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Autism spectrum disorders (ASD) are characterized by two seemingly unrelated symptom

domains—deficits in social interactions and restrictive, repetitive patterns of behavioral

output. Whether the diverse nature of ASD symptomatology represents distributed

dysfunction of brain networks or abnormalities within specific neural circuits is unclear.

Striatal dysfunction is postulated to underlie the repetitive motor behaviors seen in

ASD, and neurological and brain-imaging studies have supported this assumption.

However, as our appreciation of striatal function expands to include regulation of

behavioral flexibility, motivational state, goal-directed learning, and attention, we consider

whether alterations in striatal physiology are a central node mediating a range of

autism-associated behaviors, including social and cognitive deficits that are hallmarks

of the disease. This review investigates multiple genetic mouse models of ASD to

explore whether abnormalities in striatal circuits constitute a common pathophysiological

mechanism in the development of autism-related behaviors. Despite the heterogeneity

of genetic insult investigated, numerous genetic ASD models display alterations in

the structure and function of striatal circuits, as well as abnormal behaviors including

repetitive grooming, stereotypic motor routines, deficits in social interaction and decision-

making. Comparative analysis in rodents provides a unique opportunity to leverage

growing genetic association data to reveal canonical neural circuits whose dysfunction

directly contributes to discrete aspects of ASD symptomatology. The description of

such circuits could provide both organizing principles for understanding the complex

genetic etiology of ASD as well as novel treatment routes. Furthermore, this focus on

striatal mechanisms of behavioral regulation may also prove useful for exploring the

pathogenesis of other neuropsychiatric diseases, which display overlapping behavioral

deficits with ASD.

Keywords: autism spectrum disorders, dorsal striatum, nucleus accumbens (NAcc), mouse models, synaptic

transmission, circuit

A CIRCUIT HYPOTHESIS FOR AUTISM SPECTRUM DISORDER
PATHOPHYSIOLOGY

Moving from a Clinical to Molecular Characterization of Autism
Spectrum Disorders
The earliest clinical descriptions of autism highlighted two symptom domains, focusing on social
behaviors and the regulation of motor output. Kanner’s seminal article “Autistic Disturbances
of Affective Contact” carefully described the profound social deficits of his patients, concluding
“these children have come into the world with innate inability to form the usual biologically
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provided affective contact with people. . . ” (Kanner, 1943).
Shortly thereafter, in his “‘Autistic Psychopathy’ in childhood,”
Asperger documented a range of abnormalities in behavioral
control (“most conspicuous were his stereotyped movements: he
would suddenly start to beat rhythmically on his thighs, bang
loudly on the table, hit the wall. . . ”), motor performance (when
trying a “particular physical exercise, his movements would be
ugly and angular”) and goal-directed actions (“. . . drives and
instincts are often severely perturbed. This is shown in the failure
of instinctive situational adaptation. . . ”; Asperger, 1944). The
detailed clinical observations from these papers highlighted the
diversity of behavioral presentations in autism and demonstrated
the extensive comorbidity between symptoms in the social
and motor control domains. Nearly 70 years later, the fruits
of the genetic revolution are beginning to reveal molecular
abnormalities contributing to the behaviors originally observed
by Kanner and Asperger (Krumm et al., 2014; Willsey and State,
2015). In an attempt to generate a coherent pathophysiological
hypothesis of autism spectrum disorders (ASD) that considers
both the diversity of implicated proteins as well as the range of
observed behavioral phenotypes, I will focus on deficits within
striatal circuitry. First I will examine how diverse theoretical
concepts of striatal function may relate to key ASD symptom
domains. Next, I provide evidence from both the clinical and
experimental literature that suggests a pattern of core striatal
dysfunction in ASDs. Finally, I will explore why the striatum
might occupy such a central place in autism pathophysiology
and how we might use this information to refocus our treatment
endeavors.

The Implications of Studying Circuit
Dysfunction in Neuropsychiatric Disease
From the outset, it is worthwhile considering the utility of
exploring nervous system disease pathophysiology from the
vantage of neural circuit dysfunction. This approach seeks to
uncover alterations in defined, reproducibly interconnected
sets of neurons that are responsible for discrete behavioral
phenomenon seen in neuropsychiatric diseases such as
schizophrenia (Spellman and Gordon, 2015), obsessive-
compulsive disorder (Ahmari and Dougherty, 2015; Monteiro
and Feng, 2016), and mood disorders (Fox and Kalin, 2014;
Lammel et al., 2014). It does not attempt to link any of these
complex diseases to a single region, as the mammalian brain
is a massively interconnected structure whose full functional
output certainly relies on coordinated and parallel processing
between multiple areas. Nonetheless, the approach does seek
to uncover specific circuit nodes for disease pathophysiology—
neuronal connections that are uniquely vulnerable to genetic or
environmental insult which also have a key role in regulating
behavioral output. Alterations in these nodes may represent an
initiating event that triggers subsequent downstream adaptations
that together become the driver of abnormal behavior. My focus
on the involvement of striatal dysfunction in this review by
no means precludes the involvement of other brain regions.
Rather, given the intersection between motor and cognitive
abnormalities seen in ASD, the prefrontal cortex and cerebellum
may represent equally susceptible terrain for the physiological

alterations that drive behavioral changes (Fatemi et al., 2012;
Martinez-Sanchis, 2014; Wang et al., 2014; Bicks et al., 2015;
Chmielewski and Beste, 2015). The potential importance of these
systems and their interactions with basal ganglia circuits will be
considered in detail later.

The Basal Ganglia: an Evolutionarily
Conserved Neural Circuit for Weighing
Costs
The striatum is the input structure of the basal ganglia, a
series of interconnected subcortical nuclei first appearing in the
vertebrate lineage approximately 530 million years ago (Murray
et al., 2011). While the overall anatomical organization and
immunohistochemical composition of this region has remained
largely unchanged dating back to anamniotes, connectivity
with cortical circuitry has been significantly enhanced in
mammalian lineages (Medina and Reiner, 1995; Reiner et al.,
1998). From its inception, the basal ganglia has likely served
as an essential intermediary between an organism and its
outside environment. However, what began as a relatively simple
structure linking incoming sensory information to regulation
of motor output, has evolved into a complex circuitry capable
of computing “cost-benefit” algorithms and selecting optimally
efficient actions based upon incoming sensory information,
previous memories, expectations and current motivational state
(Hikosaka, 1998; Daw et al., 2006; Floresco et al., 2008).
The proposed functions of basal ganglia circuits are in part
derived from its extraordinary anatomical organization. The
striatum receives a wealth of convergent excitatory projection
inputs from motor and sensory cortex, hetero-modal association
areas, thalamic nuclei, hippocampus, prefrontal cortical regions,
insula, and amygdala (Figure 1A; Kelley et al., 1982; Gerfen,
1984; Malach and Graybiel, 1986; Voorn et al., 2004; Pan
et al., 2010). These excitatory projections diffusely synapse onto
D1 dopamine receptor expressing (D1R+) and D2 dopamine
receptor expressing (D2R+) medium spiny neurons (MSNs) of
the dorsal striatum, which differentially project via the direct
pathway to the substantia nigra pars reticulata (SNr)/internal
segment of the globus pallidus (GPi or entopeduncular nucleus in
rodents) and via the indirect pathway to the external segment of
the globus palliudus (GPe), respectively (Figure 1B; Gerfen et al.,
1990; Surmeier et al., 1993; Kreitzer and Malenka, 2008; Gerfen
and Surmeier, 2011). While both circuits eventually target motor
regions of thalamus, the presence of an additional inhibitory
connection in the indirect pathway is thought to account for
the opposing effects of striatal medium spiny neuron subtype
on thalamic output. Activation of direct pathway MSNs relieves
thalamic inhibition and promotes motor output while activation
of indirect pathway MSNs maintains pallidal inhibition of
thalamus, reducing motor output. This long-standing model
for the dichotomous function of striatal MSNs on movement,
based originally on clinical observations (Albin et al., 1989),
has recently been confirmed by cell type-specific optogenetic
interrogation (Kravitz et al., 2010). Following modulation by
midbrain nuclei, thalamic neurons project back to the same
regions of cortex that initially targeted striatum, providing
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FIGURE 1 | Simplified schematic of the input and local connectivity of the mammalian basal ganglia. (A) Diagram of known excitatory inputs to distinct

striatal sub-regions including dorsomedial striatum (DMS), dorsolateral striatum (DLS), and nucleus accumbens (NAc). All striatal sub-regions are under dopaminergic

and serotonergic neuromodulatory control (orange). (B) Diagram of major dorsal striatal cell types and their downstream connectivity within basal ganglia circuits. In

contrast to striatal inputs, nearly all cell types within the basal ganglia are inhibitory. The striatum is comprised of D1R+ (red) and D2R+ (green) medium spiny neurons

(MSNs), as well as a smaller population of local circuit interneurons (tan). The direct pathway projection of D1R+ MSNs is diagrammed in red and the indirect pathway

projection of D2R+ MSNs is drawn in green. (C) Diagram of the major cell types and connectivity of the nucleus accumbens core. Note that in contrast to the strict

divergence of D1R+ and D2R+ MSNs in the dorsal striatum, D1R+ MSNs of the nucleus accumbens project both to the ventral tegmental area and the ventral

pallidum.

sensory feedback control of ongoing behaviors (Bosch-Bouju
et al., 2013). However, the seemingly “closed-loop” nature of
these circuits is interrupted and expanded, perhaps through non-
reciprocal cortico-thalamic pathways (McFarland and Haber,
2002) and spiraling dopaminergic inputs (Haber et al., 2000), to
allow for iterative stages of cortico-striato-thalamic processing.
In this manner, information from higher cortical areas involved
in the cognitive aspects of action is transmitted to primary motor
areas for the execution of specific motor output (McFarland and
Haber, 2002). The functions of the basal ganglia are numerous
and exist along a continuum framed on one end by sensorimotor
control and on the other, by the generation of motivated
and intentioned behaviors. While it is still largely speculative,
extensive overlap between ASD symptomatology and striatal
function seems apparent across this entire range (Figure 2).

FROM MOTOR CONTROL TO MOTIVATED
BEHAVIORS: DIVERSITY OF BASAL
GANGLIA FUNCTION AND ITS RELATION
TO ASD SYMPTOMS

Sensory Control
While early vertebrate lineages utilized a simple neural network
to transform sensory information into direct motor responses,
vertebrate evolution has selected circuits of increasing complexity
that extract more information from the environment and
effectively use it to guide motor behaviors (Murray et al.,
2011). Basal ganglia circuits, developing in parallel with pallial
structures and midbrain dopamine nuclei, comprise a core
computational unit enabling this more sophisticated control
of motor output (Stephenson-Jones et al., 2011). To achieve
this, the basal ganglia had to address two areas of increasing

complexity in higher vertebrates—(1) the growth of incoming
information from more specialized sensory systems (sensory-
selection), and (2) the expanding number of motor responses
that were possible in response (action-selection). The increasing
diversity and convergence of sensory inputs in developing
vertebrates necessitated a robust mechanism of sensory selection
to extract context-relevant information (Hikosaka, 1998). Studies
on the regulation of memory-guided saccades in primate suggest
the basal ganglia serves this purpose by using its inhibitory
connections to gate which sensory inputs regulate collicular
output, and thereby select the environmental information
guiding memory-based saccades (Hikosaka and Wurtz, 1985).
Alternative examples of basal ganglia-mediated sensory control
may be on display when animals dynamically adjust their level of
attention to salient features of the environment. In a provocative
model by Krauzlis and colleagues, attention does not occur via
filtering of sensory representations within the neocortex, but
rather as a byproduct of neural computations made by the basal
ganglia to correctly determine internal state (Krauzlis et al.,
2014). Here, the basal ganglia match motivational drives and
previous task history with sensory information from the external
environment, in hopes of achieving the most accurate assessment
of current reality from which to make future decisions. The
abrogation of ongoing motor activities by salient sensory stimuli
may also be mediated through basal ganglia circuits. Specifically,
thalamic projections to striatal cholinergic interneurons produce
a brief period of reduced cortical drive to both MSN subtypes,
followed by a period of enhanced sensitivity of the indirect
pathway—a key mediator of motor suppression (Ding et al.,
2010). Abnormalities in sensory processing are a widespread
clinical feature of ASD and frequently manifest as abnormal
reactivity to sensory aspects of the environment (Gomot et al.,
2006; Kwakye et al., 2011; Elwin et al., 2013). In addition, patients

Frontiers in Neuroscience | www.frontiersin.org 3 February 2016 | Volume 10 | Article 27

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Fuccillo Striatal Nodes for Autism Pathophysiology

FIGURE 2 | Striatal dysfunction and major autism spectrum disorder symptom domains. Schematic illustrating hypothetical connections between

abnormalities of striatal function and the varied clinical phenotypes observed in ASDs.

with autism exhibit robust deficits in the voluntary control of
saccades (Minshew et al., 1999) and may use fronto-striatal
neural circuits, typically reserved for higher cognitive processes,
to compensate for broad sensorimotor deficiencies (Takarae
et al., 2007). Finally, it will be worthwhile to explore whether
dysfunction in regulating attentiveness to sensory stimuli may
provide a substrate for the development of highly focused, fixated
interests seen in ASD.

Action Selection and Motor Patterns
Basal ganglia circuits have also been hypothesized to function
in action-selection, whereby a single behavioral output is
selected and executed from a range of motor programs. The
neural mechanisms mediating this selection process remain
controversial but in vivo (Samejima et al., 2005; Kimchi
and Laubach, 2009; Seo et al., 2012; Tai et al., 2012) and
computational studies (Humphries et al., 2006; Lisman, 2014;
Gurney et al., 2015) suggest the striatum and downstream basal
ganglia nuclei have a central function. One hypothesis posits
that distributed, synchronized extra-striatal excitation recruits
specific MSN populations that subsequently release downstream
basal ganglia pathways to initiate select motor programs. There
is extensive convergence at the level of excitatory inputs to the
striatum (roughly 10:1) as compared with downstream pallidal
and thalamic nuclei, implying that initial processing for action
selection occurs at striatal synaptic connections (Zheng and
Wilson, 2002; Yim et al., 2011). Despite the large portion of
striatal volume covered by many cortico-striatal axons, adjacent
MSNs seem to sample unique excitatory inputs, thereby creating
sparse striatal representations of cortical firing (Kincaid et al.,
1998). Lateral inhibition from recurrent MSN collaterals and
feed-forward inhibition from inhibitory interneurons may play
a significant role in shaping the activity of neighboring striatal
ensembles encoding alternative behaviors (Gage et al., 2010;

Chuhma et al., 2011; Yim et al., 2011). Finally, interactions
between downstream basal ganglia circuits may further reinforce
the striatal selection process (Gittis et al., 2014).

Another proposed function of basal ganglia circuits, and
the dorsal striatum in particular, is to encode short motor
programs (so-called “chunking” of action repertoires), which
can prevent excessive computational demands on cortical
structures (Graybiel, 1998). These short motor programs can
then be linked together in the dorsal striatum to increase the
complexity of motor output (Yin, 2010). When functioning
properly, the aforementioned systems should permit efficient
selection and assembly of motor programs. However, when
dysfunctional, these same networks may be prone to driving the
repetitious, automated behavioral patterns frequently observed
in ASD. Despite an array of documented striatal morphological
abnormalities (see following Section Clinical Indications for
Striatal Involvement in ASD), human imaging studies can only
suggest a correlation between restricted, repetitive motor output
and striatal changes. A small supporting body of evidence
comes from two structural magnetic resonance imaging (MRI)
studies—the first highlighted a correlation between growth
of the caudate nucleus and repetitive behaviors (specifically
“resistance to change”) in a longitudinal study of preschool-age
children (Langen et al., 2014) and another correlating caudate
and putamen volumes with global repetitive behavior metrics
(Hollander et al., 2005). Further, research will be needed to assess
whether other autism-relevant repetitive symptoms, including
motor stereotypies or speech abnormalities, are associated with
alterations in basal ganglia morphology.

Reward-Guided Behaviors
The midbrain dopamine system has developed together with
the sensorimotor circuitry of the basal ganglia to dramatically
enhance the manner in which rewards bias an animal’s
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behavior (Murray et al., 2011). Dopamine signaling can
increase behavioral efficiency both through its actions on
sensory-selection mechanisms (detecting pertinent cues;
Berridge, 2007) and action-selection mechanisms (selecting
previously rewarded behaviors; Schultz, 2013), although the
specific neuronal mechanisms remain controversial. One
hypothesis is that striatal interactions with the dopamine system
selectively reinforce associations between an environmental
cue, a specific response and an outcome to create an internal
representation of an animal’s action and its consequences. This
template could then be used for guiding adaptive behaviors when
contingencies change or as a foundation upon which commonly
rewarded activities could become automated (Liljeholm and
O’Doherty, 2012; Rueda-Orozco and Robbe, 2015).

In rodents, the striatal systems mediating these functions
are thought to be segregated, with the dorsal medial striatum
(roughly analogous to the caudate in humans) supporting
goal-directed behavioral responding, the dorsal lateral striatum
(analogous to the putamen) supporting automated behaviors
and the nucleus accumbens mediating motivational states
and reward processing (Yin and Knowlton, 2006; Balleine
and O’Doherty, 2010; Floresco, 2015). In addition, both the
dorsal medial striatum and nucleus accumbens are key neural
circuits for maintaining flexible behavioral responding under
changing reward contingencies (Kehagia et al., 2010). Each
striatal domain receives discrete excitatory projections (Pan
et al., 2010) and dopaminergic innervation (Lerner et al.,
2015) believed to support its specific processing functions, and
abnormal coordination between these domains is believed to
underlie behavioral control deficits in several neuropsychiatric
diseases, including OCD and substance abuse (Voorn et al.,
2004; Pan et al., 2010; Russo et al., 2010; van den Heuvel
et al., 2010; Ahmari et al., 2013; Burguière et al., 2015). Imaging
studies and psychological testing have documented discrete
reward-processing deficits in ASD patients, both for social and
monetary rewards (Kohls et al., 2013). These abnormalities may
contribute to the widespread deficits inmotivation and incentive-
based learning that are observed clinically (Kohls et al., 2012).
Furthermore, a range of deficits in executive function have
been observed in high-functioning autistic patients, including
alterations in response inhibition, planning, and behavioral
flexibility (Pennington and Ozonoff, 1996; Geurts et al., 2004;
Hill, 2004; Shafritz et al., 2008). In contrast, other striatal-
based paradigms, such as the acquisition of basic operant
performance and the ability to coordinate goal-directed and
habitual behavioral control seem unchanged (Geurts and de Wit,
2014). Taken together, it seems likely that the profound deficits
in social approach and rigid behavioral patterns that typify ASD
may stem in part from specific abnormalities in striatal-based
reward processing.

The Creation and Modulation of Behavioral
Variability
One final consideration with particular relevance to ASD
symptomatology is the proposed function of the striatum as a
generator of behavioral variation. A wealth of information on
the development and context-dependent modulation of highly

stereotyped motor output has come from work on a dedicated
cortico-basal ganglia circuit that regulates bird-song variability,
the anterior forebrain pathway (Fee and Goldberg, 2011). During
“practice singing” in isolation, a male’s exploration of different
song renditions is mediated by variable basal ganglia firing
downstream of synchronized striatal output (Woolley et al.,
2014). In contrast, song directed at potential female mates
is precise—a byproduct of a more stereotyped basal ganglia
firing pattern, which may result from cue-dependent increased
dopamine release within striatum (Gale and Perkel, 2005; Leblois
et al., 2010). While it is currently unclear if the mammalian
striatum is similarly involved in the regulation of behavioral
variability, it is easy to see how deficits in this function could
contribute to the restricted behavioral output observed in ASD.

CLINICAL INDICATIONS FOR STRIATAL
INVOLVEMENT IN ASD

Early clinical evidence for striatal involvement in ASD came
fromwidespread “disturbances of motility” noted in neurological
testing (Damasio andMaurer, 1978; Maurer and Damasio, 1982).
Autistic patients displayed classical neurologic signs of basal
ganglia dysfunction including dystonia of the extremities and
“striatal toes”—a Babinski-like spontaneous reflex. In addition
to involuntary choreoathetoid movements and postural changes,
bradykinetic abnormalities were also common, resulting in
significant delays in the initiation, modulation and halting
of motor output (Maurer and Damasio, 1982). In a cohort
of 154 children with ASD from ages 2 through 7, the
prevalence of motor abnormalities was substantial, with 51%
exhibiting dystonia and 34% motor apraxia (Ming et al., 2007).
Magnetic resonance imaging (MRI) studies exploring disease-
related changes in striatal volume found evidence for alterations
in caudate size both in children and adult ASD patients
(Sears et al., 1999; Langen et al., 2007, 2009; Estes et al.,
2011). An unbiased meta-analysis of voxel-based morphometric
studies taken from the current autism literature has similarly
highlighted the basal ganglia as a brain region with consistent
structural alteration (Nickl-Jockschat et al., 2012). Alternative
approaches have employed functional-MRI to investigate task-
specific patterns of striatal activity in ASD patients and
uncovered decreased responsiveness during paradigms assaying
social reward processing (Delmonte et al., 2012; Kohls et al.,
2013) and cognitive flexibility (Shafritz et al., 2008). With
regard to the functional connectivity of ASD brains, there
is evidence suggesting an increased connectivity between the
caudate nucleus and a range of autism-relevant cortical areas,
including prefrontal, premotor and parietal areas, observed both
in resting-state and task-specific paradigms (Turner et al., 2006;
Di Martino et al., 2011).

The abundance of clinical and imaging evidence, when
considered together with the diversity of striatal function,
presents a compelling argument for a central role of striatal
circuits in ASD pathophysiology (see Table 1 for summary).
Nonetheless, our understanding of pathophysiological
mechanisms ultimately relies on the ability to manipulate
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TABLE 1 | Brief summary of clinical evidence for the involvement of striatal circuits in ASD pathophysiology.

References Population Methodology Conclusion

Damasio and Maurer, 1978; Maurer

and Damasio, 1982

unclear Neurologic assessment Classical neurologic signs of basal ganglia dysfunction, including

“striatal toes,” choreoathetoid movements, postural changes, and

bradykinesia

Sears et al., 1999 12-29 YO Structural MRI Enlargement of caudate observed in autism patients; caudate

volume associated with compulsions and rituals

Geurts et al., 2004 6-12 YO Cognitive testing Children with high-functioning autism exhibited deficits across

multiple executive function domains

Turner et al., 2006 15-39 YO males Functional connectivity MRI Autism cases displayed decreased functional connectivity in

caudate circuits, despite diffusely enhanced connectivity in

pericentral regions

Langen et al., 2007 Children and adolescents Volumetric MRI Caudate enlargement observed in medication-naïve subjects

Langen et al., 2007 6-25 YO Structural MRI Caudate increased in volume with age in autism

Shafritz et al., 2008 Young adult fMRI High-functioning autistics had reduced activation in frontal, striatal

and parietal regions, as well as lower accuracy on response-shift

trials

Estes et al., 2011 3-4 YO MRI Enlargement of left and right putamen, left caudate observed in

ASD cases

Di Martino et al., 2011 7-13 YO Functional connectivity MRI Children with ASD exhibited enhanced striatal connectivity with

heteromodal associative and limbic cortices

Delmonte et al., 2012 Teenage males fMRI ASD cases showed reduced activation in the dorsal striatum

during the receipt of social rewards but normal activation for the

receipt of monetary rewards

Nickl-Jockschat et al., 2012 Meta-analysis MRI Unbiased meta-analysis of brain structure changes across multiple

MRI studies using voxel-based morphometry shows that basal

ganglia is significantly affected

Kohls et al., 2013 Teenage males fMRI NAc hypo-activation for monetary but not social reward; Amygdala

and anterior cingulate cortex hypoactivation for both types of

reward

Langen et al., 2014 Preschool children Structural MRI Correlation between growth of caudate nucleus and repetitive

behaviors (measured as “resistance to change”)

systems to test causality. The modeling of ASDs in rodents
has largely been pursued through environmental and genetic
models, with a focus on construct validity (the disease relevance
of how a model was generated) and face validity (how the
model recapitulates disease behaviors and pathology; Nestler
and Hyman, 2010). Environmental models have been essential
in the generation of experimental ASD rodents while the
discovery of causal genetic factors was still on the horizon. For
example, both prenatal exposure to valproic acid and models
of maternal infection can cause social and motor phenotypes
that are consistent with abnormalities seen in ASD patients
(Arndt et al., 2005). However, our limited understanding of
environmental contributions to ASD pathogenesis has severely
limited the construct validity of these approaches (McOmish
et al., 2014). Genetic modeling in mice has provided alternative
disease models whose construct validity rests largely on the
quality of genetic association data that serves as the starting
point for functional analysis.

STRIATAL DYSFUNCTION IN MOUSE
GENETIC MODELS OF ASD

The parallel revolutions in genetic sequencing technologies and
genome editing have provided an unparalleled opportunity to

explore causality between mutations and aberrant behaviors
in genetically tractable systems such as mice. Examinations
of copy number variations (CNVs), together with whole-
exome and genome sequencing, has demonstrated a substantial
amount of genetic heterogeneity underlying ASD etiology, with
some estimates predicting that 300–800 loci will eventually be
associated with increased risk for ASD (O’Roak et al., 2012).
The diversity of documented ASD-associated mutations includes
syndromic mutations, rare alleles of larger effect size, de-novo
CNVs and more common mutant alleles of smaller phenotypic
penetrance (Krumm et al., 2014;Willsey and State, 2015). Genetic
modeling of ASD in mice has largely focused on syndromic
mutations and rare alleles, although the generation of CNV
models has recently gained traction (Nakatani et al., 2009; Horev
et al., 2011; Portmann et al., 2014). My goal here is not to
exhaustively review each mouse ASD model, but instead provide
an overview of the physiological and behavioral phenotypes
resulting from mutations in a range of genes with solid genetic
association to ASD. When considered together, I believe these
data begin to make a strong case for primary striatal deficits in
the pathogenesis of ASD (Figure 3).

Fragile-X Mental Retardation Protein
The Fragile-X Mental Retardation Protein (FMRP), a key
repressor of translation at central synapses, has been a central
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FIGURE 3 | Mouse models of ASD-associated genes display abnormalities in striatal structure and function. (A) FMR1 KO mice display abnormalities in

the regulation of endocannabinoid signaling within the striatum, with decreased 2-arachidonylglycerol (2-AG) production in the NAc leading to altered plasticity of

excitatory inputs (left) and increased 2-AG production in the dorsal striatum enhancing depression of inhibitory transmission onto dorsal striatal MSNs (right). (B)

16p11.2 heterozygotes exhibit an increase in excitatory synaptic transmission onto D2R+ MSNs of the NAc (left) while both the dorsal and ventral striatum have larger

overall numbers of D2R+ MSNs (right). (C) Loss of Met receptor function within ventral telencephalic progenitors leads to an increase in the number of parvalbumin

and somatostatin-positive striatal interneurons at the expense of cortical interneuron populations (left). Met receptor KO mice display enhanced connectivity of

superficial layer cortical neurons that synapse on corticostriatal projection neurons (right). (D) Shank3 KO mice exhibit gross abnormalities in synaptic structure,

alterations in the protein architecture of synapses and a decrease in general excitatory synaptic strength within the dorsal striatum. (E, left) Cntnap2 KO mice exhibit

deficits in migration of interneuron progenitors such that striatal interneuron populations are decreased. Cntnap4 KO mice demonstrate enhanced release of

dopamine specifically within the nucleus accumbens (right).

model for exploring the pathogenesis of mental retardation
and accompanying developmental disorders including autism
(Danish-Belgium Fragile-X Consortium, 1994; Reiss et al.,
1995; Bear et al., 2004). While this protein exerts widespread
control of mRNA translation, many of the neuropsychiatric-
related symptoms seen in Fmr1 KO mice result from abnormal
activation of the mGluR5 metabotropic glutamate receptor, as
evidenced by the striking behavioral rescue achieved in Fmr1
KO; mGluR5 heterozygote mice (Dölen et al., 2007). While
initial studies described a role for Fmr1 in regulating long-term
synaptic plasticity at hippocampal synapses (Huber et al., 2002), it
has subsequently been implicated in synaptic dysfunction across
multiple brain regions, including cingulate cortex, amygdala, and
neocortex (Patel et al., 2013; Martin et al., 2014; Koga et al.,
2015). The idea that fronto-striatal circuit dysfunction is critical
to specific domains of behavioral dysfunction seen in Fragile
X patients is suggested by deficits of response inhibition and

abnormal patterns of task-related activity in anterior cingulate
cortex and striatum (Menon et al., 2004). Interestingly, this
study also noted that responses in the ventrolateral prefrontal
cortex and the striatum were correlated with the levels of Fmr1
gene expression. The importance of fronto-striatal dysfunction
has received additional support from recent cognitive studies
in the Fmr1 mouse model demonstrating abnormalities in
visuospatial discrimination and extinction of instrumental
responses (Krueger et al., 2011; Sidorov et al., 2014). Consistent
with the importance of fronto-striatal circuits, synaptic analysis
of Fmr1 KO mice has demonstrated alterations in both
excitatory and inhibitory synaptic transmissionwithin the ventral
and dorsal striatum, respectively (Figure 3A; Centonze et al.,
2008; Jung et al., 2012). In the dorsal striatum Fmr1 KOs
display an increased sensitivity to endocannabinoid-mediated
depression of inhibitory transmission onto MSNs, while in
the nucleus accumbens a form of endocannabinoid-mediated
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depression of excitatory transmission is disrupted (Centonze
et al., 2008; Jung et al., 2012). These studies illustrate
how a common mutation may yield similar net circuit
effects (less inhibition of striatal MSNs) through region-
specific physiological mechanisms. Nevertheless, the widespread
nature of physiological dysfunction that occurs downstream of
perturbations to this global regulator of translation makes it
currently unclear what specific role striatal dysfunction might
play in the diverse behavioral changes documented in Fmr1
KO mice.

Mouse Models of the 16p11.2 Human CNV
Copy number variations on chromosome 16p11.2 are one
of the most common sequence abnormalities associated with
ASD (Weiss et al., 2008). Deletions of this region cause a
range of phenotypes in addition to autism, including language
delay, seizures, cognitive impairments and attention-deficit
hyperactivity disorder, while duplications are associated with
schizophrenia. The 16p11.2 chromosomal region contains 26
genes whose orientation in humans is perfectly conserved on
chromosome 7 in mice, allowing faithful genetic modeling
(Horev et al., 2011; Portmann et al., 2014). Consistent with the
large size of genetic insult, 16p11.2 heterozygote mice displayed
gross abnormalities in brain morphology and size. In particular,
rostral striatum, nucleus accumbens, globus pallidus, medial
cortical structures, and thalamus all exhibited enlargement,
suggestive of a coordinated increase in the morphological
footprint of basal ganglia circuitry. Detailed anatomical analysis
revealed evidence for changes in medium spiny neuron
specification, with increased overall numbers of D2R+ MSNs as
well as a larger fraction of spiny neurons with “mixed” D1R+ and
D2R+ phenotypes. Furthermore, there was a dramatic increase
in the net excitatory strength onto D2R+ MSNs secondary to
a cell-type specific increase in the presynaptic probability of
neurotransmitter release (Portmann et al., 2014). All together,
these changes should act to enhance output from the indirect
pathway in both the dorsal and ventral striatum, although the
resulting changes at the circuit level should be interpreted with
caution in the face of what seems to be significant abnormalities
in neural specification and development (Figure 3B). Further
work is necessary to conclude whether these striatal circuit
alterations play a causal role in the numerous motor behaviors
documented by this study, as 16p11.2 deletions have also been
associated with cortical dysplasia and aberrant hippocampal
mGluR signaling (Pucilowska et al., 2015; Tian et al., 2015).

Met Receptor Signaling
The Met receptor tyrosine kinase binds its ligand, hepatocyte
growth factor, and mediates numerous signaling events essential
for development of epithelial populations including proliferation,
differentiation, and trophic support. In the developing nervous
system, Met is expressed in proliferative progenitor zones
and maintained during neuronal migration and integration,
suggesting Met signaling is essential for early neuronal
specification (Powell et al., 2001). Consistent with this, mutations
in the Met receptor have been associated with both autism and
Tourette’s syndrome (Martins et al., 2011; Peng et al., 2013).

The role that Met dysfunction plays in the pathophysiology of
these disorders is unclear, but targeted genetic dissection has
demonstrated abnormalities at multiple levels of cortico-striatal
circuitry (Figure 3C). Using two-photon glutamate uncaging to
explore circuit-specific synaptic connectivity, it was shown that
cortical disruption of Met function caused hyper connectivity
of cortical layer 2/3 neurons specifically onto layer 5 cortical
neurons that projected into the striatum (Qiu et al., 2011).
Cortical-specific Met disruption also resulted in a non-cell
autonomous increase in the total dendritic arbor length and
spine volume of striatal MSNs (Smith et al., 2012). An alternative
approach that removed Met signaling from ventral neural
progenitors produced abnormalities in the proper distribution of
inhibitory interneurons, such that the number of parvalbumin-
and somatostatin-positive interneuron subtypes was increased
in the striatum at the expense of cortical populations (Martins
et al., 2011). It is difficult to estimate what the net circuit
effect of these seemingly opposing alterations might be—while
cortical Met disruption should enhance cortico-striatal network
output, too little is known about the putative functions of
striatal interneurons to extrapolate the result of enhanced local
inhibition on overall striatal processing (Gage et al., 2010; Yim
et al., 2011). Nonetheless, further work is necessary to directly
attribute alterations in corticostriatal pathways to the deficits in
procedural and reversal learning seen with Met genetic loss-of-
function (Martins et al., 2011).

The Shank Gene Family
Shank proteins are a central component of the postsynaptic
density that function to scaffold the large protein networks
associated with excitatory synapses. While all three Shank family
members are associated with ASD, the strongest genetic evidence
exists for Shank-3, whose location maps to the critical region
for Phelan-McDermid syndrome—a disorder characterized
by intellectual disability, autistic behaviors and hypotonia
(Phelan, 2008). Understanding how Shank-3 mutations cause
neuropsychiatric disease has been complicated by the molecule’s
complex structure, which employs multiple transcriptional start
sites to generate proteins with numerous adhesion domains
(Jiang and Ehlers, 2013). Genetic alterations have been detected
throughout the Shank-3 gene and the variability of resulting
phenotypes provides insight into the relative importance of
the specific adhesion domains that are disrupted. For example,
mice in which the upstream ankyrin repeats are affected
have specific reductions in the Shank3α protein isoform and
relatively mild behavioral phenotypes compared to mutations
in the downstream PDZ domain, which eliminate the α, β,
and γ isoforms and produce significant increases in grooming
behaviors and reductions in social interactions (Peca et al., 2011).
Biochemical and physiological experiments focused on striatum
because of the severe grooming phenotype and the high levels
of Shank-3 mRNA expression selectively within this structure.
These analyses demonstrated truncated postsynaptic density
structure along with broad reductions in key scaffolding proteins
and neurotransmitter receptors (Peca et al., 2011). Consistent
with this, Shank-3 KOs have large reductions in cortico-striatal
excitatory synaptic transmission, although whether there is
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cell-type or input specificity to this deficit remains unclear
(Figure 3D). Despite the smaller number of Shank-2 mutations
associated with ASD, two distinct mouse models of Shank-
2 display social deficits and abnormalities of motor output
despite exhibiting opposite hippocampal synaptic phenotypes
(Schmeisser et al., 2012; Won et al., 2012).

Contactin Associated Proteins
Contactin associated proteins are transmembrane molecules of
the neurexin superfamily that have been linked to ASD and
epilepsy through numerous human genetic approaches (Strauss
et al., 2006; Alarcón et al., 2008; Arking et al., 2008; Bakkaloglu
et al., 2008). Contactin associated protein-like 2 (Cntnap2)
is implicated in neuron-glial interactions and clustering of
potassium channels at the nodes of myelinated axons (Poliak
et al., 1999). Recent work in cultured cortical neurons has also
demonstrated a potential developmental role in the elaboration of
dendritic arbors and development of synaptic spines (Anderson
et al., 2012). Mouse models of Cntnap2 loss-of-function
display stereotypic movements, behavioral inflexibility, social
and communication deficits, as well as seizures (Peñagarikano
et al., 2011). While the underlying neural mechanisms of these
behaviors remain unclear, there are widespread abnormalities in
the migration of inhibitory interneurons, leading to a decrease
in both cortical and striatal interneuron populations (Figure 3E;
Peñagarikano et al., 2011). Given the phenotypes of the Met
receptor (Martins et al., 2011) and Cntnap2 KOs, further
studies are needed to explore whether alterations in striatal
interneuron development represent a common causal factor for
ASD pathogenesis. Cntnap4 is a closely related family member
that has been associated with neuropsychiatric disease whose
expression is restricted to parvalbumin-positive interneurons
and tyrosine hydroxylase positive midbrain dopamine neurons
in the substantia nigra pars compacta and ventral tegmental
area (Karayannis et al., 2014). Cntnap4 protein is expressed
presynaptically and KOmice display diverse synaptic phenotypes
including a reduction in cortical GABAergic tone and an increase
in release of dopamine specifically within the nucleus accumbens
(Figure 3E). The perseverative grooming displayed by Cntnap4
KOs is lessened by systemic administration of the dopamine
D2 receptor antagonist haloperidol, suggesting that increased
dopaminergic tone is in part responsible for the observed
motor control abnormalities (Karayannis et al., 2014). Taken
together, functional data from mutations in the Cntnap family
suggest widespread abnormalities in inhibitory function and
focal changes in local dopaminergic release. Whether, these
changes converge at the level of striatal circuits is an interesting
future question.

DIRECTLY EXPLORING THE LINK
BETWEEN GENE DYSFUNCTION, CIRCUIT
ABNORMALITIES AND ASD-RELEVANT
BEHAVIORS

Taken together, these studies demonstrate that the introduction
of ASD-associated mutations into mice causes dysfunction of
striatal structure and function. However, an equally compelling

case could be made for ASD-associated abnormalities in
hippocampal CA1 neurons, a cell type in which many autism-
associated mutations have been screened due to their well-
characterized connectivity and anatomy (Etherton et al., 2011;
Peñagarikano et al., 2011). In fact, most of the aforementioned
genes produce physiological changes in multiple brain regions.
To further our understanding of ASD pathophysiology, it is
necessary to move beyond the basic concept that ASD-associated
genes cause physiological abnormalities to instead explore which
behaviorally relevant neural circuits are changed and how those
networks function to normally regulate behavior (Fuccillo et al.,
2016). Two recent studies have tackled this issue by employing
viral and genetic dissection of gene function toward the goal
of a circuit-based understanding of ASD-relevant behavioral
abnormalities (Figure 4; discussed in Section Striatal Oxytocin
Function in Social Reward and Striatal Neuroligin-3 Dysfunction
Boosts Repetitive Behaviors; Dölen et al., 2013; Rothwell et al.,
2014).

Striatal Oxytocin Function in Social Reward
Abnormalities in reward processing likely contribute to the
widespread deficits in social engagement and communication
seen in ASD patients. In support of this, human imaging
studies have demonstrated reduced neural activity throughout
corticostriatal circuits in response to a variety of social rewards
(Kohls et al., 2012). To better understand the circuit mechanisms
of social behaviors, a conditioned place preference assay
(similar to that used to examine the rewarding properties
of drugs of abuse) was employed to quantify a preference
for contexts associated with grouped vs. isolation housing
(Panksepp and Lahvis, 2007; Dölen et al., 2013). Using this
approach, the function of oxytocin, an ancestral neuropeptide
known to regulate affiliative behavior across many species, was
mechanistically examined. Alterations in the oxytocin promoter
have been associated with ASD and intra-nasal oxytocin delivery
is currently being explored as a treatment option to enhance pro-
social behaviors (Yamasue et al., 2012). Through a combination of
acute slice electrophysiology and behavioral pharmacology, two
interesting but seemingly disconnected effects of oxytocin were
demonstrated in mice—(1) bath application of oxytocin induced
a long lasting depression of excitatory synaptic transmission onto
MSNs of the nucleus accumbens, and (2) blockade of oxytocin
signaling in the NAc inhibited the formation of a preference for
social cues (Dölen et al., 2013). Viral-mediated circuit dissection
of oxytocin receptor (Oxtr) function demonstrated that both the
synaptic plasticity and the social preference behavior depended
on oxytocin-ergic signaling in dorsal raphe inputs to the NAc, a
major source of striatal serotonin.

Through a series of experiments, a unifying mechanism
emerged in which oxytocin signaling regulated the release
of serotonin in the nucleus accumbens, which subsequently
modulated excitatory synaptic strength by acting at presynaptic
serotonergic receptors on excitatory afferent fibers (Figure 4A).
Despite the complexity of interactions across several brain
regions, it is clear that the nucleus accumbens is the final locus at
which this modulation of social reward occurs, as both oxytocin
and serotonin-1B (Htr1b) receptor blockade in the accumbens
abrogate the social preference in vivo. Questions remain
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FIGURE 4 | Circuit-specific analysis of ASD-related behaviors points toward an underlying striatal deficit. (A) Targeted removal of oxytocin receptor within

the dorsal raphe demonstrates a key role for this molecule in formation of social conditioned place preference, a measure of social reward. Oxytocin receptor functions

on dorsal raphe terminals within the nucleus accumbens to regulate the release of serotonin, which can hetero-synaptically modulate excitatory transmission onto

MSNs through presynaptic Htr1b receptors. (B) Removal of Neuroligin-3, a synaptic adhesion molecule associated with ASD, from D1R+ MSNs of the nucleus

accumbens is sufficient to drive the enhanced formation of repetitive motor routines, as assayed by learning on the accelerating rotarod (KOs display an increased and

earlier stereotyped pattern of foot placements compared with WTs). In addition, Neuroligin-3 KO mice have a cell type- specific deficit in inhibitory transmission onto

accumbens D1R+ MSNs, which presumably leads to an increase in output from this circuit.

regarding how these long-term changes in accumbal excitatory
transmission ultimately regulate social reward. Nonetheless,
these experiments havemade the first inroads into understanding
the synaptic basis of social reward processing and furthermore
offer potential mechanistic clues to the function of two ASD-
associated genes (Oxtr and Htr1b) in the development of ASD-
associated behaviors.

Striatal Neuroligin-3 Dysfunction Boosts
Repetitive Behaviors
Applying a similar “circuit dissection” approach, we attempted
to explore how ASD-associated mutations could promote
development of the restricted and repetitive behaviors so
frequently observed in ASD patients (Rothwell et al., 2014).
To do so, we employed the accelerating rotating rod (rotarod)
as a potential behavioral endophenotype for the formation of
motor routines. To assess the validity of this approach, we used
video-capture foot tracking of mice during standard rotarod
training to demonstrate that improved motor performance was
tightly linked to increasingly stereotyped location and timing
of hind-paw placement. We then investigated this behavior in
two distinct mouse lines mutant for Neuroligin-3, a synaptic
adhesion molecule associated with ASD (Jamain et al., 2003;
Sanders et al., 2011). Interestingly, both Neuroligin-3 KO and
Neuroligin-3 R451C point mutant mice demonstrated enhanced

learning on the rotating rod and a more rapid stereotyping of
their paw placement. This finding is of great significance given
that several genetic ASD models have a similar enhancement of
rotarod performance (Kwon et al., 2006; Nakatani et al., 2009;
Etherton et al., 2011; Peñagarikano et al., 2011). Using a series
of viral and genetic approaches, Neuroligin-3 was removed from
discrete circuits and cell types in an attempt to delineate where
Neuroligin-3 dysfunction was crucial for enhancing rotorod
learning and other stereotyped behaviors. Surprisingly, our data
suggested that deletion of Neuroligin-3 in D1R+ MSNs of
the mature nucleus accumbens was sufficient to generate the
behavioral phenotypes seen in two separate Neuroligin-3 autism
models. Complementary acute slice analyses demonstrated a
deficit in inhibitory synaptic transmission specifically onto
D1R+ MSNs of the accumbens, which altered the neuronal
balance between excitation and inhibition in this circuit element
(Figure 4B).

To prove that altered nucleus accumbens MSN output can
modulate rotarod acquisition, we employed cell type-specific
suppression of neuronal activity through targeted stereotaxic
injection of a Cre-dependent virus expressing the inwardly-
rectifying potassium channel, Kir2.1. These experiments
demonstrated that decreasing excitability of D1R+ and D2R+
MSNs could bi-directionally modulate rotarod learning, and
strongly suggests that the synaptic dis-inhibition of accumbal
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D1R+ MSNs is a causal physiological event in the promotion of
repetitive motor behaviors in Neuroligin-3 mutant mice. How
exactly changes in nucleus accumbens D1R+MSN output help to
organize motor patterns is intriguing given that these programs
are likely executed elsewhere within cortico-striatal circuits.
Along these lines, it is important to note the critical differences
in downstream connectivity recently reported between medium
spiny neuron subtypes of the dorsal vs. ventral striatum (Kupchik
et al., 2015; see Figure 1C). Whereas D1R+ MSNs of the dorsal
striatum project exclusively through the direct pathway to
the midbrain, D1R+ MSNs of the nucleus accumbens send
inhibitory projections to both mesencephalic dopamine centers
and the ventral pallidum, the main target site of D2R+ accumbal
MSNs. This distinction suggests that there are two possible
downstream pathways through which alterations in D1R+
MSN output could shape repetitive behaviors. Together with the
aforementioned oxytocin study, these results begin to show a
clustering of causal ASD-related neural dysfunction within the
striatum. Further work will be necessary on both fronts to better
understand how these circuit abnormalities interact with global
brain function to alter behavior.

CAN UNDERSTANDING STRIATAL
CIRCUIT REGULATION OF BEHAVIOR
HELP GENERATE HYPOTHESES OF ASD
PATHOPHYSIOLOGY?

Given the recent evidence that striatal dysfunction has a
causal role in ASD-related behaviors, a more comprehensive
understanding of how specific striatal circuits mediate
behavioral control may aid our attempts to forge mutation-
behavior correlates in rodent disease models. Lesion
studies, pharmacological manipulations and more recently,
optogenetic/pharmacogenetic interrogation of striatal circuits
has begun to create a cellular and synaptic understanding
for the selection and reinforcement of particular behavioral
patterns.

Striatal Regulation of Flexible and
Automatic Behavioral Responses
Striatal function is believed to support both flexible, goal-directed
behaviors as well as more automated responding, in an attempt
to enhance overall behavioral efficiency. How these two systems
interact to shape behavior is of considerable importance given
their widespread dysfunction across multiple neuropsychiatric
disorders. Lesion studies in rodents have attributed goal-directed
responding to dorsomedial striatal function, as disruptions of this
territory generate rigid behavioral patterns that are insensitive to
reward devaluation (Yin et al., 2005). Furthermore, acquisition
of goal-directed actions is correlated with bidirectional synaptic
plasticity within the dorsomedial striatum, with enhanced AMPA
receptor mediated synaptic transmission onto D1R+ MSNs and
decreased excitatory synaptic drive onto D2R+ MSNs (Shan
et al., 2014). These data reinforce a basic circuit logic whereby
enhanced drive onto D1R+ MSNs serves to boost selected
behaviors while decreased activation of D2R+ MSNs allows for

the removal of an inhibitory brake. Finally, dorsomedial striatal
MSNs also seem to have a role in encoding the net expected
return of a given task, andmodulating response vigor accordingly
(Wang et al., 2013). This regulation of task effort may prove
integral to the function of the dorsomedial striatum in shaping
aspects of reward-sensitive associative learning.

Lesion studies of the rodent dorsolateral striatum suggest
that this domain is necessary for the formation of habits—
automated, sensory-driven responses that are insensitive to
changes in reward value or contingency (Yin et al., 2004; Yin
and Knowlton, 2006). In addition, inactivation of the dorsolateral
striatum after the establishment of habitual responding causes a
reversion to more reward-sensitive behavioral output, suggesting
either parallel or antagonistic interactions between these two
systems. The neural mechanisms that coordinate reward-directed
flexibility and fixed motor responding have received little
attention but are likely of significant importance to ASD
pathology. Unfortunately, a strict anatomical segregation of
these two processes is unlikely, as evidenced by state-related
MSN activity in both dorsomedial and dorsolateral striatal
compartments during goal-directed and habitual responding
(Gremel and Costa, 2013).

Intrinsic Striatal Circuits and Goal-Directed
Learning
Traditional models of striatal function are grounded in the
proposed dichotomy of striatal medium spiny neuron subtypes,
with D1R+ MSN activity important for initiating movement
and D2R+ MSNs essential for suppressing actions. While
the precise temporal sequence and coordination of MSN
subtypes during activity remains unclear (Cui et al., 2013), this
theoretical framework has been a powerful tool for progress
in understanding striatal motor function (Kravitz et al., 2010).
Recent work has attempted to explore whether these striatal
cell types have analogous functions in the regulation of
reinforced actions. Mice expressing channelrhodopsin in either
direct or indirect MSNs of the dorsomedial striatum were
allowed to lever press to receive optogenetic activation of either
circuit component (Kravitz et al., 2012). In this optogenetic
variant of self-stimulation, it was noted that stimulation of
D1R+ MSNs resulted in persistent operant reinforcement that
was maintained across training session, while D2R+ MSN
stimulation caused a transient aversive state within each session.
Surprisingly, both cell-type specific modulations of behavior
occurred in the presence of systemic dopamine antagonists,
suggesting that the behavioral plasticity was occurring through
alternative mechanisms. Another study focused specifically on
direct pathway neurons of the dorsomedial striatum, employing
DREADDs technology to increase or decrease G-protein coupled
signaling in this cell type during the acquisition of a high vs.
low reward-discrimination task (Ferguson et al., 2013). While
these manipulations had no real-time effect on reward preference
or task acquisition, they were able to bi-directionally modulate
the encoding of strategies for subsequent trials. A comparison
between these optogenetic and pharmocogenetic manipulations
of MSN activity demonstrates how distinct temporal windows of
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activity within the same neural circuit canmediate diverse aspects
of behavioral control.

Similar cell type-specific functions have been proposed for
MSN cell types within the nucleus accumbens, as demonstrated
by a cell type-specific block of synaptic transmission through
regulated viral expression of tetanus toxin (Hikida et al., 2010).
Using locomotor sensitization and conditioned-place preference
behaviors to explore MSN contributions to psycho-stimulant
exposure, the authors suggest that D1R+MSNs mediate a broad
set of associative reward functions. In contrast, D2R+ MSNs
were essential for the aversive response to foot-shocks seen in
the inhibitory avoidance task. A separate study exploring the
transition to compulsive cocaine use during self-administration
paradigms suggests that increased synaptic strength onto D2R+
MSNs of the nucleus accumbens was associated with resilience
to chronic cocaine use (Bock et al., 2013). These results argue
that the indirect pathway may shape behaviors by curtailing
unwanted or maladaptive efforts. In fact, the interpretation that
D2R+ MSN activity encodes aversive states may reflect this cell
type’s function in suppression of action associated with non-
rewarded or aversive contexts. When taken together, the data
thus far suggest that D1R+ MSNs in the NAc and associative
striatum have a key role in goal-directed actions and learning,
while D2R+ MSNs in these regions may encode either aversive
states or mediate the inhibition of specific behaviors associated
with these states.

Striatal Circuit Modulation and Flexible
Behavioral Responding
Current theories of striatal function highlight the importance of
afferent projection neurons and neuromodulatory populations
in controlling the final output of basal ganglia circuits, however
few studies have functionally tested these assumptions (Mathur
and Lovinger, 2012; Tritsch and Sabatini, 2012; Wall et al., 2013;
Guo et al., 2015). Recent lesion experiments have demonstrated
how the central nucleus of the amygdala (CeA) may interact
with the dorsolateral striatum to regulate the balance between
goal-directed and habitual responding (Lingawi and Balleine,
2012). Rats with asymmetrical lesions of the CeA and dorsolateral
striatum demonstrated an inability to form habitual responding
(defined as becoming insensitive to reward devaluation), despite
extensive training. How communication between these regions
regulates a switch to habitual responding is unclear, although
other amygdalar regions such as the basolateral nucleus have
been shown to gate the plasticity of cortico-striatal synapses
through NMDA-dependent mechanisms (Popescu et al., 2007).
Another fascinating demonstration of striatal afferent-mediated
regulation of behavioral control comes from attempts to use
optogenetics to ameliorate compulsive grooming behaviors
seen with deletion of Sapap-3, a synaptic scaffolding gene
(Burguière et al., 2013). These mutant mice display behavioral
control abnormalities in a cued-grooming task that likely results
from dysfunctional inhibition of MSN activity. Surprisingly,
this impulse-control deficit could be improved by optogenetic
activation of excitatory projections from the lateral orbitofrontal
cortex to the dorsal striatum. Increased recruitment of this
circuit was able to compensate for striatal inhibitory deficits and

restore MSN inhibition, suggesting that cortical regulation of
local striatal inhibition is a potentially powerful mechanism for
regulating normal behavioral output.

THE SEARCH FOR ASD-RELEVANT
CIRCUIT DYSFUNCTION

The growing catalog of abnormalities—including structural
and functional changes observed with imaging of autistic
patients and physiological abnormalities documented in mouse
genetic models for autism—highlights the importance of
discerning commonalities of circuit dysfunction as a path toward
understanding disease pathophysiology. While I have focused on
striatal dysfunction, a growing body of evidence has accumulated
implicating other regions in ASD pathology, including the
cerebellum and cortex (Zikopoulos and Barbas, 2010, 2013;
Wang et al., 2014). The recurrent phenotypes exhibited by
patients and genetic mouse models begs the question as to
why particular circuits would be intimately associated with
ASD. One possibility is that these circuits have some specific
molecular vulnerability rendering them more likely to become
dysfunctional in response to a given genetic insult. An alternative
hypothesis would be that despite ASD-relevant mutations having
widespread effects on physiology, ASD-associated circuits occupy
central and convergent points of processing which are uniquely
sensitive to neuronal dysfunction and regulate motor and
cognitive behaviors typically associated with ASD. Preliminary
evidence exists for both of these concepts.

Do Particular Circuits Exhibit a Unique
Molecular Vulnerability?
One can imagine several related mechanisms that would create
a circuit-specific vulnerability to genetic insult—(1) neurons
either uniquely or more highly express ASD-associated genes
such that loss-of-function is more acutely sensed, or (2) neurons
do not express alternative family members of ASD-associated
genes that would typically allow for genetic compensation.
Using a computational approach that analyzed autism genetic
datasets to correlate mutations to known biological networks,
it was found that autism-associated mutations are preferentially
found in genes whose expression levels are enriched in both
populations of striatal medium spiny neuron, as well as cortical
inhibitory and projection populations, deep cerebellar nuclei and
layer 6 corticothalamic neurons (Chang et al., 2015). Another
study employing high-confidence autism genes as a “seed” from
which to build co-expression networks implicated specific brain
region and developmental windows, including mid-fetal cortical
development, as well as postnatal thalamic and cerebellar nuclei,
in disease pathogenesis (Willsey et al., 2013). Together, these
data provide a relatively straightforward explanation for the
observed bias toward cortico-striato-thalamic and cerebellar
circuit dysfunction seen in ASD patients. In addition to being
enriched for ASD-associated genes, it is currently unclear
whether lack of molecular redundancy in these circuits also
contributes to increased vulnerability to genetic insult. Single
neuron transcriptional profiling, with its ability to quantitatively
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assess mRNA levels across multiple families of ASD-associated
genes will be an essential tool in further exploring the molecular
vulnerability of neural circuits (Fuccillo et al., 2015).

Beyond possessing a molecular susceptibility for dysfunction,
it is interesting to consider whether the evolutionary history of
particular neural circuits has contributed to their predisposition
for involvement in both ASD and neuropsychiatric disease
more broadly. Anatomical and physiological analysis of the
basal ganglia in lamprey, the oldest vertebrate lineage, shows
a surprising degree of circuit and cell type conservation
(Stephenson-Jones et al., 2011). The authors concluded that this
reflects a process of “exaptation,” wherein a core ancestral unit
is repurposed by natural selection into a structure with altered
function (Gould and Vrba, 1982). In this context, the lamprey
basal ganglia, which functioned to control basic motor output
has been co-opted over time for use by higher vertebrates in
the processing of complex cognitive and emotionally driven
actions. If true, the evolution of striatal circuits represents a
parsimonious solution to enhance the range of behavioral output.
However, this constant increase in the complexity of striatal
integration may have come at a price. Might more molecules
be required in striatal MSNs to integrate these new inputs?
Wouldmore spatially precise dendritic targeting of these proteins
be required? Does this type of repurposing render the newer
striatal functionalities of cognitive and emotional behavioral
control less stable than the original motor control circuits? Might
this hypothesis hold true for other highly conserved structures
such as the cerebellum? Answers to these fascinating questions
will require both technical advances and rigorous comparisons
between the circuit connectivity of lower vertebrates and their
human ancestors.

Are Abnormalities in Striatal Circuits likely
to Cause Widespread Behavioral
Dysfunction?
An alternative hypothesis for the importance of cortico-striato-
thalamic and cerebellar abnormalities in ASD pathophysiology is
not that these circuits are uniquely sensitive to genetic mutations,
but rather their physiological dysfunction consistently produces
robust deficits in social behavior and motor control. As
previously discussed, striatal circuits occupy an intersection
between internal representations of sensory input, prior
experience, motivational state and motor control, and thus are
capable of regulating behaviors that are typically linked to ASD.
These striatal circuits further serve to regulate the output of
the midbrain dopamine system, which extends a widespread
neuromodulatory influence throughout the brain (Kupchik
et al., 2015; Lerner et al., 2015). Dopamine signaling has been
proposed to subserve multiple behavioral functions, depending
both on the locus and timescale of its action (Schultz, 2007).
Given this, the disruption in striatal function seen in ASD may
serve to initiate disparate behavioral changes through brain
region-specific dysregulation of dopamine release. In this model,
motor control deficits would result from altered dopamine
signaling in dorsal striatal structures while abnormalities in
reward processing would be secondary to abnormalities in

ventral striatal or prefrontal cortical dopamine signaling. Careful
mechanistic studies in genetic mouse models will be necessary to
further develop these concepts.

How Might Cerebellar and Cortical Circuit
Dysfunction Produce ASD-associated
Behaviors?
Are there other neural circuits as centrally placed as the striatum
for the regulation of behavioral output? Cerebellar and prefrontal
cortical circuits also appear as key candidates with influence
on both the cognitive and motor aspects of ASD pathology.
Given the importance of the cerebellum in motor control and
balance, its perhaps unsurprising that the initial discovery of
vermal hypoplasia in autistic patients (Courchesne et al., 1988)
has been followed by studies linking autism with changes in
cerebellar function during basic motor tasks, adaptation of
saccades and feedback/feedforward regulation of grasping (Allen
et al., 2004; Mosconi et al., 2013, 2015). However, the cerebellum
exhibits significant connectivity with cognitive and affective brain
regions and its function in language processing and aspects of
social cognition may also contribute to autism symptomatology
(Reeber et al., 2013;Wang et al., 2014). The extensive connectivity
between the cortex and the cerebellum, together with the
significant effect of early cerebellar lesions on cognition and
social function as opposed to motor control, have led some
to hypothesize the existence of a critical period for cerebellar
function (Wang et al., 2014). Disruptions during this period
may perturb the plasticity and development of cortical regions
or block the early-stage learning of basic motor patterns and
skills. A related hypothesis posits the cerebellum as an iterative
processing unit essential for all motor and cognitive tasks, either
through its general regulation of timing or orchestration of
widespread neuronal adaptations for skilled motor output (for
detailed review, see Strick et al., 2009). Although beyond the
scope of this review, it would be interesting to explore the
potential for interactions between the cerebellar and striatal
systems with regard to autism pathophysiology. Tracing studies
have highlighted two interesting points of intersection—(1) the
connection of the deep cerebellar nuclei with the dorsal striatum,
through a di-synaptic thalamic relay (Ichinohe et al., 2000; Hoshi
et al., 2005), and (2) the mono-synaptic projection of deep
cerebellar nuclei to the ventral tegmental area (Phillipson, 1979).

Cortical regions, particularly domains within the prefrontal
cortex, have also been proposed as sites of dysfunction in
ASDs. In rodents, the prefrontal cortex is a heterogeneous
anatomical structure comprised of the orbital, cingulate,
prelimbic, infralimbic, and agranular cortices (Heidbreder and
Groenewegen, 2003). Tracing studies have revealed an extensive
connectivity of prefrontal cortex, suggesting it functions to
integrate input from sensory, limbic, and autonomic systems
(Groenewegen and Uylings, 2000). Prefrontal dysfunction
has been proposed to account for abnormalities of social
cognition, action control and multi-sensory integration seen
in autistic patients (see Martinez-Sanchis, 2014; Bicks et al.,
2015; Chmielewski and Beste, 2015 for detailed review). Social
cognition and action control both rely upon the integration
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of motivational states, knowledge of specific environmental or
social contexts and the flexible adjustment of behavior. The
circuit bases of such wide-ranging functions remains fuzzy and
warrant greater study. However, it seems likely that interactions
between prefrontal circuits, the striatum and the thalamus will
play a key role.

FUTURE PROGRESS IN UNDERSTANDING
ASD PATHOPHYSIOLOGY

An integrated picture of ASD pathophysiology will clearly require
further research studies that probe, in a non-biased manner,
for circuit dysfunctions mediating discrete aspects of ASD
symptomatology. Animal models, which allow for direct tests of
causality, can provide mechanistic hypotheses that can be fully
explored via functional imaging during human psychological
testing.

Making Progress with Striatal-Based
Models of ASD
Multiple lines of evidence from clinical imaging and rodent
disease models have converged to suggest that striatal
dysfunction is intimately associated with the etiology and
pathophysiology of ASD. This knowledge provides an initial
foothold into understanding how genetic abnormalities perturb
neuronal and circuit function to generate the complex range
of behavioral abnormalities seen in ASD. An important next
step will be to assess whether the extreme genetic diversity
of ASD-associated genes can be distilled down to a smaller
number of circuit or cell type-specific deficits. Comparative
physiological and behavioral analyses between pre-existing ASD
model mice should aim to discern common behavioral deficits
and ascertain whether they are attributable to conserved striatal
abnormalities. Elucidation of a recurrent cell type, synaptic or
circuit-specific deficit contributing to ASD-related behaviors
would dramatically help in focusing future treatment endeavors.
This information could then be integrated with the molecular
profiles of affected circuit components in search of novel targets
for disease amelioration.

Another key step in exploring ASD pathophysiology is to
increase the biological relevance of rodent-based disease studies
so that their results can be translated and built upon in
the pre-clinical setting. To date, a large portion of disease
modeling in rodents has focused on mice that are homozygous
for functionally null alleles of ASD-associated genes. While
this approach has no doubt improved our ability to detect
abnormalities, it does so within a biological context that lies far

outside the physiological range. The analysis of mutations in a
more physiological setting can be achieved through numerous
approaches—(1) examining heterozygous mutations, disease-
associated point mutations or genetic modifiers, (2) exploration
of environmental interactions with mutations (3) physiological
analysis of behaviorally relevant circuits through selective
optogenetic recruitment and (4) highly quantitative analysis
to detect subtle changes in discrete components of complex
behaviors. Even with these improvements, it is important to
acknowledge the intra-species differences in brain complexity,

genomic regulation and behavioral repertoire, which may place
limits on the generalizability of rodent-based research findings
(Fuccillo et al., 2016).

Striatal Dysfunction in the Broader Context
of Neuropsychiatric Disease
Given the evidence provided here, I believe that a greater
understanding of how normal striatal circuit function is
perturbed in the presence of ASD-associated mutations will yield
great returns. It is worth noting that many neuropsychiatric
disorders demonstrate partially overlapping symptom domains
that suggest striatal dysfunction. Obsessive-compulsive disorder
is marked by deficiencies in reward processing and behavioral
control, while schizophrenia, and major depressive disorder
both exhibit profound psychomotor retardation, deficits in
attention and decreased goal-directed action. Therefore, a deeper
exploration of striatal function, employing current viral and
genetic technologies to gain access to discrete components
of striatal circuitry, may well shed light on a wide range of
neuropsychiatric disorders.
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