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The generation of neurons in the adult mammalian brain requires the activation of

quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron

formation from NSCs are regulated by a number of stimuli, which include growth factors.

Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular

processes depending on their concentration, cell type, and the developmental stage

of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels

drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP)

and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of

IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence

indicates that IGF-I influences NSC proliferation and differentiation into neurons and

glia as well as neuronal maturation including synapse formation. Furthermore, recent

studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC

number and differentiation but also by influencing neuronal positioning and migration as

described during SVZ-OB neurogenesis. In this article we will revise and discuss the

actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing

on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron

integration in synaptic circuits.
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INSULIN-LIKE GROWTH FACTOR I (IGF-I)

IGF-I belongs to the insulin family which is divided in two groups of peptides: one includes insulin
and the IGFs and the other relaxin and insulin-like hormones. In the insulin group, each peptide
binds to a specific receptor with high affinity, although it can also bind to the other receptor with
low affinity (Table 1). Furthermore, the insulin receptor and the IGF-I receptor (IGF-IR) can form
heterodimers with similar affinity for both growth factors (Hernández-Sánchez et al., 2008). The
IGF-IR has the higher affinity for IGF-I but its affinity is 10 times lower for IGF-II and 250 times
lower for insulin (Versteyhe et al., 2013). In addition, there are at least seven IGF-binding proteins
(IGFBPs) that increase the half-life of the peptide by preventing its proteolysis and modulating the
interaction with the receptor (Table 1; Ocrant et al., 1990; Hwa et al., 1999; Bondy and Cheng, 2004;
Agis-Balboa et al., 2011; Fernandez and Torres-Alemán, 2012; Agis-Balboa and Fischer, 2014).
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TABLE 1 | The insulin group of growth factors.

Ligand Receptor Binding proteins

Insulin Insulin receptor (IR: high

affinity) and IGF-IR (low

affinity)

Not known

IGF-I IGF-IR (high affinity), IR (low

affinity), and IGF-IIR (very low

affinity)

IGFBP1–5 (high affinity) and

IGFBP6-7 (low affinity)

IGF-II IGF-IIR (high affinity), IGF-IR

(low affinity), and IR (very low

affinity)

IGFBP6-7 (high affinity) and IGFB1–5

(low affinity)

The mature IGF-I is a single polypeptide chain of 70 amino
acids (7.5 kDa) with 57 amino acids being identical in mammals,
birds, and amphibians (Liu et al., 1993; Russo et al., 2005;
Annunziata et al., 2011). The IGF-IR is a tyrosine kinase
receptor characterized by tetramers, which are composed of two
α subunits and two β subunits (Russo et al., 2005; Annunziata
et al., 2011; Vogel, 2013).

EXPRESSION OF IGF-I AND IGF-I
RECEPTOR

IGF-I is abundantly produced during embryonic development
in many tissues, but its expression is markedly reduced during
postnatal life. In the adult individual, IGF-I is mainly synthesized
in the liver via a process regulated by the growth hormone (GH).
Furthermore, there is a small local production in tissues including
brain regions such as the SVZ, the OB, the HP, and the cerebellum
(CB; Rotwein et al., 1988; Ye et al., 1997). In the brain, IGF-I can
be synthesized by neurons independently of GH action (Bartlett
et al., 1991, 1992; Bondy and Cheng, 2004; Russo et al., 2005;
Fernandez and Torres-Alemán, 2012). Systemic IGF-I can pass
from the blood to the cerebrospinal fluid through the lipoprotein
receptor-related protein 2 (LRP2). In addition, IGF-I can cross
the blood-brain-barrier by binding to the IGF-IR present on
endothelial cells and later it is picked up either by astrocytes to
be transferred to neurons or directly by neurons (Nishijima et al.,
2010; Fernandez and Torres-Alemán, 2012). Therefore, IGF-I can
act in the brain in an endocrine, paracrine or autocrine manner.

IGF-IR expression begins early during embryonic
development in regions that include the cortex, OB, HP,
CB, hypothalamus (HT), and spinal cord (Bondy et al., 1990).
Postnatally, IGF-IR levels are slightly reduced and in the adult,
its expression is clearly detected in the SVZ, OB, HP, CB, and
the choroid plexus (Bondy and Cheng, 2004; Russo et al., 2005;
Fernandez and Torres-Alemán, 2012).

IGF-I/IGF-IR SIGNALING PATHWAYS

The specific IGF-I binding to IGF-IR triggers the auto
phosphorylation of the receptor and the activation of the
insulin receptor substrates (IRS). These activated IRSs are auto-
phosphorylated and in turn activate the intracellular signaling
pathways including PI3K and MAP kinase pathways (Liu

et al., 1993; Bondy and Cheng, 2004; Bateman and McNeill,
2006; Fernandez and Torres-Alemán, 2012; Puche and Castilla-
Cortázar, 2012).

The phosphatidylinositol 3-kinase (PI3K) phophorylates
the serine/threonine protein kinase (Akt) through the
phosphoinositide-dependent protein kinase (PDK). Phospho-
Akt promotes the translocation of the glucose transporters to
the plasma membrane affecting cell metabolism (Bondy and
Cheng, 2004; Fernandez and Torres-Alemán, 2012). Another
Akt substrate is the mammalian target of rapamycin (mTOR).
mTOR1 activates p70S6K, regulating protein synthesis while
mTOR2 activates a series of kinases (including Akt), affecting
proliferation, cell migration, and positioning (Hurtado-Chong
et al., 2009; Iwanami et al., 2009; Onuma et al., 2011; Fernandez
and Torres-Alemán, 2012; Paliouras et al., 2012; Pun et al., 2012).
Akt also promotes the activation of fork head transcription
factor (FOXO), which regulates cell proliferation, oxidative
stress and apoptosis (Bateman and McNeill, 2006; Fernandez
and Torres-Alemán, 2012; O’Kusky and Ye, 2012). Moreover,
Akt can activate the cAMP responsive element binding protein
(CREB) regulating the transcription of genes involved in cell
cycle progression, survival, and differentiation. The binding
of IGF-I to the IGF-IR can also promote the activation of Son
of sevenless (SOS) triggering the phosphorylation of RAS,
which in turn promotes the activation of MAPK. Later, MAPK
produces the phosphorylation of ERK inducing proliferation of
multiple cell types (Baltensperger et al., 1993; Skolnik et al., 1993;
Bateman and McNeill, 2006; Cundiff et al., 2009; Fernandez and
Torres-Alemán, 2012).

IGF-I FUNCTIONS

Body and Organ Growth
IGF-I is a pleiotropic factor involved in multiple processes, so its
actions are different depending on its concentration, the cell type,
and the developmental stage of the animal.

IGF-I is necessary very early during pregnancy because it
promotes embryo implantation in the uterus (O’Kusky and Ye,
2012). Later, IGF-I is important for the proper prenatal growth
and postnatal survival of the animal. This fact is reflected in the
smaller size of the global Igf-I Knockout (KO) mice and Igf-
Ir KO mice compared to their control littermates after birth.
The liver-specific Igf-I-deficient (LID) mice have a similar body
size compared to the control animals, suggesting that IGF-I
affects tissue growth in an autocrine or paracrine manner (Yakar
et al., 2002). Interestingly, exogenously administrated IGF-I can
compensate for most autocrine/paracrine actions of this growth
factor (Wu et al., 2009). The large majority of global Igf-I KO
mice die soon after birth due to insufficient lung maturation,
although the death rate depends on the mouse strains (Liu
et al., 1993; Moreno-Barriuso et al., 2006; Kappeler et al., 2008;
Hurtado-Chong et al., 2009; Pais et al., 2013). The muscles, brain,
bones and skin are affected by the lack of IGF-I, as reflected by
the muscle hypoplasia and the reduced brain size, ossification,
and skin thickness found in the KO mice (Baker et al., 1993; Liu
et al., 1993; Powell-Braxton et al., 1993; Beck et al., 1995; Pichel
et al., 2003). This phenotype is also observed in the few surviving
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postnatal KO mice which show a reduction in body and brain
size, lower development of ossification centers, infertility, and
deafness (Baker et al., 1993; Wang et al., 1999; Yakar et al., 2002;
Fernández-Moreno et al., 2004; Cediel et al., 2006; Stratikopoulos
et al., 2008; Hurtado-Chong et al., 2009; Wu et al., 2009; O’Kusky
and Ye, 2012; Rodríguez-de la Rosa et al., 2015).

In humans, mutations in the IGF-I and IGF-IR genes cause
growth retardation including microcephaly (Roback et al.,
1991; Woods et al., 1996; Walenkamp et al., 2005, 2013; van
Duyvenvoorde et al., 2010; Burkhardt et al., 2015). Furthermore,
the congenital deficiency of IGF-I or IGF-IR are features of the
Laron syndrome, which also includes growth hormone receptor
(GHR) deficiency and/or the alteration of molecules of the
GH and IGF-I signaling pathways. Patients with this syndrome
experience less growth after birth and this becomes more severe
with age, leading to smaller brain size, smaller heart, less muscle
development, among other deficits (Puche and Castilla-Cortázar,
2012). Although short stature is a common feature of the
individuals bearing IGF-I and/or IGF-IR mutations, a recent
study has described intragenic deletions of the IGF-IR associated
to a developmental delay and intellectual disability of five people
that do not have a significant short stature (Witsch et al., 2013).

During central nervous system (CNS) development and
adult neurogenesis, the IGF-I/IGF-IR system regulates the
proliferation and survival of neural progenitors, as well as
the generation, differentiation, and maturation of neurons in
multiple ways (Beck et al., 1995; Cheng et al., 2001; Pichel et al.,
2003; Russo et al., 2005; Hurtado-Chong et al., 2009; Fernandez

and Torres-Alemán, 2012; O’Kusky and Ye, 2012; Chaker et al.,
2015). These aspects are discussed in depth below (Figure 1).

CELL PROLIFERATION

IGF-I promotes proliferation of neural cells by interacting with
the IGF-IR which may activate the PI3K/Akt or the MAP
kinase pathways (Otaegi et al., 2006; Mairet-Coello et al., 2009;
Vogel, 2013; Yuan et al., 2015). During embryonic development,
IGF-I promotes the proliferation of neuroepithelial progenitor
cells both in vitro (Hernández-Sánchez et al., 1995; Arsenijevic
et al., 2001; Vicario-Abejón et al., 2003; Cui and Almazan, 2007;
Magariños et al., 2010; Ziegler et al., 2012) and in vivo (Popken
et al., 2004; Ye and D’Ercole, 2006; Hu et al., 2012). This positive
effect of IGF-I on cell proliferation was also observed postnatally
and in the adult brain (Aberg et al., 2000, 2003; Trejo et al.,
2001; Gago et al., 2003; Popken et al., 2004; Kalluri et al., 2007;
Kouroupi et al., 2010; Pérez-Martín et al., 2010; Yuan et al., 2015),
although enhanced proliferation was not found in the adult HP
of an astrocyte-conditional IGF-I overexpressing mouse (Carlson
et al., 2014). In contrast, mice that overexpress IGF-I under the
regulation of the Nestin promoter, active in neural progenitors,
show an increase in brain size both at E18 and postnatally
(Popken et al., 2004) due to a shorter cell cycle produce by the
decrease in the G1 phase length (Hodge et al., 2004).

DuringOB development, IGF-I can stimulate the proliferation
of stem and progenitor cells as observed in embryonic olfactory
bulb stem cells (eOBSCs) cultures where the addition of IGF-I

FIGURE 1 | A schematic summary of the role of IGF-I during postnatal-adult neurogenesis. The IGF-I is a pleiotropic factor that affect a variety of cellular

processes. The administration of IGF-I enhances cell proliferation and neurogenesis in the OB, DG, and HT in vitro and in vivo. However, the use of transgenic mice

that overexpress IGF-I or lack the Igf-I and Igf-IR genes has revealed contradictory effects of IGF-I signaling on these processes. IGF-I promotes cell migration in the

SVZ-OB and the survival and axonal growth of neurons in both the SVZ-OB and DG. In contrast, the effects on dendritic spines and synapse formation may depend

on the neuron type and developmental stage of the cell and animal. DG, dentate gyrus; Diff., differentiation; OB, olfactory bulb; RMS, rostral migratory stream; SVZ,

subventricular zone; HT, hypothalamus; 3V, third ventricle.
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increases the number of proliferative cells and of neurospheres
compared to untreated cultures. However, when eOBSCs were
isolated from Igf-I KO embryos, there was no difference in the
percentage of BrdU+ cells compared to wildtype (WT) cells
(Vicario-Abejón et al., 2003). In contrast, a decrease in the
number of cells in theM phase of cell cycle was observed in
the SVZ of Igf-I adult KO mice (Hurtado-Chong et al., 2009;
Figure 1).

IGF-I also affects cell proliferation in the dentate gyrus (DG)
of the HP (Figure 1). In fact, in cultures of adult rat DG
progenitor cells an increase in the number of dividing cells was
found after IGF-I treatment (Aberg et al., 2003). In addition,
when mice were administered with IGF-I peripherally, more
BrdU+ cells in the DG were detected (Aberg et al., 2000). A
similar effect was observed after physical exercise, a condition
that enhances IGF-I entry into the brain (Trejo et al., 2001,
2008; Glasper et al., 2010; Fernandez and Torres-Alemán, 2012).
However, in the Igf-I KO mice the lack of IGF-I produced an
increase in the number of proliferative cells in DG (Cheng et al.,
2001) whereas both GH/IGF-I deficiency and deleting the IGF-
IR in neural progenitors did not specifically affect proliferation
in the postnatal-adult DG (Lichtenwalner et al., 2006; Liu et al.,
2009).

In sum, the majority of these findings have shown that an
increase in the IGF-I levels promotes cell proliferation both
in vitro and in vivo. However, deleting this growth factor and/or
its receptor in KO mouse has produced contrasting effects that
are not completely elucidated yet (Figure 1). The expression of
insulin, IGF-II and of truncated IGF-I-related peptides in the
KO mice might partially explain the discrepancy obtained in
different studies. Although the majority of truncated peptides are
thought to be non-functional, we cannot completely exclude that
in certain KO mice lines they could affect the results described.
The development of new technologies such as the CRISPR-Cas9
system, which allows the complete deletion of specific genes, and
the generation of double or triple KO mouse lines could help to
understand the effect of the deletion of IGF-I or its receptor in
cell proliferation during adult neurogenesis.

CELL SURVIVAL

Evidence indicates that IGF-I promotes cell survival by inhibiting
apoptosis both in vivo and in vitro. These effects have been
observed in neural progenitors and in multiple neuronal types
such as cortical cells, motoneurons, Purkinje cells, or optic neural
progenitor cells (Gago et al., 2003; Vicario-Abejón et al., 2004;
Hodge et al., 2007; Croci et al., 2010; Aburto et al., 2012; Lunn
et al., 2015). In the DG, the lack of IGF-I or IGF-IR causes
a decrease in neuronal survival under basal conditions (Cheng
et al., 2001; Lichtenwalner et al., 2006; Liu et al., 2009) or
after ischemia (Liu et al., 2011) whereas IGF-I overexpression
rescued neuronal survival in the lesionedHP (Carlson et al., 2014;
Figure 1).

Moreover, IGF-I could prevent neuronal death in
neurodegenerative diseases such as Alzheimer, regulating
the accumulation of amyloid-β, and Tau proteins (Carro

et al., 2002; Puche and Castilla-Cortázar, 2012). In fact, IGF-I
enhances the transport of amyloid-β carrier proteins such
as albumin and transthyretin, promoting its degradation
(Carro et al., 2002). Moreover, this factor activates Akt
which inhibits GSK3β, preventing Tau hyperphosporilation
(Bondy and Cheng, 2004). In addition to the accumulation
of amyloid-β and phosphorylated Tau proteins, the cognitive
decline found in Alzheimer’s patients might be attributable
to decreased dentate gyrus neurogenesis. In contrast, an
increase in IGF-I levels enhances neurogenesis (see below)
and ameliorates the age-related cognitive malfunction in the
brain. Therefore, restoring hippocampal neurogenesis by
IGF-I may be a strategy for reversing age-related cerebral
dysfunction. However, other studies have reported that IGF-I
can promote the production of amyloid-β (Araki et al., 2009)
and that knocking-out IGF-IR in neurons of a mouse model of
Alzheimer’s disease (AD) favors amyloid-β clearance probably
by preserving autophagy and improves spatial memory (Gontier
et al., 2015). This potential neuroprotective effect of reducing
IGF-I/IGF-IR signaling has also been proposed for spinal
muscular atrophy (SMA; Biondi et al., 2015). Therefore, the
role of IGF-I in AD and motor neuron disease requires further
investigation.

IGF-I can also prevent the gradual loss of other physiological
functions associated with aging produced by oxidative stress and
DNAdamage, among others (Puche andCastilla-Cortázar, 2012).
However, some Igf-I deficient mice, which have low levels of
circulating IGF-I, exhibit an increased lifespan possibly due to
alterations in energy metabolism and a transient enhancement
in neurogenesis (Sun et al., 2005; Sun, 2006; Junnila et al., 2013;
Chaker et al., 2015). These mice show an upregulation of local
IGF-I levels in the hippocampus which could explain the increase
in neurogenesis (Sun et al., 2005). All these data reveal that the
effect of circulating and local IGF-I may be different but the full
mechanisms have not been elucidated.

CELL MIGRATION

IGF-I is also involved in the regulation of the migration of
certain cell types. In neuroblastoma cell line cultures, IGF-I
stimulates cell migration (Puglianiello et al., 2000; Russo et al.,
2005). The first demonstration that IGF-I regulates cell migration
and positioning in vivo was described by Hurtado-Chong
et al. through Igf-I KO mice and explant cultures (Figure 1).
These studies showed that IGF-I is necessary for the exit of
neuroblasts from the SVZ to the OB and for the radial neuronal
migration in the OB (Hurtado-Chong et al., 2009). These effects
were mediated by the activation of the PI3K pathway and
by phosphorylation of the reelin signal transducer, homolog 1
(Dab1; Hurtado-Chong et al., 2009). These findings indicate
that IGF-I promotes adult neurogenesis not only by regulating
NSC number and differentiation but also by directing neuronal
positioning and migration (Figure 1). Successively, IGF-I has
been related to the migration of doublecortin+ immature
neurons in the SVZ-RMS, dorsal root ganglion neurons and
cerebellar neurons in rodents, and neural crest cells in the
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zebrafish (Onuma et al., 2011; Xiang et al., 2011; Li et al., 2012;
Maucksch et al., 2013).

NEURONAL GENERATION,
DIFFERENTIATION, AND MATURATION

The IGF-I/IGF-IR system regulates the differentiation and
maturation of neurons generated from NSCs and progenitors
both during embryonic development and in the adult brain
largely via the PI3K/Akt pathway (Aberg et al., 2000; Brooker
et al., 2000; O’Kusky et al., 2000; Trejo et al., 2001; Vicario-
Abejón et al., 2003; Otaegi et al., 2006; Carlson et al., 2014;
Zhang et al., 2014; Yuan et al., 2015). Furthermore, IGF-I also
influences the development of astrocytes and oligodendrocytes
(Ye and D’Ercole, 2006; O’Kusky and Ye, 2012). Indeed, IGF-I
promotes the differentiation of neural progenitors into mature
oligodendrocytes that produce myelin (Carson et al., 1993; Ye
et al., 1995; Gago et al., 2003; Hsieh et al., 2004) and stimulates the
proliferation and differentiation of astrocytes under physiological
conditions and after injury (Cao et al., 2003; Ye et al., 2004).

In Igf-I and Igf-IR KO mice, a reduction in the number
of neurons during embryonic development and postnatal-adult
neurogenesis in SVZ-OB andHP has been described (Baker et al.,
1993; Liu et al., 1993, 2009; Powell-Braxton et al., 1993; Beck
et al., 1995; Hurtado-Chong et al., 2009). When IGF-I was added
to eOBSCs in culture, it produced an increase in the number
of neurons, astrocytes and oligodendrocytes, whereas there was
a decrease in the differentiation of eOBSCs isolated from the
Igf-I KO mice (Vicario-Abejón et al., 2003; Otaegi et al., 2006).
In the postnatal-adult OB of Igf-I KO animals, reductions in
the number of interneuron populations were observed, possibly
due to the altered neuroblast exit and migration from the SVZ,
as mentioned above (Hurtado-Chong et al., 2009). By contrast,
animals that overexpress Igf-I exhibit an increase in the number
of neurons in the HP (O’Kusky et al., 2000; Popken et al., 2004;
Carlson et al., 2014; Figure 1).

In addition to its role in the main neurogenic adult brain
regions IGF-I also increases neurogenesis in the hypothalamus.
After intra-cerebroventricular treatment with IGF-I, the number
of neurons and astrocytes labeled with BrdU was significantly
increased in the whole hypothalamus (Pérez-Martín et al.,
2010). A similar effect of this growth factor was also found in
hypothalamic cell cultures and explants (Torres-Aleman et al.,
1990; Pérez-Martín et al., 2010).

IGF-I may regulate neuronal maturation, affecting axonal and
dendritic growth, and establishing synapses in different brain
areas independently of cell survival (O’Kusky et al., 2000; Cao
et al., 2011; Figure 1). Thus, Igf-I KO animals have a lower
development in the peripheral nerves (Gao et al., 1999), an altered
innervation of the sensory cells of the organ of Corti (Camarero
et al., 2001) and a lower density of spines in neurons of layers
II-III of the cortex (Cheng et al., 2003). In the OB of Igf-I KO
mice, the pattern of the axonal projections of sensory olfactory
neurons is altered, because IGF-I acts as a chemoattractant for
axonal growth cones (Scolnick et al., 2008). In the HP, IGF-I is
involved in the establishment of neuronal polarity and the initial

growth of the axonal cone, through the Akt pathway (Laurino
et al., 2005; Sosa et al., 2006). Although the structure of the
CB is preserved in E18.5 Igf-I KO mice (Vicario-Abejón et al.,
2004), it has been shown that IGF-I promotes the establishment
of cerebellar synapses whereas lack of IGF-I facilitates its removal
during postnatal development (Kakizawa et al., 2003). Likewise,
IGF-I overexpression in transgenic mouse promotes dendrite
growth and synaptogenesis in the DG (O’Kusky et al., 2000;
Carlson et al., 2014).

Exercise produces an increase in the IGF-I levels in
adults which then stimulates an increase in the density of
spines in the basal dendrites of CA1 pyramidal neurons
but does not affect either the granule neurons in the
GD or the CA3 pyramidal neurons (Glasper et al., 2010).
Similarly, when IGF-I is administered by ventricular infusion
no effect was observed in the number of synapses in CA3
(Poe et al., 2001). However, a decrease in the serum IGF-
I levels causes a reduction of glutamatergic boutons in the
HP (Trejo et al., 2007). This finding suggests that IGF-
I entry to the HP can promote synapse formation and/or
maintenance and as such can be beneficial for spatial learning
and to reduce anxiety-like behavior (Llorens-Martín et al.,
2010; Baldini et al., 2013). In contrast, it has been recently
reported that the suppression of IGF-IR signaling in KO
mice enhances olfactory function in aged males but not in
females, adding new levels of complexity to the understanding
of the role of IGF-I/IGF-IR in the regulation of neurogenesis,
synaptogenesis and function in the adult brain (Chaker et al.,
2015; Figure 1).

CONCLUSIONS AND FUTURE
PERSPECTIVES

The IGF-I affects the proliferation of progenitor cells, the
survival of both progenitors and neurons, differentiation, and
maturation of neurons in the neurogenic areas of the adult
brain (Figure 1). In addition it regulates neuronal positioning
and migration in the SVZ-OB. However, the studies performed
have reported that the action of IGF-I signaling could be
different or even opposite depending on the experimental
approach used, the point in development and/or cell type
affected. The production of cell-specific transgenic mouse
lines, double KO for IGF-I and IGF-IR in combination with
new technologies such as CRISPR-Cas9, optogenetics, and
pharmacogenetics might contribute to the deeper understanding
of the role and mechanisms of action of IGF-I/IGF-IR signaling
during postnatal-adult neurogenesis. They also could help
to elucidate the role of local and systemic IGF-I in this
process and to identify new molecules regulated by this growth
factor.
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