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Neural stimulation can be used as a tool to elicit natural sensations or behaviors by

modulating neural activity. This can be potentially used to mitigate the damage of

brain lesions or neural disorders. However, in order to obtain the optimal stimulation

sequences, it is necessary to develop neural control methods, for example by

constructing an inverse model of the target system. For real brains, this can be

very challenging, and often unfeasible, as it requires repeatedly stimulating the neural

system to obtain enough probing data, and depends on an unwarranted assumption of

stationarity. By contrast, detailed brain simulations may provide an alternative testbed for

understanding the interactions between ongoing neural activity and external stimulation.

Unlike real brains, the artificial system can be probed extensively and precisely, and

detailed output information is readily available. Here we employed a spiking network

model of sensorimotor cortex trained to drive a realistic virtual musculoskeletal arm

to reach a target. The network was then perturbed, in order to simulate a lesion,

by either silencing neurons or removing synaptic connections. All lesions led to

significant behvaioral impairments during the reaching task. The remaining cells were

then systematically probed with a set of single and multiple-cell stimulations, and results

were used to build an inverse model of the neural system. The inverse model was

constructed using a kernel adaptive filtering method, and was used to predict the neural

stimulation pattern required to recover the pre-lesion neural activity. Applying the derived

neurostimulation to the lesioned network improved the reaching behavior performance.

This work proposes a novel neurocontrol method, and provides theoretical groundwork

on the use biomimetic brain models to develop and evaluate neurocontrollers that restore

the function of damaged brain regions and the corresponding motor behaviors.

Keywords: neurostimulation, spiking network model, biomimetic, kernel adaptive filtering, inverse model,

musculoskeletal arm, virtual arm, neuroprosthetics
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1. INTRODUCTION

Recent years have seen extraordinary progress in technologies
that not only allow us to read the brain signals, but also to
artificially stimulate neural circuits. Neurostimulation will be
the best way to demonstrate our understanding of neural codes
(Stanley, 2013), by injecting signals that produce specific natural
sensory sensations (O’Doherty et al., 2011; Choi et al., 2012;
Klaes et al., 2014), motor behaviors (Overduin et al., 2012;
Van Acker et al., 2013), or memory (Hampson et al., 2013)
and cognitive (Hampson et al., 2012) influences. Clinically, a
major challenge for the next generation of motor-function-
restoring brain-machine interfaces (BMIs) is the incorporation
of realistic somatosensory feedback via cortical stimulation
(Bensmaia and Miller, 2014). These new research directions will
enable neurostimulation tools that provide ongoing dynamic
neural modulation to treat brain disorders (Underwood, 2013)
and repair brain lesions (Sanchez et al., 2012). These could also
potentially be used to induce long-term plasticity leading to
lasting recovery (Jackson et al., 2006; Koralek et al., 2012; Song
et al., 2013).

Meeting these challenges raises a number of theoretical and
technological obstacles. To start with, both neural recording and
stimulation are still very limited in terms of scale (number of
simultaneous neurons), and of spatial and temporal precision.
However, new emerging tools, particularly optogenetics, may
provide more precise stimulation of groups of single cells (Suter
et al., 2014; Warden et al., 2014). A second obstacle is our
still rudimentary understanding of neural coding and brain
dynamics, which makes it difficult to provide neurostimulation
in a way that is physiologically meaningful. For example, we
have only described a small fraction of the large number of
cell types and physiological responses in the brain (Douglas
and Martin, 2012; Harris and Shepherd, 2015). Understanding
the relation between neurophysiology and behavior will require
characterizing the interactions between the multiple spatial and
temporal scales of the brain, ranging from the molecular (<1 um
and <1 us) to the macroscopic level (>1 cm and >1 s). Many of
these, such as the effect of spatiotemporal input patterns in the
dendritic trees or the role of physiological oscillations, remain
open questions. Another fundamental component to determine
is the high-level algorithms or computations the brain employs
to encode and manipulate information (Carandini, 2012). An
additional complication is that the brain is a highly non-
stationary system, as a result of noisy sensory inputs (even in a
highly controlled environment) and internal recurrent dynamics,
including modulation by thought, attention, motivation, fatigue,
hormones, etc. These factors limit the ability to predict the
outcome of neurostimulation and, therefore, to achieve targeted
neural control. Consequently, neurostimulation studies have
been predominantly confined to measuring the elicited neural
responses (Clark et al., 2011; Van Acker et al., 2013).

A biomimetic brain simulation does not suffer from many
of these limitations, as it provides a fully reproducible and
controllable system with full access to all neurons and
synapses. The biomimetic system can also be manipulated
to reflect different conditions, such as normal physiology

vs. pathophysiology. Models are however limited by their
dissimilarity to the brain, which means the solutions found using
the model may not be directly applicable to the real brain.
In the Discussion we examine the current limitations of our
model and what is required to gradually bridge the distance to
real applications. Nonetheless, our work can serve as theoretical
groundwork toward employing brain simulations to develop
and evaluate neural control methods. As models continue to
augment their level of detail and realism (Markram et al., 2015),
they will provide an increasingly useful tool to help understand
the interactions between neurostimulation and ongoing intrinsic
neural activity. Previously, we employed biomimetic models to
explore the effects of neurostimulation on information flow in
neocortex (Kerr et al., 2012), plasticity in somatosensory cortex
(Song et al., 2013), and oscillations in primary motor cortex
(Chadderdon et al., 2014).

In this paper, we utilize a biomimetic spiking model
of sensorimotor cortex connected to a realistic virtual
musculoskeletal arm (Dura-Bernal et al., 2015b), which
provides a direct link between neural activity and motor
behavior. We employ this system to demonstrate the use of a
neural control method, based on an adaptive inverse model,
to restore behavioral performance of the virtual arm after
lesioning of the spiking model. The approach consists of first
representing the nonlinear spiking dynamics in a reproducing
kernel Hilbert space (RKHS), to enable the use of kernel
adaptive filtering techniques (Chen et al., 2012; Li et al., 2013)
to construct an inverse model of the sensorimotor spiking
network (Li et al., 2015). Then, this inverse model is used to
derive neurostimulation patterns that restore the pre-lesion
patterns of network spiking activity and thereby partially “heal”
or compensate for the lesion. Our results suggest employing
biomimetic brain and musculoskeletal models could be useful
to study the effects of neurostimulation; and demonstrate the
efficacy of the kernel adaptive inverse neurocontroller to repair
lesioned neural circuits and restore behavioral performance in
the simulation.

2. METHODS

2.1. Sensorimotor System Model
The model of the sensorimotor system consists of a spiking
neuronal network connected to a virtual musculoskeletal arm
(Figure 1; Neymotin et al., 2013; Dura-Bernal et al., 2015b).
The network includes 704 model neurons of 4 different types
distributed in 7 subpopulations, and includes cortical-like
recurrent connectivity. Using reinforcement learning combined
with spike-timing dependent plasticity (STDP), the network is
able to learn to drive the virtual arm to reach a target. This section
describes the spiking network andmusculoskeletal armmodels in
more detail. The full neuronal network and virtual arm models
can be downloaded from ModelDB at http://modeldb.yale.edu/
183014.

2.1.1. Spiking Neuronal Network
Each individual neuron was modeled as event-driven unit which
followed a set of rules in order to replicate a set of realistic
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FIGURE 1 | (A) Spiking network population connectivity diagram. Proprioceptive (P) units provide input to the sensory (S) population, which is recurrently connected

to the excitatory motor (M) population. Both S and M are composed of recurrently connected excitatory (E), fast-spiking (I) and low-threshold spiking (IL)

subpopulations. (B) Overview of the sensorimotor system interfacing the spiking network with the virtual musculoskeletal arm. The virtual arm receives neural

excitation from the EM population and feeds back proprioceptive information to the P population. As an example of cell connectivity, all incoming (green) and outgoing

(red) connections of a single ES neuron are shown.

neuronal features, such as bursting, adaptation, depolarization
blockade, and voltage-sensitive NMDA conductance (Lytton and
Stewart, 2006; Lytton et al., 2008a,b; Neymotin et al., 2011).
This model provides a good trade-off between cell realism and
speed of computation, and makes it adequate for simulating
networks that include hundreds of these neurons. Each cell
had a membrane voltage state variable, which was updated
based on three possible events: synaptic input, threshold spike
generation, and refractory period. Three types of synaptic
inputs were modeled (AMPA, NMDA, and GABAA), using
reversal potentials, time constants and delays consistent with
physiological data. Spikes were generated when a voltage
threshold was crossed, and were propagated to target neurons
after a synaptic conduction delay. After spiking, a relative
refractory period was simulated by increasing the threshold
potential and adding hyperpolarization. In addition to spikes
generated by the network neurons, subthreshold Poisson-
distributed spike inputs to synapses were used to provide
background activity, representing neural input from surrounding
regions not explicitly modeled. A comprehensive description of
the cell model equations and parameter values is available in
previously published papers (Neymotin et al., 2013; Dura-Bernal
et al., 2015b) and on ModelDB.

Input from the virtual arm to the neural network was
provided by the proprioceptive (P) population, which consisted
of 192 NetStims (NEURON spike generators) and encoded the
muscle lengths. P units were divided into four subpopulations,
each responsible for representing the mean length of one
of four muscle groups: shoulder extensors, shoulder flexors,
elbow extensors and elbow flexors. Units employed population
coding to represent the muscle lengths, such that within each
subpopulation, individual units only fired to a small range of
lengths.

The neural network represented a simplified model of the
two main elements involved in the sensorimotor cortex learning
loop (Wolpert et al., 2011): sensory input and motor output. The

sensory (S) and motor (M) populations were each comprised
of 192 excitatory cells (ES and EM), 44 fast-spiking inhibitory
cells (IS and IM), and 20 low-threshold inhibitory cells (ILS
and ILM). Recurrent connectivity was present within each cell
class, between the excitatory and inhibitory neurons of each
population, and between the two main excitatory cell classes
(ES and EM) (Figure 1). Cells were connected randomly based
on a probability of connection and weights that depended on
the presynaptic and postsynaptic cell class and location. ES
cells received input from the P units encoding muscle lengths,
which enabled them to represent the arm posture by combining
information from multiple muscle lengths. The output of EM
neurons, which received strong afferent inputs from the ES cells,
was used to generate the muscle excitations sent to the virtual
arm. Excitation to each muscle group was calculated by summing
the number of spikes of the corresponding EM subpopulation (48
neurons for each muscle group) over an 80 ms sliding window,
and threshold-normalizing the value between 0 and 1.

The sensorimotor system therefore forms a closed-loop
circuit: virtual arm muscle lengths are encoded in the P
population, P units project to the S population, which in turn
projects to the M population, which provides excitation to the
virtual arm muscles. By employing reinforcement learning—
reward or punishment depending on whether the arm is getting
closer or farther from the target—to modify the synaptic weights
via spike-timing dependent plasticity (STDP), the network can
learn to drive the arm to a target. This requires a training
phase where exploratory movements are enforced in the virtual
arm, in order to explore the space and generate the appropriate
mapping between input sensory information and output motor
commands (Neymotin et al., 2013; Dura-Bernal et al., 2014,
2015b). Currently, the network can only be trained to reach one
target at a time. However, it can be extended to learning multiple
targets by adding a population to encode target selection, as we
(Dura-Bernal et al., 2015a) and others (Spüler et al., 2015) have
shown.
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The spiking network simulations were run in NEURON 7.3
(Hines and Carnevale, 2001; Carnevale and Hines, 2006) on a
Linux workstation with 24 Intel Xeon 2.7 GHz cores and on a
High-Performance Computing system with 512 AMD Opteron
2.6 Ghz cores.

2.1.2. Virtual Musculoskeletal Model
The virtual arm consists of a biomechanical and dynamical model
of the upper right limb musculoskeletal system. The original
model (Holzbaur et al., 2005), downloadable from the SimTK
website (http://simtk.org/home/up-ext-model), was adapted for
our purposes by limiting it to shoulder and elbow joint rotation
(two degrees of freedom) in the horizontal plane. The model
includes 8 skeletal rigid bodies that serve to anchor 18 different
muscles, responsible for shoulder extension and flexion, and
elbow extension and flexion.

Virtual arm joint kinematics and dynamics were based on
anatomical studies, match experimental measurements of an
average-sized human adult male, and were implemented using
an extension of the Hill-type muscle model (Zajac et al., 1989;
Schutte et al., 1993; Thelen et al., 2003). In this model, muscle
forces are parameterized based on the optimal fiber length, peak
force, tendon slack length and pennation angle, and calculated
as a function of four variables: the muscle and tendon lengths,
contraction velocity and muscle fiber activation. In turn, muscle
activation is derived from an ordinary differential equation
driven by an external signal: the muscle excitation. In our system,
muscle excitation is provided by the motor population of the
spiking network model. The arm kinematics, including position,
velocity and acceleration of each joint, are then computed based
on the muscle forces using the recursive Newton-Euler algorithm
(Featherstone andOrin, 2000). Further details are available in our
previous work (Dura-Bernal et al., 2015b) and via ModelDB.

2.2. Adaptive Inverse Model for Neural
Control
We aim to restore the neural response of the EM population
to its pre-lesion state, and consequently recover the original
reaching trajectory. A set of probing neurostimulation sequences
and their corresponding neural activity were recorded and
used to construct an inverse model of the stimulus-response
pairs. The goal is to automatically generate a set of optimized
neurostimulation patterns given a desired neural response. To
learn this inverse mapping, we applied the kernel adaptive
filtering (KAF) method (Liu et al., 2010).

2.2.1. Kernel Adaptive Filtering
Kernel methods (Scholkopf and Smola, 2001) form a powerful
unifying framework in classification, clustering and regression,
contributing tomany impactful applications inmachine learning,
signal processing and biomedical engineering. KAF is an online
learning technique that combines adaptive signal processing with
kernel methods. The idea is to transform the input data into
a richer and potentially infinite-dimension feature space via a
positive definite reproducing kernel, such that the inner product
operation in the feature space can be computed efficiently in
the input space through the kernel evaluation. KAF performs

classical online linear methods in the enriched feature space or
reproducing kernel Hilbert space (RKHS). This way it moves
beyond the limitations of the linear model to provide general
nonlinear solutions in the original input space. This input space
is not restricted to numeric data, and could consist, for example,
of spike trains (Li et al., 2013). KAF brings together adaptive
signal processing and feedforward artificial neural networks, by
combining the best of both worlds: the universal approximation
property of neural networks and the simple convex optimization
of linear adaptive filters.

In the family of kernel adaptive filters, the kernel least
mean square (KLMS) algorithm (Liu et al., 2008) is the
simplest stochastic gradient descent method that operates on
the instantaneous error. A finite impulse response (FIR) filter
trained in the RKHS using the least mean squares (LMS)
algorithm, it can be viewed as a single-layer feedforward neural
network or perceptron. For a set of n input-output pairs
{(u1, y1), (u2, y2), · · · , (un, yn)}, the input vector ui ∈ U ⊆ R

m

(where U is a compact input domain in R
m) is mapped into a

potentially infinite-dimensional feature space F. Define a U → F

mapping ϕ, the feature-space parametric model becomes

ŷ = f̂ (u) = �Tϕ(u) (1)

where � is the weight vector in the RKHS. Using the representer
theorem (Scholkopf et al., 2001) and the “kernel trick,” (1) can be
written as

f̂ (u) =

n
∑

i=1

αiK(ui,u) (2)

where K(u,u′) is a Mercer kernel, corresponding to the inner
product

〈

ϕ(u), ϕ(u′)
〉

, and αi are the weight coefficients. Themost
commonly used kernel is the Gaussian kernel

Ka(u,u′) = exp
(

−a‖u− u′‖2
)

(3)

where a > 0 is the kernel parameter. To effectively address
the growth of the radial basis function structure in KAF, the
quantized version of the KLMS algorithm was used (Chen et al.,
2012).

2.2.2. Reproducing Kernel Hilbert Space (RKHS) for

Spike Trains
Here, we briefly describe the reproducing kernel used to map
the neural responses to a RKHS for spike trains. A spike train
or sequence of M ordered spike times, i.e., s = {tm ∈ T :

m = 1, · · · ,M} in the interval T = [0,T], can be viewed
as a realization of an underlying stochastic point process with
conditional intensity function λ(t|Ht), where t ∈ T = [0,T]
denotes the time coordinate, and Ht is the history of the process
up to t. Spike trains can be mapped into an RKHS by defining a
strictly positive definite kernel, the Schoenberg kernel, between
the conditional intensity functions of two point processes (Paiva
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et al., 2009) as

Kaλ

(

λ(t|Hi
t), λ(t|H

j
t)
)

=

exp

(

−aλ

∫

τ

(

λ(t|Hi
t)− λ(t|H

j
t)
)2

dt

)

(4)

where aλ > 0 is the spike-train kernel parameter. The intensity
function can be estimated by convolving the spike times with a
smoothing kernel g(t), yielding

λ̂(t) =

M
∑

m=1

g(t − tm), {tm ∈ T : m = 1, · · · ,M}. (5)

As shown in Figure 2, the entire spike train is mapped into a
location or function in the RKHS. For simplicity, we use the
rectangular function g(t) = 1

T

(

U(t)− U(t − T )
)

, where T ≫

the inter-spike interval, andU(t) is a Heaviside function. Let sni (t)
denote the spike train for the i-th sample of the n-th spiking unit,
the multi-unit spike kernel is taken as the unweighted sum over
the kernels on the individual units

K
(

si(t), sj(t)
)

=
∑

n

K

(

sni (t), s
n
j (t)

)

. (6)

2.2.3. Inverse Model of Spiking Network
As shown in Figure 3, the goal is to learn an inverse model
of the plant P, i.e., lesioned spiking network motor layer, from
the probing stimulus-response pairs; and then apply the pre-
lesioned motor response to the trained multiple-input-multiple-
output (MIMO) decoding model to obtain an optimized repair
neurostimulation pattern. The neural responses of the EM
population were mapped into a RKHS for spike trains and the
filter coefficients were adapted using errors between the desired
probing neurostimulation firing rates and the inverse model
output. Using cross validation, the kernel parameter in (4) was
set at aλ = 0.05. The allowable neurostimulation duration was
fixed at 200ms, from the 100 to 300ms mark of each trial.

FIGURE 2 | Graphical representation of a reproducing kernel Hilbert

space defined on spike trains using the Schoenberg kernel. Spike trains

are transformed into a high dimensional feature space (Hilbert space). Applying

the kernel trick allows inner products in this space to be computed without

explicit reference to the feature vectors.

Rather than continuously stimulating the spiking network, we
were interested in whether an initial onset of neurostimulation
patterns could repair the lesioned reaching trajectories. The
topological relationship between the probing stimuli and
responses was set using a delay embedding of 300 or 200 ms,
for the left and bottom target, respectively. The delays were
selected to reflect the expected duration of the stimulation effect
or impulse response for each target, determined by subtracting
the end the stimulation period (300 ms) from the reaching
trajectory duration. To account for the non-stationarity of the
spiking network, the stimuli was not only mapped to the forward
response, but also to the history of themotor response (Figure 4).
The rationale being that, like state machines, to calculate the
correct next state, the system needs to know both the input and
the the current neural state. The history, or backward motor
response, provides the current neural state. Therefore, every 1
ms step, a sliding window containing both the history and the
forward response is mapped to the current stimulation pattern.
The current stimulation pattern consists of the vector ofm firing
rates for that time step, where m is the size of the ES population.
Since stimulation starts at 100 ms, the initial history window size
only ranges 0–100 ms, but will grow to match the size of the
forward response window as time progresses.

The stimulation patterns generated by the inverse model were
input in the spiking network by connecting spike generators
(NetStims) to each of the ES population cells. Different
stimulation patterns were characterized in terms of the targeted
cell, starting time, duration, and firing rate of the external spike
generator, which provided input via the AMPA receptor synapse
of the cell. The synaptic weight between the spike generator and
the cell was ten times larger than that of regular background
synaptic inputs.

The Matlab code for the inverse neurocontroller, the probing
dataset, and the Python/NEURON code to lesion and stimulate
the spiking network are available online at: https://github.com/
Neurosim-lab/controller_spiking_network_arm.

3. RESULTS

Initial trained reaching trajectories were perturbed by different
types of simulated lesions of the sensorimotor network. These
lesions were then repaired using the adaptive inverse controller
which aimed to restore the spiking patterns and reaching
behavior. Repair commenced by generating a set of probes for
the perturbed system, in order to inform the inverse model.

3.1. Simulated Lesions and Response
Probing Data
Original trajectories were obtained from the spiking network,
after training it via reinforcement learning STDP to drive the
virtual arm to a specified target. The setup was similar to that
of a common sensorimotor experimental task, the center-out
reaching task (Hatsopoulos et al., 2004; Hwang and Shadmehr,
2005; Sanchez et al., 2011). The subject starts from a central
position in a horizontal 2D plane and has to reach one of
the targets in a surrounding circumference. For the purpose of
evaluating the neurocontroller, we chose two different targets
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FIGURE 3 | Integration of kernel adaptive inverse controller with biomimetic spiking model of sensorimotor system. The M-channel probing

neurostimulation firing pattern (rates) and the corresponding N-channel EM population responses are used to train an inverse model or mapping of the lesioned

spiking network motor layer. The motor layer response window includes the history (provides current state) and the forward response. Once fully trained, the inverse

model outputs an estimate of the optimal neurostimulation for a desired neural response.

FIGURE 4 | Inverse mapping of motor response onto the stimulation pattern. At every time step, a sliding window containing the motor forward response

(green) and history (blue) is mapped to the current stimulation pattern (orange). The history accounts for non-stationarity by providing the system with the current

neural state. The current stimulation pattern consists of a vector of firing rates for the current time step.
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(bottom and left) located 15 cm from the starting position.
These targets were chosen because they involve different sets of
muscles: shoulder extensor and elbow flexor for bottom target;
and shoulder flexor and elbow extensor for left target (Figure 5).

Reaching duration was 600 ms for the left target and 500 ms
for the bottom target. Target distance as well reaching durations
(or velocities) are consistent with experimental data of humans
and primates performing a similar task (Hatsopoulos et al., 2004;
Hwang and Shadmehr, 2005; Sanchez et al., 2011).

We simulated two types of lesion for each of the trained

targets. The first type of lesion was cell ablation, which consisted

of removing 5% or 10% of cells randomly selected from the

192 excitatory-sensory (ES) cells. These cells projected to the
excitatory-motor (EM) cells which were the eventual target of

trajectory repair. The second type of lesion was removal of 5%

or 10% of synaptic connections, selected randomly from the all
21,588 connections in the network. Behavioral degradation was

significant for both types of lesions, as seen by the difference

between original (Figure 5, black) and post-lesion trajectory

(Figure 5, red).
The kernel-based inverse model of the neural system was

generated by probing the response of the system to different

neurostimulation patterns. Each of the 8 scenarios (2 targets

× 2 lesion types × 2 percentages) was probed by stimulating
each (remaining) individual ES cells for 200 ms with input
spike rate of 250 Hz via AMPA receptors, starting 100 ms

after reaching trial onset. A second probing dataset consisted

of randomized multiple-cell stimulation patterns to the ES
population (1–10 cells), starting at 100 ms and with a random

duration between 100 and 500ms (Figure 5, blue lines). These

trajectories reflect the effect of the lesion plus the probing
neurostimulation.

3.2. Restoration of Pre-lesion Spiking
Patterns and Trajectories Via
Neurostimulation
The neurostimulation patterns required to reproduce desired
output population neural patterns were obtained using the
inverse model generated from the probing data input/output
correspondences. This inverse solution determines the pattern of
activation of ES cells (inputs) that will be needed in order to get
a particular desired output pattern from the EM cells (outputs).
The EM cells then provide motor commands to the virtual arm
to produce the trajectory. It is desirable to produce the repairing
neurostimulation patterns in the early stages of the reaching task,
in order to correct the trajectories before they have strayed too far
from the desired direction.

An example of a neurostimulation pattern derived by the
inverse model is illustrated in Figure 6 using a 3D representation
of the parameter space explored by the algorithm, with
dimensions corresponding to the cell number, time and intensity
(firing rate) of the neurostimulation. The left panel shows a
complex spatiotemporal pattern with relatively strong inputs to
12 ES neurons, with the highest stimulation targeting cell 170
at ∼200 ms. Neurostimulation is reflected in the ES cells raster
plot (right panel) as a set of new spikes (e.g., cell 170 between
200 and 300 ms). These stimulations then shift activations
more broadly due to divergent multisynaptic effects, resulting
in changes to the target EM population. Note that the effect
of neurostimulation on the ES cells will depend on a number
of interacting factors, including co-occurring excitatory and
inhibitory inputs from other cells, or the intrinsic state of the cell
(e.g., hyperpolarized).

Neurostimulation administered to ES cells recovered some
of the original EM spiking patterns (Figure 7). Comparing

FIGURE 5 | Virtual arm trajectories after simulated lesion and neurostimulation probing. Original arm trajectories (black), were perturbed due to a network

lesion leading to decreased reaching performance (red). A set of single cell and multiple cell probing stimulations (blue) enabled the neurocontroller to build an inverse

model of the system. Data is shown for 2 targets and 4 types of perturbation. Target is indicated as green dashed circle.
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FIGURE 6 | Neurostimulation pattern derived by the kernel adaptive inverse neurocontroller for the 10% cell lesion of left target reaching. (Left) The

pattern is represented in a continuous three-dimensional space that includes the cell number, time and intensity (rate). (Right) Raster plot of activity before (red) and

after neurostimulation (green), illustrating the spiking changes derived from neurostimulation (e.g., increased rate of cell 170, from 200 to 300 ms). All S population

cells (1–255) are shown, including inhibitory ones (192–255), although only the excitatory cells (1–191) can be stimulated.

FIGURE 7 | Raster plot and population peri-event time histogram (PETH) of the original (black), lesioned (red), and repaired (green) motor population.

Overlaps of black and green dots or lines indicate activity that has been restored via neural stimulation. Note how before the neurostimulation is delivered, the activity

of the lesioned and repaired networks is identical. Two representative examples are shown: 10% cell lesion of left target reaching (left panel), and 10% synaptic lesion

of bottom target reaching (right panel). Cells ids correspond to the motor population (256–511). PETH bin size is 20 ms.

lesioned (red) with control (black) activity demonstrates that the
lesion had a major impact on activity patterns, due to the high
recurrent connectivity of the network. Neurostimulation then
brought the activity back closer to the original (compare green
to black), including restoration of coordinated bursts of activity
with precise timing. Two representative examples are included
to illustrate the variants in terms of firing patterns for different
targets and types of lesions.

We employed three different spike-train metrics and two
behavioral metrics to evaluate the performance of our system.
The SPIKE-distance metric (Kreuz et al., 2011, 2015) was used
to calculate pairwise dissimilarities between all cells in the
motor population (0–1 measure, 0 means identical spike trains),
and averaged across all cells. Similarly, the SPIKE-sync metric
(Kreuz et al., 2011, 2015) quantified the degree of synchrony
between pairs of cells. This metric can be understood as a
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coincidence detector where the coincidence window is defined
adaptively according to the local firing rate. The third metric
was the correlation coefficient between the peri-event stimulus
histograms (PETHs). To avoid biases due to initial phase, we
averaged the result across N − 1 histograms with increasing
starting times (1ms steps), where N is the PETH bin size (20 ms).
In terms of behavioral metrics we employed the final distance to
target at the end of the reaching trial, and the mean point-wise
distance along the trajectory.

By analysing 800 random perturbations of the original
trajectories, equally distributed among the 2 targets and 4
perturbation types, we found a a relatively strong and significant
correlation (|R| = 0.41, N = 800, p < 0.001) between the spike
train and behavioral metrics (Figure 8). The strongest correlation
was found between the distance to original spike train (SPIKE-
distance) and behavioral metrics (R = 0.57). These relations
provide a useful reference system to evaluate the results of the
repair neurostimulations. At the same time they highlight one

FIGURE 8 | Scatter plot between different spike-train distance metrics (between original and perturbed) and behavioral performance. Data is shown for

100 random perturbations for each of the 2 targets × 2 types (cell vs synapse) × 2 intensities (5% and 10%) (N = 800). Final distance to target and mean distance to

original trajectory were positively correlated with distance to original spike-train (SPIKE-distance metric), and negatively correlated with the level of synchrony with

respect to the original spike-train (SPIKE-sync metric) and the correlation with the original PETH. These relations can be used as a reference to evaluate the

neurostimulation results. p < 0.001 for all correlations.
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of the challenges of this approach: the system includes multiple
stages of complex nonlinear dynamics, ranging from the single
cell to the virtual arm model. As a consequence, similarity to
original spike train is not sufficient to guarantee recovery of the
original arm trajectory.

Repaired spike patterns were overall closer to the original
ones than the lesioned patterns (Figure 9). All except one
(7/8) conditions exhibited a decrease in spike train dissimilarity
(SPIKE-dist, mean decrease = 0.017) after neurostimulation.
Neurostimulation also increased spike train synchronizationwith
respect to the original pattern (SPIKE-sync, mean increase =

0.072) in all conditions. The correlation between the original
and repaired population PETH (20 ms bins) was higher than
between the original and perturbed PETH for 7/8 conditions
(mean increase = 0.133). Repair of the bottom target 10%
cell lesion resulted in an improvement of the synchronization
measure, but a decline in the spike distance and PETH correlation
measures. This evidences the difficulty and ambiguity that arise
when comparing firing patterns, and underlines the need to
identify what features of the spike trains are more relevant to the
task, as well as to complement the system evaluation with direct
behavioral metrics.

To quantify how the timescale of the analysis affected
the neurocontroller results, we evaluated the effect of PETH
bin size on the population PETH correlation increase after
neurostimulation (Figure 10). This can potentially provide
insights into what timescales are more relevant for restoration.
Our results indicate different trends depending on the lesion
and target. Five of the conditions exhibit higher restoration for
smaller bin sizes (<20 ms) which suggests that spike synchrony
played a dominant role. This contrasts with the remaining three
conditions where the top restoration performance was obtained
for larger bin sizes (∼30–50 ms), suggesting firing rates were the
predominant factor.

After applying the repair neurostimulation to the lesioned
network, the resulting motor activity yielded virtual arm
reaching trajectories that more closely resembled the original
trajectory (Figure 11). Both final distance to target at the
end of the reaching trial, and the mean point-wise distance
along the trajectory, were reduced after neurostimulation repair
(Figure 12). The trajectories restored in the 5% lesion conditions
were closer to the original than those restored in the 10% lesions
conditions. Overall, mean distance to target was reduced from
5.47 to 2.51 cm after repair. Mean point-wise distance between

FIGURE 9 | Spike train dissimilarity (SPIKE-dist), spike train level of synchrony (SPIKE-sync) and population PETH correlation between original and

lesioned/repaired networks. Data shown for two different targets and four lesion types. Neurostimulation reduced spiking pattern dissimilarity and increased

synchrony between the lesioned and original networks for 7/8 conditions; and increased PETH correlation for 6/8 conditions.
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FIGURE 10 | Effect of PETH bin size on PETH correlation between

original and repaired vs. lesioned. Data shown for two different targets and

four lesion types. The effect was dependent on type of lesion and target.

Higher restoration for smaller bin sizes (< 20 ms) suggests spike synchrony

may play a dominant role, whereas for larger sizes (∼ 30–50 ms) suggests

firing rate is the predominant factor. PETHs were calculated using firing rate to

enable comparison of different bin sizes.

trajectories was reduced from 2.43 to 1.61 cm. The same dataset
was used to calculate the arm trajectories (Figure 11), behavioral
metrics (Figure 12), and spike train metrics (Figure 9). This
provides a direct link between neural activity and reaching
behavior, thus facilitating the interpretation of the results.

4. DISCUSSION

We implemented a neurocontroller using kernel adaptive
filtering techniques on spike trains, which produced
neurostimulation patterns that restored neural and functional
responses in a lesioned biomimetic spiking network model.
Neurostimulation partly restored the behavioral performance
of a realistic virtual musculoskeletal arm which was driven by
the network, allowing it to reach close to the original trained
targets through trajectories similar to those produced before
lesioning. The neurocontroller was able to compensate for 2
different types of lesions: a cell death and synaptic loss model.
Neurodegenerative and ischemic (stroke) disease (Lytton et al.,
1999) may be a cause of cell death. Certain neurodegenerative
disease, such as Alzheimer’s (Palop and Mucke, 2010; Rowan
et al., 2014), as well as traumatic brain injury (Gupta and
Przekwas, 2013), have been shown to cause both cell death and

synaptic loss. This work also serves as a proof of concept to
underline the potential benefits of neural simulations to evaluate
neurocontrollers. These include the ability to reproducibly
generate the required probing datasets, and detailed access to all
effects of neurostimulation on the system, ranging from cells and
synapses to virtual arm muscle electromyogram (EMG) or arm
position. As discussed in the next subsection, further work is
needed to increase the similarity between model and real brains
and pave the way toward clinical applications.

One interesting commonality of the neurocontrol solutions
for different directions of reach and types of damage was
the synchrony with respect to the original spiking oscillations.
Coordinated oscillations within and across brain areas are a
dramatic feature of brain activity noted in electrocorticography
(ECoG), which must be reconciled with the feedforward nature
of many tasks. Coordination of firing may well play an
important role in feedforward systems as coordinated activation
across multiple convergent units would provide strong drive
by spatial summation. This provides an important complement
to the efficacy of temporal convergence from repetitive firing
of presumed labeled-line rate-coding units. Spike timing plays
an important role in motor control, as evidenced by studies
demonstrating precise spike synchronization is involved in
the preparation and execution of movement (Riehle et al.,
1997; Grammont and Riehle, 1999; Rubino et al., 2006). Our
bin time analysis indicated that, for some conditions, shorter
time scales resulted in higher PETH correlation, supporting
the importance of precise spike timing. However, for other
conditions, longer time scales resulted in higher correlations,
suggesting firing rate played a predominant role in neural coding.
These longer time bins were also consistent with the sliding
window duration (50 ms) used to compute the motor output
commands from the EM population. Elucidating the exact role
that the different time scales play will require further data and
analysis.

Overall, we found the 10% lesions more difficult to fully
restore than the 5% ones. Presumably, given the highly
recurrent network connectivity, it was harder to find unaffected
polysynaptic pathways to reproduce original activity in the more
severe condition. This could be further explored from a directed
graph-theoretic perspective by looking at numbers and types of
remaining motifs in the context of removing nodes and edges.
We also note that a physiological system would have continued
synaptic plasticity so that the brain would be learning at the same
time as the neurocontroller is learning, a phenomenon known as
co-adaptation. This effect could be incorporated into our model
by continuing the learning mechanisms in the network model
during the period of neurostimulation (Song et al., 2013; Rowan
et al., 2014), thereby providing some of the long-term neural
plasticity induced by neurostimulation. Studies have shown
motor cortex plasticity aids in motor function recovery after
injury (Kleim et al., 2003; Jackson et al., 2006; Ramanathan et al.,
2006), and the development of neurocontrollers will allow more
precise deployment of plasticity-inducing stimulation therefore
leveraging its rehabilitative effects.

Employing a biomimetic neuronal network to control a
biomimetic virtual arm provides a matching of (relatively slow)
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FIGURE 11 | Virtual arm trajectories after simulated lesion and repair neurostimulation. Original arm trajectories (black), were perturbed due to a network

lesion leading to decreased reaching performance (red). Neurostimulation partly repaired the network and restored the target reaching performance (green). Results

are shown for 2 targets and 4 types of perturbation. Target area is indicated as dashed circle.

dynamics that differs greatly from control of a simpler kinematic
2-link arm or a mechanical robotic arm (Dura-Bernal et al.,
2015b). This matching of biological verisimilitude also offers the
opportunity to understand control in terms of specific muscle
contractions that can be compared to clinical cases, as the
effectors in the model provide muscle activation rather than
control of joint angle. Similarly, the sensory afferents measure
muscle length and therefore correspond to the muscle spindle
proprioceptors embedded in muscle.

As expected, there are many potential network solutions that
can be drawn upon to produce a particular arm trajectory—
this is an extremely high dimensional neural system being
applied to a lower dimensional virtual arm. In the context
of neural Darwinism (Edelman, 1987), our neurocontroller is
able to choose, from among these multiple adapted (fit) neural
subsystems, ones that are also able to solve the problem in the
absence of the original full system. In neural Darwinism, this
concept is referred to as neural degeneracy. The same concept
also arises in consideration of echo state networks. From this
perspective, pieces of these potential systems are selected during
the initial probing phase of development of the inverse controller

and a full dynamics is then drawn from the population of these
dynamical fragments. Further study might enable us to map the
fragments that were used in the solution in order to generate an
explicit subspace of primitives both at neural firing and muscle
synergy levels.

4.1. Limitations and Challenged Ahead
Our study provides groundwork for the novel application
of kernel adaptive filtering methods to neural control, and
evaluation of this approach via biomimetic brain models.
Our model includes a number of biologically-realistic features,
including intrinsic spiking properties for different cell types,
cortex-based connectivity or neural oscillations. This level of
detail is higher than that of many neural models, such as
recurrent neural networks (RNNs), which have been shown to
be useful to investigate neural circuit mechanisms underlying
cognitive function (Mante et al., 2013; Sussillo et al., 2015).
However, translation of this work to clinical applications will
requires advancing many aspects. The realism and level of detail
of the brain and neurostimulation models need to escalate
drastically. The neurocontroller needs to be adapted to robustly
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FIGURE 12 | Quantitative measures of repair neurostimulation. Both metrics reflect a behavioral improvement after neurostimulation for all conditions. (Left) Final

distance between hand and target. (Right) Mean point-wise distance to original arm trajectory.

exploit the dynamic, incomplete and complex data recorded
from the brain. Progress in neural recording and stimulation
technologies will also be critical to gradually move toward the
clinical domains.

Our cortical model differs from the real brain in many ways,
which should be considered when interpreting the results. Our
model assumes a controlled scenario with full reproducibility of
motor outputs and responses to neurostimulation. This strongly
contrasts with the high variability and limited reproducibility in
real brains. Our simulation captures several hundred neurons
in a single cortical area. In reality, sensorimotor tasks likely
involve millions of neurons from many regions (thalamus,
basal ganglia, cerebellum, sensorimotor cortices, ...) firing in
coordinated patterns across and within areas (Douglas and
Martin, 2012). The few cell types that we model as point neurons
are only a minuscule fraction of the hundreds of cell categories
that have been identified (Harris and Shepherd, 2015), each
with distinct physiological properties and intricate dendritic
and axonal morphologies. Our population-based connectivity
matrices are far from capturing brain connectivity, which ranges
from the subcellular patterns of synapses along dendrites, to

laminar microcircuitry, to long range inter-areal connections.
The recent full 3D reconstruction of a microscopic volume
of cortical tissue evidenced its extraordinary complexity: 193
dendrites, 1407 axons and 1700 synapses were identified in a
40 × 40 × 50 micrometer volume (approximate size of a single
cell body) (Kasthuri et al., 2015). These circuits provide the
neural substrate for a myriad of neural coding and computation
principles. Understanding and including them in our models is
key to bridging the gap between neural activity and perception,
cognition or behavior. Linking to behavior also requires more
accurate models of the periphery systems, including the spinal
cord (Alstermark and Isa, 2012) and motor plant (Loeb and
Tsianos, 2015).

Large scale international efforts such as the Human Brain
Project or the BRAIN initiative have fueled progress in
computational neuroscience. As a result, brain models can
incorporate and mimic anatomical and physiological data with
an unprecedented level of detail. The model by Potjans and
Diesmann (2014) with 80,000 point neurons and 0.3 billion
synapses integrated a large body of cell type and connectivity
data and reproduced many dynamical properties of cortical
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microcircuits. More recently, cellular and synaptic organization
principles derived from experimental data were used to build
what has been labeled as “the most complete simulation of a
piece of excitable brain matter to date” (Koch and Buice, 2015;
Markram et al., 2015). Cell models were classified into 207 types
with distinct electro-physiological and full 3D morphological
reconstructions, derived from recording and labeling over 14,000
neurons. The full simulation, which consisted of 31,120 neurons
and 37 million synapses occupying approximately the size of a
cortical column, enabled studying dynamic interactions across
the molecular, cellular and circuit levels. These models, however,
still lack direct links to behavior, as well as learning mechanisms,
such as STDP or reinforcement learning.

We are similarly working on extending our cortical spiking
model to include over 10,000 cells, 0.5 million synapses, 6 cortical
layers, spinal cord circuits, and input from premotor cortex
which mediates target selection (Chadderdon et al., 2014; Dura-
Bernal et al., 2015a). In collaboration with experimentalists,
we are also fully characterizing the 3D morphology and
electrophysiology of the two main types of pyramidal cells in
motor cortex (corticostriatal and corticospinal) (Suter et al.,
2013; Neymotin et al., 2015). These will be embedded in the
network simulations in order to study the multiscale dynamics
linking molecular and cellular processes (McDougal et al., 2013)
to the circuit and information processing level (Lytton et al.,
2014; Marcus et al., 2014). Applying the neurocontrol approach
developed in this paper to the increasingly detailed brain models
would be an interesting step toward building practical clinical
applications.

At the same time, we need to develop more realistic models of
the effects of neurostimulation, which in our model is limited to
increasing external inputs to the cells. This can be achieved for
example by adding the optogenetic channelrhodopsin channel
to the cell model (Ching and Ritt, 2013; Kerr et al., 2014), or
by characterizing the recruitment of neurons during intracortical
extracellular microstimulation (Overstreet et al., 2013; Hartmann
et al., 2015). It is also important to comprehensively model the
collateral effects of electric field stimulation, since studies have
found that fibers of passage get preferentially excited (McIntyre
et al., 2004), potentially leading to undesired effects.

Future improvements to the proposed neurocontroller will
focus on its ability to generalize and employ different types of
probing data. The inverse mapping assumes that the solution
is spanned by the basis formed by the probing patterns. As we
increase the complexity of the model and the severity of the
lesions to repair, solutions interpolated from a limited number
of probes may not effectively address the richness of the circuit
dynamics. A possible extension would be to implement multiple
iterations, such that the spiking network output after stimulation
is fed back as input probing data to the neurocontroller. Another
option that could improve performance is to include probing
data with a larger spectrum of outcomes, as well as with different
timescales. Local field potentials (LFPs) or ECoG signals are
interesting candidates, and are closer to the type of probing
data that could be obtained from real brains. Similarly, the

mapping could be made directly between stimulation and motor
responses, such as arm kinematics or muscle activations, leading
to solutions with optimal behavior performance but potentially
different neural patterns. Although this is an interesting option,
an advantage of directly targeting brain signals is that it could
potentially be applied in scenarios (e.g., sensory or cognitive
dysfunctions) where the target behaviors cannot be clearly
specified or are not available.

The neurocontroller described here requires applying very
precise spatiotemporal stimulation, at the single-cell and
millisecond resolution. Recent studies (Warden et al., 2014)
demonstrate this is already possible with optogenetic stimulation,
which was, for example, used to activate single place-cells
in hippocampus (Rickgauer et al., 2014). High-resolution
stimulation was also able to bring retinal prosthetic capabilities
closer to normal vision, by optogenetically stimulating 9800
ganglion cells (Nirenberg and Pandarinath, 2012). Further
advancements will enable more selective cell targeting and larger
number of simultaneous stimulated cells (Suter et al., 2014).

The latest developments in brain-machine interfaces
(Miranda et al., 2015) aim to build the next generation of
implantable closed-loop neuroprosthetics, with applications
including memory restoration (Hiscott, 2014) or treatment
of neuropsychological disorders (Nelson and Tepe, 2014).
Combining neuroprosthetics with biomimetic brain models
has the potential to leverage the system’s performance: the
simulated circuits can interact directly with the biological
brain circuits (Tessadori et al., 2012; Lee et al., 2014) and
complement neurocontrol methods with biological mechanisms
of co-adaptation and learning to achieve the target functional
task (Sanchez et al., 2012; Kocaturk et al., 2015).

Spinal cord stimulation mediated by neurocontrol methods
has successfully been employed for motor function restoration
(Nishimura et al., 2013; Grahn et al., 2014). Intracortical
stimulation to motor cortices has largely been limited to
probing and understanding the elicited responses. However,
an accumulating body of evidence (Jackson et al., 2006; Arle
and Shils, 2008; Jefferson et al., 2015) suggests it could
have far-reaching neurorestorative applications if coupled with
appropriate neurocontrol methods. Biomimetic brain models
may provide a useful tool to develop, evaluate and implement
these neurocontrollers.
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