intake and in the last years this peptide
has gained attention for its effects in the treatment of obesity
(Kublaoui et al., 2008; Maejima et al., 2009, 2011; Deblon et al.,
2011; Zhang and Cai, 2011; Zhang et al., 2011; Morton et al.,
2012). Clinical investigations list oxy in a high number of studies
on caloric intake, gastric emptying, and obesity (Blevins and Ho,
2013).

Meal-related stimuli such as the intake of food (Johnstone
et al., 2006), the release of the satiety signal cholecystokinin
(Olson et al., 1992;), gastric distension (Renaud et al., 1987;
Nelson et al., 1998), or stimulation of gastric vagal afferents (Ueta
et al., 2000; Tang et al., 2006) are associated with activation
of oxy neurons within the PVN and SON, release of oxy into
the bloodstream, and activation of hindbrain areas that regulate
meal size.

Oxy- and oxyr knock out mice develop late-onset obesity
(Takayanagi et al., 2008; Camerino, 2009) and both systemic
(Arletti et al., 1989, 1990) and central oxy administration
decrease food intake; moreover the pre-treatment with an oxy
receptor antagonist blocks this effect (Arletti et al., 1989, 1990;
Olson et al., 1991). Oxy treatment has been evaluated in several
animal models of obesity. In particular, central oxy chronic
treatment induces a dose-dependent decrease in body weight
gain, stimulates lipolysis and fatty acid β-oxidation, reduces
glucose intolerance, and insulin resistance in diet-induced obese
(DIO) rats (Deblon et al., 2011; Morton et al., 2012). Similarly,
subcutaneous daily oxy administration reduces food intake, body
weight, ameliorates fatty liver, and glucose intolerance in DIO
mice (Maejima et al., 2011). In accordance with this observation,
a very recent study demonstrated that a 4-week chronic oxy
treatment reduces body weight in DIO rhesus monkeys by
decreasing food intake and increasing energy expenditure and
lipolysis (Blevins et al., 2015).

Oxy antiobesity treatment has proved valid also in animal
models that exhibit an altered leptin signaling, in fact oxy induces
anorexia in leptin-resistant Zucker-fatty rats (Maejima et al.,
2009), causes a dose-dependently reduction in food intake and
body weight gain in ob/ob animals (Altirriba et al., 2014) and
suppresses food intake by activating vagal afferent neurons in
leptin-resistant db/db mice (Iwasaki et al., 2015). Specifically, oxy
decreases food intake by reducing meal size and increasing the
latency to the first meal, while oxy antagonists stimulate food
intake by increasing meal size (Arletti et al., 1990). Moreover,
oxyr null mice show an increase inmeal size during the dark cycle
(Takayanagi et al., 2008). Interestingly, it has been shown that oxy
injections into the dorsal vagal complex inhibits gastric motility
in rats (Rogers and Hermann, 1987) and this is in line with the
findings that oxy excites neurons of both NST and DMNV, which
respond to gastric distension (McCann and Rogers, 1990).

Consistently with the presence of oxyrs along the
gastrointestinal tract (Qin et al., 2009), it has been shown
that systemic oxy reduces gastric empting in laboratory rats
and this effect is blocked by the pre-treatment with an oxyr
antagonist (Wu et al., 2003, 2008). Moreover, it has been
suggested that the anorexiant effect of oxy might involve in part
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the inhibition of reward circuits: in fact, Carson and collaborators
demonstrated that systemic oxy reduces methamphetamine-
induced activity in reward related brain areas. Furthermore,
the same group demonstrated that systemic oxy reduces the
motivation to consume methamphetamine and reduces the
methamphetamine induced hyperactivity in mice (Carson et al.,
2010a,b). These results support the potential use of oxy as a
beneficial treatment for addictive disorders. Interestingly, in a
recent research (Ott et al., 2013) Ott and collaborators examined
the food intake and reward-driven snack intake in humans
subjected to intranasal oxy administration. The authors found
that oxy markedly reduced the intake of chocolate cookies,
further supporting a pivotal contribution of oxytocinergic
system in the regulation of reward-related eating behavior. In
addition to inhibit food intake, both central and pheripheral
oxy administrations reduce body weight by increasing energy
expenditure (Morton et al., 2012) and lipolysis (Muchmore
et al., 1981). In contrast, oxy antagonist increases body weight
gain (Zhang and Cai, 2011) and mice genetically lacking oxy or
oxyr develop obesity during adulthood (Camerino, 2009). In
accordance with these observations, mice modified genetically to
have a reduced PVN oxy signaling, such as single-minded 1 gene
(SIM1) haploinsufficient mice (Xi et al., 2012) or synaptotagmin
4 (SYT4) null mice (Zhang et al., 2011), are characterized by
a reduction in energy expenditure, hyperphagia and obesity.
The excessive body weight in SIM1 haploinsufficient mice can
be restored by oxy treatment (Kublaoui et al., 2008). Likewise,
humans with mutations of SIM1 show severe eating disorders
(Holder et al., 2000; Swarbrick et al., 2011). Whether oxy
treatment would be able to control body weight gain in this
subject remained unexplored.

Although research on the implication of the oxytocinergic
system in anorexia nervosa (AN) are at the beginning and
all those existing are based on small sample sizes, it has
been suggested that the complex array of neuroendocrine
disturbances in AN involves the oxytocinergic system. Demitrack
et al. (1990) reported that women affected by restricting
anorexia show oxy CSF levels significantly lower than the levels
observed in control subjects. Moreover, women affected by
AN display a decreased overnight secretion of oxy compared
to healthy controls and this is associated with a decrease
in bone mineral density and body fat (Lawson et al., 2011).
Furthermore, both bulimic and anorectic patients present
lower serum activity of the prolyl-endopeptidase, an enzyme
implicated in the cleavage of several active neuropeptides, such
as oxy (Maes et al., 2001). Finally, results from two pilot
studies revealed changes on eating-related indices, following
intranasal administration of oxy in AN subjects, compared
to placebo. In particular in one study, the researchers
observed a reduction in eating disorder and in the other
study they found that oxy significantly reduced selective
attention toward anxiety laden eating stimuli (Maguire et al.,
2013).

Prader-Willi Syndrome
The Prader Willi syndrome (PWS) is a genetic disorder
characterized by hypotonia, developmental disability,

hypogonadism and, importantly, gross body weight gain
and insatiable hunger due to impaired perception of satiety.

In animal research, it has been shown that mice lacking
one of the members of the melanoma antigen gene (MAGE)
family, called MAGED1 display an increase in daily food intake
accompanied by a reduction in mature hypothalamic oxy levels;
moreover they develop adult-onset obesity and reduced activity
(Dombret et al., 2012). MAGED1 together with MAGEL2 and
Necdin are genes critically involved in PWS (reviewed by Francis
et al., 2014). It has been shown that MAGEL2 play a crucial role
in suckling, thus MAGEL2-deficient mice had a high mortality
in the neonatal life, which is due to their suckling defects.
Interestingly, these mutant mice display a reduction in oxy
hypothalamic levels and a single injection of oxy soon after birth,
rescued the phenotype of Magel2 mutant pups, allowing them to
survive (Schaller et al., 2010).

Finally Necdin mutant mice showed a reduced number of
oxy producing neurons (Muscatelli et al., 2000) and presented
respiratory problems that evoke those observed in PWS patients
(Wharton and Bresnan, 1989).

In PWS subjected, intranasal oxy administration increased
trust in others and decrease sadness and disruptive behavior
(Tauber et al., 2011). In addition, results from a postmortem
study of PWS subjects, reported a 42% reduction of oxy-
expressing neurons in the PVN and a smaller oxy cells volumes,
as compared to healthy controls (Swaab et al., 1995). Moreover,
PWS subjects present increased oxy CSF levels similarly
to obsessive compulsive disorders (OCD) patients (reviewed
by Marazziti and Catena Dell’osso, 2008). Interestingly, the
prevalence of OCD in PWS is high (Dykens et al., 1996),
suggesting that this two pathologies might share common
abnormalities at the level of the oxytocinergic system.

Oxytocin and Other Psychiatric Disorders
Given to its effect on cognition, memory, and social functioning,
oxy has been studied in the pathophysiology of a wide range
of psychiatric disorders including schizophrenia, mood, anxiety,
and obsessive compulsive-disorders. In the present paragraph we
report both preclinical and clinical findings obtained in studies
that evaluated the activity of the oxytocinergic system in these
disorders.

Both preclinical and clinical literature suggests that oxy has
a role in schizophrenia. In mice, for example, it has been
demonstrated that the oxytocinergic system is affected and that
oxy may explicate its potential antipsychotic effect through the
inhibition of the mesolimbic dopaminergic circuit (Macdonald
and Feifel, 2012). Moreover, a positive correlation between
plasma/CSF oxy levels and schizophrenia has been reported. In
particular, it has been found an increase of CSF oxy levels in
adult males with paranoid schizophrenia and increased plasma
oxy level in schizophrenic patients particularly in those taking
neuroleptics (Beckmann et al., 1985).

Interestingly, in a very recent study, it has been reported that
the higher plasma oxy levels in schizophrenic patients might
be due to a compensatory response to a lower sensitivity of
the oxyr to circulating levels of the hormone (Strauss et al.,
2015). Similar findings were obtained also from the measure
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of the levels of human neurophysin II (hNPII). Interestingly
CSF levels (Linkowski et al., 1984) and serum level (Legros
et al., 1992) of hNPII were increased in individuals with
schizophrenia compared to healthy volunteers. In contrast to the
evidences reported above, no differences in oxy concentrations
in the CSF (Glovinsky et al., 1994; Sasayama et al., 2012)
or plasma (Goldman et al., 2008) were found between
patients with schizophrenia and healthy controls. We think
that inconsistencies in oxy levels among studies may reflect
differences in evaluating peripheral vs. cerebrospinal fluid levels,
sample-related differences, sex, age, race, and differences in
disease chronicity.

Interestingly, genetic studies revealed that two different oxyr
SNPs were associated with schizophrenia (Montag et al., 2013)
and Souza et al. (2010) evaluated the association between
both oxy and oxyr variants with symptom severity and the
response to clozapine in individuals with schizophrenia, since
it has been demonstrated that clozapine enhances oxy release
in rats (Kiss et al., 2010). Teltsh et al. (2012) found an
association between one variant in the 5′-as well as 3′promoter
region of oxy and schizophrenia in a large clan of Arab-
Israeli individuals. The first study conducted on men with the
“simple form of schizophrenia” and subjected to intravenous
or intranasal oxy administration revealed an improvement of
depression and negative symptoms (Bakharev et al., 1986).
When oxy was administred intranasally to healthy, polydipsic,
and nonpolydipsic patients with schizophrenia, who were asked
to rate the presence and intensity of various facial emotions,
Goldman et al. (2011) demonstrated that emotion recognition
was improved in polydipsic patients but not in non polydipsic
patients. Moreover, it has been demonstrated that oxy improves
cognition in schizophrenia, as suggested by the findings obtained
by Feifel et al. (2012) demonstrating the ability oxy treatment to
improve verbal memory learning tasks.

In the last years it has been evaluated the effect of the
chronic exposure to a combination of intranasal oxy and atypical
antipsychotic in schizophrenic patients; the results obtained
demonstrated that oxy improved negative symptoms when
administered twice per day in a range between 3 and 6 weeks
(Feifel et al., 2010; Modabbernia et al., 2013; Gibson et al.,
2014). On the other hand, the group of Davis et al. (2014)
did not report any improvement of negative symptoms after
a single dose of intranasal oxy given twice a week before
a session of social skills training. It is worth to emphasize
that these clinical trials, which suggest the possible beneficial
role of intranasal administration of oxy, are in contrast with
preclinical studies performed on laboratory rodents. In fact a
number of recent findings suggest that the chronic treatment
with oxy not only produce no benefit, but may further worsen
social interaction in rodents (Bales et al., 2013; Rault et al.,
2013; Huang et al., 2014). Finally in a very recent study (Shin
et al., 2015), in which the authors evaluated the effect of a
single dose of intranasal oxy on brain activity in patients with
schizophrenia, oxy was able to modulate the neuronal response
to different facial emotions. Although more and larger studies
are necessary to determine the impact and the generalizability of
the findings described above, overall, oxy shows great promise

as being a possible and effective treatment for patients with
schizophrenia.

As far as mood disorders, a large body of studies have
examined the implication of the oxytocinergic system in both
major depressive disorder (MDD) and bipolar disorder (BD)
and the findings suggest that oxy-related physiological functions
change in patients with mood disorders.

In particular, in a post mortem study it has been found that
both the number of oxy-producing neurons and oxy mRNA
levels within the PVN were increased in patients with MDD
(Purba et al., 1996; Meynen et al., 2007). Moreover, the CSF levels
of hNPII were higher in bipolar depressed patients compared
to healthy controls (Legros et al., 1983; Linkowski et al., 1984),
although several studies reported no differences in the CSF hNPII
(Linkowski et al., 1984), plasma hNPII (Scantamburlo et al.,
2005), CSF oxy (Pitts et al., 1995), or plasma oxy levels (van
Londen et al., 1997; Sasayama et al., 2012) in patient with MDD.

In contrast to these findings, Frasch et al. (1995) demonstrated
that nocturnal plasma oxy levels were decreased in patient
with MDD compared with age-matched controls and that these
differences were more pronounced in old than in young patients.
On the same line, it has been reported a decrease in serum oxy
concentrations in patients with MDD or BD, compared with
healthy controls (Ozsoy et al., 2009).

On the contrary, results obtained from a small study (11
MDD, 19 healthy control patients) reported that oxy plasma
concentrations increase during the night in patients with MDD
compared to healthy controls. From the observations reported
above, it is clear that the results are conflicting and recent
studies, performed to elucidate factors that may contribute to
these differences across studies, revealed that the dysregulation of
oxytocinergic system inMDDmay be due to the kind of task used
and that any measurement of oxy levels at different time point
may lead to conflicting results. For example Scantamburlo et al.
(2007) found that oxy levels negatively correlated with Hamilton
Depression Rating Scales scores (HAM-D) and anxiety scores
on the State-Trait Anxiety Inventory while a positive correlation
of oxy plasma levels was found with the Temperament and
Character Inventory in outpatients with MDD (Bell et al., 2006).
Finally, (Cyranowski et al., 2008) demonstrated that women with
MDD showed more variability in oxy release during the different
sessions of the task as compared to healthy control group.

The association between the oxyr genetic variations andmood
disorders has been studied. In particular adult patients with
MDD showed differences in two SNPs within the oxyr gene
(Costa et al., 2009) already associated with ASD and a recent
study reported for the first time an association between early life
stress and symptoms and the oxyr rs139832701 variant (Myers
et al., 2014). Multiple studies investigated the response of oxy
levels to electroconvulsive therapy (ECT), a standard psychiatric
treatment used as a last line of intervention for MDD. All
together these studies suggest that the release of oxy and its
related carrier protein hNPII could be implicated in the beneficial
effect of ECT (Whalley et al., 1982, 1987; Smith et al., 1990,
1994; Scott et al., 1986, 1989, 1991). Although one case report
(Scantamburlo et al., 2011) recording the effects of oxy on MDD
revealed that 3 weeks intranasal oxy treatment lead to a decrease
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in depressive and anxiety-related symptoms a larger research in
this context is necessary.

Several lines of evidence have demonstrated that oxy is an
important regulator of anxiety related to physiological stress
response; the anxiolytic effect of oxy occurs mainly at the
level of PVN and amygdala (Neumann et al., 2000; Bale et al.,
2001; Blume et al., 2008; Viviani et al., 2011; Knobloch et al.,
2012). Interestingly, a very recent preclinical study revealed that
administration od oxy in the central nucleus of the amygdala
induces an anxiolytic effects and that this positive effect is
abolished by the local pharmacological blockade of oxyrs in this
area (László et al., 2015).

In mothers oxy levels positively correlate with sociality, calm,
and tolerance (Nissen et al., 1998) and with a less probability
of the occurrence of anxiety and stress disorders (Altemus,
1995). Interestingly, during pregnancy and lactation, when oxy
levels increase, the mother is protected form anxiety disorders
and breastfeeding induces a reduction of stress hormones, as
compared with women who bottle-feed their infants (Altemus,
1995). Moreover, women with panic disorder reported a
reduction of anxiety symptoms during lactation (Klein et al.,
1994–1995) and the anxiolytic action of oxy is enhanced in
the presence of circulating oestrogens (McCarthy et al., 1996).
Interestingly, intranasal oxy administration reduces amygdala
activation, a brain area often dysfunctional in depression and
implicated in the biological response to fear (Kirsch et al., 2005).
More than one study reported plasma oxy levels in patients
with Generalized Social Anxiety Disorder (GSAD). Although
social anxiety disorders were associated with an increase of
oxy levels, the study from Hoge et al. (2008) reported no
significant differences between GSAD and control patients. In
another study (Hoge et al., 2012), patients with GSAD had
similar plasma oxy levels as compared to controls, but oxy levels
were decreased after completing a trust game with a partner.
Finally, intranasal oxy administration to patients with GSAD
has improved their performance during a speech in front of a
group of individuals, and improved mental representations of
self (Guastella et al., 2009). In a similar study, a decrease in
anxiety symptoms and negative self-appraisals has been found
when oxy was administered before an impromptu speech task
(Alvares et al., 2012). Finally, a very recent study demonstrated
that an oxy analog namely LOT-1, able to penetrate better
the BBB and with long-lasting effect significantly improved
anxiety-like behavior and social avoidance in CD157 knockout
mouse (a model of non-motor symptoms of Parkinson’s disease).
Interestingly, LOT-1 had a greater effect on rescue 24 h from
its injection, suggesting that this compound have a longer half-
life and a long-lasting effect as compared to oxy (Mizuno et al.,
2015).

Among anxiety disorder, OCD is characterized by obsessions
and/or compulsions or a combination of such obsessions and
compulsions. Oxyrs have been identified in some brain areas,
which were linked to the pathophysiology of OCD (Rapoport and
Wise, 1988; Modell et al., 1989).

Central oxy administration induces grooming behavior in
animals (Witt et al., 1990; Van Erp et al., 1993; Drago et al.,
1999), which is considered a model of compulsion as cleaning

behavior is a typical symptom displayed by OCD patients (Holzer
et al., 1994; Leckman et al., 1994–1995; McDougle et al., 1999).
However, the most consistent data regarding the connection
between oxytocinergic system and OCD came from the evidence
that women display an increased risk to develop a subtype
of OCD during pregnancy and the post-partum period, both
conditions characterized by elevated levels of oxy (Jenike, 1990;
Neziroglu et al., 1992; Sichel et al., 1993). Moreover, adults with
OCD showed an increase in oxy CSF levels as well as people
affected by the Tourette’s syndrome, (Leckman et al., 1994)
a neuropsychiatric disorder characterized by multiple physical
(motor) and vocal (phonic) tics. However, controversial results
have been also published (Altemus et al., 1999) so that more
experimental data are necessary to definitely asses the potentiality
of oxy (or oxyr antagonists) as anti-obsessional treatment.

Oxytocin and Drug Addiction
Studies focused on the role of oxy on drug effects and
addiction began to emerge in the 1980 (Sarnyai and
Kovács, 1994). Since then, theories on the possible
involvement of oxy in addiction have begun to receive
more and more attention. Interestingly, oxy is released in
response to acute 3,4-methylenedioxy-methamphetamine
(MDMA, “ecstasy”) and methamphetamine administration
in both humans (Wolff et al., 2006; Dumont et al., 2009)
and animals (Thompson et al., 2007; Broadbear et al.,
2011).

In animal studies, oxy was able impede tolerance development
to morphine (Kovács and Telegdy, 1987) and dampen the
severity of the effects induced by morphine withdrawal (reviewed
by Kovács et al., 1998); moreover, oxy administration in rats,
leads to a reduction of self-administration of heroin (Kovács
and Van Ree, 1985; Kovács et al., 1985; Ibragimov et al., 1987).
Oxy attenuates also the hyperactivity due to cocaine use and
inhibits the development of tolerance to this drug (Kovàcs
et al., 1990; Sarnyai et al., 1992a,b). As far as alcohol, oxy
prevents the development of tolerance to ethanol in laboratory
mice (Szabó et al., 1989) although it has been demonstrated
that acute alcohol administration inhibits oxy secretions while
its chronic use is able to stimulate it (Marchesi et al., 1997).
Moreover, it has been suggested that oxy might exerts a role in
the cognitive dysfunctions observed in alcoholics (Holden et al.,
1988;Marchesi et al., 1997). All drugs of abuse increase dopamine
release within the mesolimbic system (Pierce and Kumaresan,
2006) and Young and collaborators (Young et al., 2008, 2011)
demonstrated the existence of an interaction between oxy and
dopaminergic system in both social and drug reward in prairie
voles. In particular, the authors showed that methamphetamine
was able to reduce pair bonding and pair bonding was able
to reduce the rewarding properties of methamphetamine in
prairie voles. Interestingly, the interaction occurring within
the nucleus accumbens between the mesolimbic dopaminergic
and oxytocinergic system was of crucial relevance in this
behavior: drugs in prairie voles could reduce dopamine release
after social interaction, and social interaction could reduce
the reward from drugs. Moreover, it is well known that oxy
acts on oxyrs in the medial preoptic area resulting in an
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TABLE 1 | Effects of oxytocin on several behavior in different species.

Species

Behavior Rat Mouse Parairie Human References

voles

Maternal behavior ↑ ↑ ? ↑ Russell et al., 2003; Leng et al., 2005; Ross and

Young, 2009; Bosch and Neumann, 2012

Affiliative behavior ↑ ↑ ↑ ? Dantzer et al., 1987; Williams et al., 1994; Insel and

Hulihan, 1995

Sexual behavior ↑ ↔ ↓male

↑ or ↓

female

↑ Carmichael et al., 1987; Carter, 1992;

Anderson-Hunt and Dennerstein, 1994, 1995; Melis

et al., 2007; Baskerville et al., 2009; Gil et al., 2011;

Lazzari et al., 2013

Nociception ↓ ↓ ? ↓ Yang, 1976; Lundeberg et al., 1993; Xu and

Wiesenfeld-Hallin, 1994; Condés-Lara et al., 2005;

Reeta et al., 2006; Gu and Yu, 2007; Yang et al.,

2007a,b; Han and Yu, 2009; Mazzuca et al., 2011

Social behavior ? prevents deficits in

social behavior and

learning ability

? ↑ retention of social

information and

social communication

↓ repetitive behavior

Ferguson et al., 2002; Hollander et al., 2003, 2007;

Kosaka et al., 2012; Tachibana et al., 2013; Teng

et al., 2013; Meziane et al., 2014; Peñagarikano

et al., 2015

Feeding ↓ ↓ ? ↓ Arletti et al., 1989, 1990; Olson et al., 1991;

Kublaoui et al., 2008; Takayanagi et al., 2008;

Maejima et al., 2009, 2011; Deblon et al., 2011;

Dombret et al., 2012; Morton et al., 2012; Ott et al.,

2013; Altirriba et al., 2014; Blevins et al., 2015;

Iwasaki et al., 2015

Depressive and

anxiety related

behavior

↓ ↑ ? ↓ Bakharev et al., 1986; Altemus, 1995; Neumann

et al., 2000; Bale et al., 2001; Blume et al., 2008;

Viero et al., 2010; Dabrowska et al., 2011;

Scantamburlo et al., 2011; Viviani et al., 2011;

Knobloch et al., 2012; László et al., 2015; Mizuno

et al., 2015

Grooming ↑ ↑ ↑ ↑ Witt et al., 1990; Van Erp et al., 1993; Holzer et al.,

1994; Drago et al., 1999;

Tolerance to

opiates

↓ ↓ ? ? Kovàcs et al., 1990; Sarnyai et al., 1992a,b; Kovács

et al., 1998;

Tolerance to

ethanol

? ↓ ? ? Szabó et al., 1989

The effects of oxytocin on behaviors are indicated as follows: ↑, increase; ↔, no effect; ↓, decrease; ?, unknown (for details, see the indicated references and additional references in

the text).

increase of dopamine release from VTA neurons (Champagne
et al., 2004; Shahrokh et al., 2010) and this effect is reduced
by the administration of an oxyr antagonist in the VTA
(Shahrokh et al., 2010); moreover, oxy injections in the VTA
leads to an increase of dopamine signal in the NAc (Shahrokh
et al., 2010). It would be very interesting to evaluate if this
interaction does also exists in humans. Interestingly, Love et al.
(2012) have recently shown that oxy gene polymorphisms in
humans influence dopaminergic function in a gender-specific
manner.

CONCLUSIONS

A combination between genetic, epigenetic, and environmental
factors contributes to originate several neuropsychiatric
disorders including ASD, eating disorders, anxiety, depression,
and several more. Most of the therapies in use are based on
drugs with often limited efficacy and whose mechanisms of
action are still not well characterized. Together with classical
neurotransmitters, neuropeptidergic signaling is receiving
increasing attention since neuropeptides are signaling molecule
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involved in a wide range of brain functions including stress,
reward, food intake, metabolism, reproduction, social behaviors,
learning, and memory. Although the evidence reviewed
here suggests the implication of the oxytocinergic system in
several behaviors (Table 1) associated with neuropsychiatric
dysfunctions, a number of critical questions still remain to
be addressed, in view of a possible drug development along
this line. In fact larger, randomized and more controlled
trials are needed to better understand the role played

by the oxytocinergic system in the pathophysiology of
the disorders and the possible use of drugs affecting this
system (agonist/antagonist) as novel therapeutic agents in this
context.
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