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Thrombolysis with recombinant tissue plasminogen activator (rTPA) was the first

evidence-based treatment approved for acute stroke. Ischemic stroke is relatively

uncommon in fertile women but treatment is often delayed or not given. In randomized

trials, pregnancy has been an exclusion criterion for thrombolysis. Physiologic TPA has

been shown to have neuroendocrine effects namely in vasopressin secretion. Important

TPA effects in brain function and development include neurite outgrowth, migration of

cerebellar granular neurons and promotion of long-term potentiation, among others. Until

now, no neuroendocrine side-effects have been reported in pregnant women treated

with rTPA. The effects of rTPA exposure in the fetus following intravenous thrombolysis

in pregnant women are still poorly understood. This depends on low case frequency,

short-duration of exposure and the fact that rTPA molecule is too large to pass the

placenta. rTPA has a short half-life of 4–5min, with only 10% of its concentration

remaining in circulation after 20min, which may explain its safety at therapeutically

doses. Ischemic stroke during pregnancy occurs most often in the third trimester.

Complication rates of rTPA in pregnant women treated for thromboembolic conditions

and ischemic stroke were found to be similar when compared to non-pregnant women

(7–9% mortality). In embryos of animal models so far, no indications of a teratogenic or

mutagenic potential were found. Pregnancy is still considered a relative contraindication

when treating acute ischemic stroke with rTPA, however, treatment risk must be balanced

against the potential of maternal disability and/or death.
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NEUROENDOCRINE EFFECTS OF TISSUE

PLASMINOGEN ACTIVATOR

Tissue plasminogen activator (TPA) is a serine protease that
converts plasminogen into the fibrinolytic enzyme plasmin thus
promoting fibrin dissolution in blood clots (Carmeliet et al.,
1994). Endothelial cells are the major source of circulating TPA,
which is released upon stimulation by factor X-a, bradykinin,
fibrin, platelet activating factor, and thrombin (Booyse et al.,
1986; Emeis, 1992). Other triggers of TPA released into the
bloodstream include among others, anxiety, exercise, surgery,
and electroconvulsive therapy, however, these conditions are
also coupled to catecholamine release, which may thus be
the shared trigger mechanism for both direct TPA release
and TPA release from endothelial cells in these conditions.
In support of this notion, TPA was demonstrated to be co-
expressed and trafficked simultaneously with noradrenaline in
the chromaffin cells of the adrenal glands (Parmer et al., 1993).
Chromogranin A is one soluble protein that is co-released
with TPA and catecholamines. It works as prohormone which,
when cleaved into active peptides, inhibits the further release of
catecholamines (Parmer et al., 1993). Experiments with knockout
mice lacking TPA provided further evidence for a role of
TPA in behavioral stress responses and catecholamine release.
These mice exhibit deficient stress-induced anxiety behavior
(Pawlak et al., 2003, 2005) and show anxiety-like behavior
after intracerebroventricular injection of corticotrophin releasing
factor (Matys et al., 2004).

TPA-cleaved plasmin regulates proteolysis of among
other, laminin, collagen IV, proteoglycans, pro-brain-derived
neurotrophic factor (pro-BDNF), and protease activated
receptor-1 (Dityatev and Schachner, 2003; Pang et al., 2004). TPA
has been shown to directly interact with low-density lipoprotein
receptor-related protein (LRP) leading to phosphorylation of
mitogen-activated protein kinase (MAPK) 1 and extracellular
signal-regulated kinases-1 and 2 (Zhuo et al., 2000; Hu et al.,
2006). In turn, serpins (including the CNS variant neuroserpin)
and plasminogen activator inhibitor PAI-1 and -2 are the
main inhibitors of the serine protease family including TPA,
urokinase-type plasminogen activator (uPA), plasmin, and
thrombin (Yepes and Lawrence, 2004).

Endogenous TPA is widely distributed in the neuroendocrine
system. In the neuroendocrine cells of the hypophysis, the
magnocellular neurons of the hypothalamic supra-optic
nucleus, the chromaffin cells of the adrenal medulla, thyroid
and parathyroid glands, endogenous TPA first enters the
endoplasmic reticulum where it binds to a signal peptide
and is transported through the Golgi complex. It is then
released either via the regulated secretory pathway (vesicular)
or the constitutive secretory pathway (direct release) (Kelly,
1985). Although there is one regulated secretory pathway,
TPA gets rapidly released from storage vesicles originated
from the Golgi complex and appears to be mediated by
calcium ion influx (Gualandris et al., 1996). A similar
mechanism of TPA co-release with parathyroid hormone
has been described in parathyroid cells (Bansal and MacGregor,
1992).

In the brain, wide expression of neuronal TPA and the plasmin
inhibitor neuroserpin are found in the developing and adult
nervous system and have been shown to play a role in neuronal
plasticity (Lee et al., 2015). TPA expression predominate
in the lobar hemispheres, thalamus, medulla oblongata, and
mesencephalon whereas neuroserpin, although also overlapping
with TPA in the lobar hemispheres and mesencephalon, is more
abundant in the spinal cord, substantia nigra and Purkinje cells
(Teesalu et al., 2004). Moreover, TPA mRNA expression is seen
in ventricular ependymal cells and meningeal blood vessel cells
(Hashimoto et al., 1998).

In particular, a role of TPA in the neurohypophysis has
been proposed for the osmotic regulation of body fluids. The
antidiuretic hormone vasopressin (arginine-vasopressin or AVP)
is synthesized in the magnocellular neurons of the hypothalamic
supra-optic nucleus and paraventricular nucleus, and packed
into neurosecretory granules, which are transported through
their axons over to the neurohypophysary terminals (Miyata
and Hatton, 2002). TPA immunoreactivity was observed at
neurosecretory granules of vasopressin-positive magnocellular
terminals and that of plasminogen was seen at astrocytes. With
electron microscopy, Imamura et al. were able to show a specific
localization of TPA at neurosecretory granules containing
vasopressin, indicating that TPA is co-released along with the
exocytosis of vasopressin and might be an early regulator of
vasopressin release (Imamura et al., 2010).

TPA has been implicated in neurite outgrowth of neuronal
cultures (Pittman et al., 1989), neuronal regeneration, migration
of cerebellar granule neurons (Seeds et al., 1995), and
prohormone synthesis (Sappino et al., 1993). TPA is capable of
potentiating N-methyl-D-aspartate (NMDA) receptor activation
by cleaving the NMDA receptor 1 (NMDAR1) subunit (Nicole
et al., 2001). The significance TPA-induced cleavage of NMDAR1,
as well as cleavage of pro-BDNF by plasmin is particularly
relevant for learning and memory. On the one hand, TPA
knockout (KO) mice show reduced maintenance of the long-
term potential in the hippocampal CA1 area and exhibit less
open-field exploration and poor performance in a context-
conditioning task (Calabresi et al., 2000). On the other hand,
mice overexpressing TPA show an enhancement of the long-
term potential in the hippocampus with improved performance
in spatial navigation learning tasks (Baranes et al., 1998;
Madani et al., 1999). Long-term depression is absent in the
striatum of TPA KO mice and has been coupled with decreased
rearing activity and object exploration, as well as with poorer
performance in a two-way active avoidance task (Calabresi
et al., 2000). In 3 month-old Fischer rats, increased TPA
mRNA expression is detected in Purkinje cerebellar neurons
following 1 h of complex motor task learning in rats (Seeds
et al., 1995). Ocular dominance plasticity in the visual cortex
was also shown to be related to TPA and plasmin activities
(Müller and Griesinger, 1998; Mataga et al., 2004). The authors
have also suggested that a cascade of plasmin generated by
TPA may selectively mediate cortical plasticity, perhaps via
structural remodeling of axons (Müller and Griesinger, 1998;
Mataga et al., 2004). Evidence for a function of TPA and the
brain-specific protease inhibitor neuroserpin in regulating axonal
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growth has come from studies of cultured cells (for a recent
review see Lee et al., 2015). Hashimoto and colleagues found
evidence supporting TPA involvement in long-lasting cortical
plasticity following psychotomimetic administration in the rat
by observing increased mRNA expression in prefrontal cortex
neurons projecting to the medial striatum (Hashimoto et al.,
1998).

Finally, ischemic damage is suggested to lead to excess
endogenous TPA activity in the brain and contribute to
neurodegeneration via extracellular matrix degradation,
microglia activation, and blood brain barrier leakage (Lee
et al., 2015). Neuroserpin-knockout mice have worse ischemic
damage and neurological outcomes than controls, with the
effects attributed to TPA-mediated activation of microglia
(Gelderblom et al., 2013). Experimental intravenous (exogenous)
TPA administration was shown to increase cerebrovascular
permeability and decrease cerebrovascular resistance (Tsirka
et al., 1995; Yepes et al., 2003; Nassar et al., 2004).

TREATMENT WITH RECOMBINANT TPA IN

PREGNANT WOMEN

About 85% of all strokes are ischemic and the remaining
are hemorrhagic. Spontaneous reperfusion may occur through
endogenous release of plasminogen activator, which stimulates
plasmin formation from plasminogen. For larger occlusions
this release seems insufficient to induce reperfusion in time
to avoid a cerebral lesion. Administration of alteplase, a
recombinant tissue plasminogen activator (rTPA) as an injectable
drug, which is commonly used to treat myocardial infarction,
stroke and thrombosis, is thus one method to enhance this
endogenous procedure (for a recent review see Prabhakaran
et al., 2015). Acute ischemic stroke in pregnant women occurs
most commonly in the third trimester and is potentiated by an
increased pro-coagulant state during pregnancy, higher risk for
cervical and intracranial artery dissection peri-partum, as well
as by persistent foramen ovale and other underlying cardiac
conditions.

The thrombolytic effect of rTPA varies among species.
Humans are proposed to have a more sensitive fibrinolytic
system to the effects of rTPA (Korninger and Collen, 1981).
Thus, in humans the effective and safe dose for acute stroke
treatment is 0.9mg/kg. In rats, a dose of 1.8mg/kg up to
10mg/kg induced recanalization of carotid artery occlusion in
17–71%, whereas in humans this is only achieved in 10–30%
of cases. The 1.8mg/kg dose in the rat is proposed to be
equivalent to the human dose of 0.9mg/kg in terms of efficacy
(Tomkins et al., 2015). In rabbits, a dose of 5mg/kg—but not
of 3 or 10mg/kg—is capable of dissolving an intracerebral
clot embolized from the carotid artery (Bednar et al., 1993).
Until now, randomized controlled trials have excluded pregnant
women and patients with increased hemorrhage risk from
participation in studies regarding thrombolysis treatment. In
animals rTPA does not cross the placenta and there has been no
evidence of teratogenicity (Chan et al., 2000; Leonhardt et al.,
2006; De Keyser et al., 2007). To date there are no reports on

rTPA being able to cross the human placenta. In 2006, Leonhardt
et al. had reviewed 18 cases of pregnant women treated with
rTPA for other thromboembolic conditions, mainly pulmonary
embolism, deep vein thrombosis and thrombosed cardiac valve
prosthesis and 10 cases of pregnant women treated with rTPA
for acute stroke, including an own stroke case (Leonhardt et al.,
2006). Good maternal neurological outcome was reported for all
but two mothers who died (one with stroke, the other with mitral
valve thrombosis) and one who developed cerebral infarction.
Ineffective thrombolysis or partial arterial recanalization was
reported in four mothers. Twenty children were born with
good outcome, however, there were two spontaneous abortions,
three pregnancy interruptions owing to maternal cause and one
infant died at 2 weeks’ post-partum. Thus, there was a similar
rate of complications in pregnant women compared to non-
pregnant women, with mortality at about 7% for the mother
and about 23% for the child (half of the child losses occurred in
three stroke cases; the other half in two pulmonary embolisms
and one valve thrombosis). Possible explanations for child loss
not addressed by this review may include the severity of the
underlying maternal medical condition rather than a direct effect
of rTPA treatment alone. Interruptions of pregnancy may also
have been carried following medical decision. Later in 2006,
Wiese et al. reported use of intravenous rTPA thrombolysis in
a pregnant woman with acute cardioembolic stroke. The patient
improved clinically, did not develop complications after receiving
rTPA, and at 37 weeks’ gestation, delivered a healthy infant
(Wiese et al., 2006). Yamaguchi et al. reported a 36 year-old
woman, who was 18 weeks pregnant and developed a sudden
onset of motor aphasia and hemiparesis on the right side. The
NIH stroke scale was 6, and the brain MRI indicated occlusion
of the left middle cerebral artery branches. She was treated with
intravenous rTPAwith subsequent recanalization of the occluded
left middle cerebral artery branches. The symptoms disappeared
within a few hours after treatment. She delivered a healthy infant
without any apparent complications (Yamaguchi et al., 2010).
There are further cases of successful use of rTPA in pregnant
women with acute stroke, the majority in the third trimester
of pregnancy (Dapprich and Boessenecker, 2002; Elford et al.,
2002; Johnson et al., 2005; Murugappan et al., 2006). In 2012, Li
et al. reported one own stroke case and reviewed 10 previously
published stroke cases. They reported good to complete recovery
in 10 mothers and one death during endovascular treatment,
resulting in the delivery of eight healthy infants, two medical
terminations of pregnancy, and one fetus death (Li et al., 2012).
In 2013 and 2014, two additional stroke cases with good outcome
for the mothers and the fetuses were reported by Tassi and
Ritter, respectively (Tassi et al., 2013; Mantoan Ritter et al.,
2014). The most recent case of successful rTPA treatment in a
pregnant woman at 39 weeks of gestation with normal delivery
was reported in 2015 (Ritchie et al., 2015). So far, only onemother
treated with rTPA for acute stroke suffered a significant uterine
bleeding complication (Demchuk, 2013), however, caution about
bias publication should be taken into account when reviewing
case reports. Intravenously administered rTPA has a high affinity
for fibrin strands and a short half-life of 4–5min via liver
metabolism, with only 10% of its concentration remaining
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in circulation after 20min, which may explain its safety at
therapeutic doses.

In menstruating women, Wein et al. described five subjects in
the active arm of the National Institute of Neurological Disorders
and Stroke (NINDS) intravenous thrombolysis trial, who were
coded as actively menstruating. One subject who had a 1-year
history of dysfunctional uterine bleeding required urgent uterine
artery ligation. The authors also reported a case of a woman
requiring transfusion after intravenous thrombolysis for acute
ischaemic stroke (Wein et al., 2002).

So far, no neuroendocrine side-effects have been reported in
pregnant women treated with alteplase.

EFFECTS OF EXPOSURE TO rTPA IN

BRAIN DEVELOPMENT

As stated above, intravenous rTPA is too large a molecule (7200
KDa) to be able to pass the placental blood barrier. From
clinical reports of IVT-treated pregnant women with stroke,
there have been no signs of brain development issues on the
surviving fetuses. The European Medicines Agency license for
alteplase includes information on embryotoxicity (in the form
of embryolethality and growth retardation) in pregnant rabbits
given 3mg/kg alteplase, which is over 3 times the therapeutical
dose (0.9mg/kg). However, no teratogenic effects were observed
in animals treated with i.v. therapeutical doses and no effects
on peri- or post-natal development or fertility were observed in
rats treated with doses up to 10mg/kg (Kojima et al., 1988) In
subchronic toxicity studies in rats and marmosets no unexpected
adverse effects were observed. No indicative signs of mutagenesis
were found (preclinical safety data included in the European
license documentation) (EMEA, 2002).

ONGOING STUDIES

Uncertainty whether fertile women with potential or known
pregnancy should be treated may delay or halt thrombolysis and
worsen stroke outcome. Maternal hemorrhagic complications
have been reported in 8% with systemic thrombolysis across
the spectrum of clinical thromboembolic indications (Cronin
et al., 2008). More specifically, mortality in 172 pregnant
women treated with a potent thrombolytic agent, streptokinase,
was reported at 1.2% (Turrentine et al., 1995), which is
far lower than the 9.5% mortality owed to stroke alone in
pregnant women (Ritchie et al., 2015). Thus, considering this
limited risk, pregnancy should not be considered an absolute

contraindication. The risk during pregnancy must be balanced
against the potential of a disabled outcome without treatment
(Demchuk, 2013). To explore the safety of thrombolysis in
pregnant women with acute stroke, and indeed within the whole
group of fertile women, the Safe Implementation of Treatments
in Stroke International Stroke Thrombolysis Register (SITS-
ISTR), a prospective, international, observational registry for
medical centers documenting stroke treatments (Wahlgren et al.,
2007) has been expanded to include specific questions for women
in the age group 13–50. The aim is to systematically collect

data, to contribute to knowledge about treatment safety for these
women, and to explore whether treatment in pregnant women,
or indeed all women in fertile age is safe and not delayed.
We estimate that a number of women will be treated despite
pregnancy, partly because the condition was not considered when
treatment was initiated, or because the potential benefit was
judged higher than the risk. The overall aim of the study, Safe
Implementation of Treatments in Stroke-Fertile Women Stroke
Thrombolysis Study (SITS-FW), is to determine if pregnancy
and even menstruation constitutes any safety issue when treated
with thrombolysis, or if these patients can be given the same
opportunity for treatment as other patients.

CONCLUSIONS

Pregnancy is still considered a relative contraindication for
intravenous thrombolysis with rTPA for acute ischemic stroke
within 4.5 h of symptom onset. However, the present and
previous reviews indicate a similar maternal safety profile
compared with non-pregnant women. This should be further
analyzed in future prospective studies. It is reasonable to weigh in
the benefit of rTPA vs. the risk for the fetus in this patient group
and offer treatment for moderate to severe disabling stroke,
particularly if there is no access to endovascular treatment.
With the current ongoing implementation of mechanical
thrombectomy for acute ischemic stroke in routine practice
(Wahlgren et al., 2016), we expect more pregnant women
to benefit from acute reperfusion strategies that may or not
include intravenous thrombolysis in addition to mechanical
thrombectomy for large vessel occlusions.
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