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Adult hippocampal neurogenesis is a highly plastic process that responds swiftly to

neuronal activity. Adult hippocampal neurogenesis can be regulated at the level of neural

stem cell recruitment and activation, progenitor proliferation, as well as newborn cell

survival and differentiation. An “excitation-neurogenesis” rule was proposed after the

demonstration of the capability of cultured neural stem and progenitor cells to intrinsically

sense neuronal excitatory activity. In vivo, this property has remained elusive although

recently the direct response of neural stem cells to GABA in the hippocampus via GABAA

receptors has evidenced a mechanism for a direct talk between neurons and neural

stem cells. As it is pro-neurogenic, the effect of excitatory neuronal activity has been

generally considered beneficial. But what happens in situations of neuronal hyperactivity

in which neurogenesis can be dramatically boosted? In animal models, electroconvulsive

shock markedly increases neurogenesis. On the contrary, in epilepsy rodent models,

seizures induce the generation of misplaced neurons with abnormal morphological and

electrophysiological properties, namely aberrant neurogenesis. We will herein discuss

what is known about the mechanisms of influence of neurons on neural stem cells, as

well as the severe effects of neuronal hyperexcitation on hippocampal neurogenesis.
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INTRODUCTION

Neurogenesis in the hippocampus starts with the activation of quiescent neural stem cells (NSCs),
the first regulatory step that will determine the amount of new neurons generated in a given time
point. Although neurogenesis is tightly linked to the level of hippocampal circuitry activity it has
only been recently unveiled how gamma-aminobutyric acid (GABA) plays an essential role into
translating neuronal activity into NSCs activation, as we will explain below. The question that
we want to address in this review is what occurs when neuronal activity is increased to abnormal
hyperexcitatory levels, especially in the clinically relevant context of epilepsy or electroconvulsive
therapy (ECT) and its animal model, electroconvulsive shock (ECS). Two aspects make this
question important. First, the possibility that enhanced activation of NSCs leads to a premature
exhaustion of the NSC population and of neurogenesis; and second the existence of aberrant
neurogenesis, i.e., the generation of neurons with ectopic location and different morphological and
electrophysiological properties that can contribute to epilepsy.

NSCs, in rodents, have been shown to be able to divide symmetrically to generate more copies
of themselves (Bonaguidi et al., 2011), and therefore the possibility exist that they can expand their
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pool. However, in normal conditions, this capability does not
counteract the depletion of the NSC population that associates
with age (Encinas and Enikolopov, 2008; Bonaguidi et al., 2011;
Walter et al., 2011; Andersen et al., 2014). The depletion of
the population is based on the activation-coupled astrocytic
differentiation of NSCs. Most of the NSCs remain quiescent
but once they get activated they undergo a round of several
asymmetric divisions to generate neuronal precursors that either
die by apoptosis and are removed by microglia, or become
mature granule cells (Sierra et al., 2010). At least in mice,
after finishing their round of asymmetric cell divisions NSCs
differentiate into astrocytes losing their stem cell capabilities
(Encinas et al., 2011). Thus, the level of activation of NSCs
not only determines the level of neurogenesis but also the rate
of depletion of NSCs. The prediction derived from this model
is that increased activation of NSCs would lead to an initial
boost of neurogenesis followed by diminished neurogenesis
in the long term. This model would explain the seemingly
contradictory results regarding hippocampal cell proliferation
and neurogenesis in human epilepsy. Noteworthy, the dynamics
of neurogenesis decline in normal conditions in humansmight be
different as pointed out by carbon-14-based methods (Spalding
et al., 2013).

Several in vivo manipulations or brain alterations that
influence electrical activity also affect adult neurogenesis.
Seizures trigger an early increase of cell proliferation that
involved NSCs (Huttmann et al., 2003; Indulekha et al., 2010).
Also, ECS has been consistently reported (Segi-Nishida et al.,
2008; Jun et al., 2015) to increase NSC recruitment and
activation of NSCs. However, long-term studies addressing
the fate of dividing NSCs as well as the chronic effect
on the neurogenic niche are still missing. Both models of
hyperexcitation are usually accompanied with the induction
of neuronal death in granule cells (Zarubenko et al., 2005;
Dingledine et al., 2014), which in turn might affect neurogenesis.
We will focus on two aspects of neurogenesis that seem to be
key regarding neuronal hyperexcitation in the hippocampus,
activation and exhaustion of NSCs, and the induction of aberrant
neurogenesis.

ACTIVATION AND EXHAUSTION OF NSCs

We have recently shown that in mice seizures trigger a dramatic
response in the dentate gyrus (DG) leading to a swift and
almost complete disruption of the neurogenic niche (Sierra et al.,
2015). The main effect of seizures is to activate NSCs and
induce them to differentiate into reactive astrocytes. Thus, the
neurogenic potential is abandoned and the NSC pool rapidly
depletes. Even though seizures trigger an initial boost of cell
proliferation, mainly accounted for the activation of NSCs, in
following weeks cell proliferation and neurogenesis diminish to
a minimum (Sierra et al., 2015). These results could explain the
chronic impairment observed in two rat models of temporal lobe
epilepsy (TLE; Hattiangady et al., 2004; Hattiangady and Shetty,
2010). They also are in agreement with part of the data obtained
from human samples and provide and explanation for them.

Because mesial TLE (MTLE) is often resistant to drugs, surgical
resection of the hippocampus as a last-resort therapeutic strategy
to stop seizures is frequently performed. These samples represent
a valuable source of tissue that can be analyzed without any of
the drawbacks of postmortem tissue, such as degradation and
overfixation.

Nestin-positive radial cells considered as putative NCSs were
not found in samples from adult MTLE patients, leading
the authors to suggest that the neural stem/progenitor pool
might be depleted by chronic seizure activity in humans
(Blümcke et al., 2001), a hypothesis that is supported in
rodents by studies showing how seizure indeed recruit and
activate NSCs in significantly manner (Huttmann et al., 2003)
that later translates into an almost total depletion of the
NSC pool (Sierra et al., 2015). Furthermore, ex vivo analysis
of hippocampal neurogenesis showed that even though the
epileptic human hippocampus could contain neural progenitors
(Blümcke et al., 2001), these were absent in epilepsy patients
with hippocampal sclerosis (Paradisi et al., 2010). The data
obtained, however, are not consistent and sometimes are even
contradictory when measuring other parameters. Using these
samples from intractable-MTLE patients it has been shown that
the immunoreactivity for PSA-NCAM (polysialic acid neural
cell adhesion molecule) a specific marker of neuroblasts, or
immature neurons, was lost in the neurogenic niche of the
dentate gyrus (Mikkonen et al., 1998). A similar result was
reported later, describing how the frequency and early onset of
seizures correlated with decreased adult neurogenesis (Mathern
et al., 2002). The mRNA expression of another marker of
neuroblasts, doublecortin (DCX), was also decreased in MTLE
patients compared to age-matched controls (Fahrner et al., 2007).
The protein levels, however, did not change significantly. In
contrast, an increase in the number of neural progenitors in
MTLE has been suggested based on the expression of Musashi,
a stem cell marker functionally related to self-renewal (Crespel
et al., 2005). However, the precise cell type expressing Musashi,
as well as the function of this protein in the adult hippocampus
has not been explored. More conflicting evidence regarding
proliferation in the MTLE hippocampus has been reported. For
instance, no significant change in proliferation was found by
labeling with Ki67 or minichromosome 2 (mcm2; Fahrner et al.,
2007), a DNA replication licensing protein; although another
study reported increased proliferation employing mcm2 (Thom
et al., 2005). In general it might be inferred that an initial wave of
proliferation could be followed by diminished cell division and
neurogenesis, and that the age of onset, frequency and severity of
the seizures will determine the neurogenic outcome in the long
run. It must be considered also that human samples are obtained
from individuals resistant to pharmacological treatment, which
might represent only a particular subset of patients of MTLE.

Aberrant Neurogenesis
One of the most common findings in experimental models of
MTLE, as well as in human samples is aberrant neurogenesis,
i.e., the generation of neurons with ectopic location (located
mostly into the hilus but also in the molecular layer), with
abnormal ultrastructural (Dashtipour et al., 2001) and
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morphological features including network reorganization
through mossy fiber sprouting (Parent et al., 1997), and with
altered electrophysiological properties (Scharfman, 2000;
Scharfman et al., 2003). One explanation for the ectopic location
of neurons in MTLE could be the loss of reelin. Seizures cause
death of the reelin-expressing interneurons that populate
the hilus; PSA-NCAM neuroblasts express the downstream
reelin signaling molecule Dab1; and in vitro, the migration
of neuronal precursors is altered by manipulating the levels
of reelin (Gong et al., 2007). The involvement of reelin could
explain the existence of different levels of aberrant neurogenesis
even when neurogenesis is greatly impaired (Murphy et al.,
2012; Sierra et al., 2015).It has also been shown, that in mice
lacking fibroblast growth factor (FGF) 22, ectopic location of
newborn neurons is significantly reduced, suggestion that FGF22
might be playing a role in seizure-induced abnormal migration
of neuroblasts (Lee and Umemori, 2013). Newly-born and
developing granule cells are more sensitive to seizures than the
mature and preexistent ones, and undergo noticeable changes
such as the abnormal development of basal dendrites (Walter
et al., 2007). The contribution of aberrant neurogenesis to MTLE
is still not fully understood. A positive correlation between the
number of ectopic newborn granule cells, mossy fiber sprouting,
and loss of mossy cells; and the frequency of seizures was found
in the intraperitoneal-pilocarpine model of mouse epilepsy
(Hester and Danzer, 2013). No conclusions on causality can be
extracted form that study. However, it has been recently shown
that reducing neurogenesis by triggering apoptosis in dividing
nestin-expressing cell reduced aberrant neurogenesis and lead
to a reduction of the frequency of chronic seizures, but not of
the severity or duration (Cho et al., 2015). This positive effect
could not be attributed only to decreased aberrant neurogenesis,
as “normal” neurogenesis was reduced as well. Importantly, the
positive effect on the frequency of spontaneous seizures was
abolished when the generation of reactive astrocytes following
the induction of seizures was impaired.

POTENTIAL MECHANISMS

GABA Signaling
Confirming previous results obtained in vitro, showing that
GABAA receptors are expressed in neural progenitors in vitro
(Farrant and Nusser, 2005; Ge et al., 2007), it has been more
recently reported how NSCs respond directly to GABA via
GABAA and GABAB receptors (Song et al., 2012; Giachino et al.,
2014). GABA released by paravalbumin-expressing interneurons
acts tonically on NSCs maintaining them in quiescence.
Administration of the GABAA receptor agonist muscimol
reduces the number of NSCs that enter the cell cycle whereas
knocking down of the γ2 subunit of the GABAA receptor induces
the activation of a higher number of NSCs. Interestingly, blocking
the action of GABA in NSCs not only increases activation but
also promotes symmetrical cell division (Song et al., 2012). In the
context of MTLE, and assuming that the results found in mice
regarding the massive activation and loss of NSCs (Sierra et al.,
2015) could be similar in humans, treatments based on activating
GABAA receptors (such as benzodiazepines) could be directly

beneficial as they would preserve neurogenesis by promoting
quiescence, and therefore preserving the NSC population. In a
similar fashion, both the knock-out of the GABAB1 receptor
and the infusion of its antagonist CGP54626A increased NSC
activation, although in this case an expansion of the NSCs
population, expected if symmetric division was augmented, was
not found. Administration of the GABAB1 receptor baclofen
decreased the number of NSCs in division (Giachino et al.,
2014). Interestingly neuroblasts are a major source of GABA
suggesting a retro-control or feedback mechanism for NSC
quiescence as GABA exerts a tonic inhibitory control of NSC
proliferation (Liu et al., 2005). In the SVZ, it was shown in vivo
that treatments with the GABAAR agonist muscimol decreased
cell proliferation and the number of label-retaining stem cells
(LRSCs), whereas the blockade of GABAAR signaling with the
specific inhibitor bicuculline increased mitosis and the number
of LRSCs (Fernando et al., 2011). The authors concluded that the
inhibitor bicuculline primarily increased the rate of division of
already cycling stem cells. However, more recent data in which
cycling cells were eradicated by using exposure to γ-radiation,
showed that muscimol or bicuculline delayed and increased
(respectively) the entry of quiescent NSCs into the cell cycle
(Daynac et al., 2013). In the hippocampus, during the progression
of the MTLE alterations of the GABAergic neuronal circuitry
also take place (Maru and Ura, 2014), which in turn could affect
directly NSCs. Interestingly tonic GABAergic signaling from PV
can prevent their proliferation and subsequent maturation or
return them to quiescence if previously activated (Moss and
Toni, 2013; Song et al., 2013). Moreover, PV interneurons are
capable of suppress neurogenesis during periods of high network
activity and, on the other hand, facilitate neurogenesis when
network activity is low (Song et al., 2012). The efficacy of
GABAergic synaptic inhibition is a principal factor in controlling
neuronal activity. Recent studies demonstrated that GABAA-
based synaptic inhibition is decreased in the hippocampal CA1
area of patients with intractable MTLE (Maru and Ura, 2014).
It remains to be elucidated what happens in local PV circuitry
during seizures and if stimulation of PV in this context could be
a therapeutic tool to control NSC massive activation.

Finally, another manner in which GABAergic interneurons
regulate excitability is through direct action of a 36-amino acid
peptide called neuropeptide Y (NPY; Colmers and El Bahh, 2003)
and norepinephrine (NE; Jhaveri et al., 2015). Both are potent
endogenous anticonvulsants (Erickson et al., 1996; Baraban et al.,
1997; Woldbye et al., 1997; Szot et al., 1999; Weinshenker et al.,
2001). Gene expression of NPY has been found to be upregulated
in the hippocampus either after induction of seizures or ECS
(Gruber et al., 1994; Kragh et al., 1994). It has been speculated
that both transmitters, NPY and NE, likely dampen excessive
excitation of neurons in brain regions implicated in epileptic
seizures. However, recent findings have been demonstrated that
both peptides are able to independently promote proliferation of
hippocampal neural stem and progenitor cells (Decressac et al.,
2011; Jhaveri et al., 2015). These findings propose that aberrant
neural activity is a master key to provoke deregulation of the fine-
tuning control of NSC activation and progenitor proliferation.
Therefore, GABAergic input seems to be a key regulator of NSCs
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activation and neurogenesis, as it also has effects on other steps
of the neurogenic cascade, namely survival and differentiation of
neuronal progenitors (Ge et al., 2007; Song et al., 2012; Giachino
et al., 2014). However, other regulatory pathways might exist and
unveiling their interplay will provide the ultimate understanding
of NSC activation in physiological conditions.

Other Mechanisms
Up to date it was believed that mitogenic factors participating
on the induction of neurogenesis were released by dying neurons
and reactive glia. In severe epilepsy such asMTLE the progression
of the disease leads to a severe neuronal loss in the hippocampus
(Dericioglu et al., 2013). The release of mitogenic factors can
be, however, faster. After generation of seizures Shh protein
from Hedgehog signaling pathway, growth factors such as FGF-
2, neurotrophins such as BDNF were found to be acutely
upregulated in hippocampal tissue before there was neuronal loss
and then progressively diminished in chronic epilepsy (Riva et al.,
1992; Lowenstein et al., 1993; Gall et al., 1994; Shetty et al., 2003,
2004; Hattiangady et al., 2004). The majority of these factors
were upregulated during acute seizures, potentially reflecting an
initial response to neural activity (as it happens also in ECS),
independently of neuronal cell death.

BDNF Neurotrophin
Hippocampal network activity stimulates transcription of the
Brain-derived neurotrophic factor (BDNF) gene and the
translation of Bdnf mRNA (Mattson, 2008; Kazanis et al.,
2010). BDNF is neuroprotective in a wide variety of brain
pathologies (Zeev et al., 2009; Zuccato andCattaneo, 2009). In the
hippocampus BDNF is able to modulate synaptic transmission
(Huang and Reichardt, 2001; Waterhouse and Xu, 2009), and
in the cortex, it participates in the maturation of GABAergic
inhibitory networks (Huang et al., 1999; Hong et al., 2008).
Locally synthesized BDNF in dendrites of granule cells promotes
differentiation and maturation of progenitor cells in the SGZ
by enhancing GABA release from PV GABAergic interneurons
(Waterhouse et al., 2012). Several studies have determined that
seizure activity is able to increase both mRNA and protein
levels (Bengzon et al., 1993). Other studies suggest that an
upregulation of BDNF levels could contribute to epileptogenesis
(Binder, 2004; Lähteinen et al., 2004), although at the same
time it was proposed that its upregulation could be protective
for neurons from excitotoxicity (Wu et al., 2004; Pérez-Navarro
et al., 2005). Regarding neurogenesis, BDNF is a neurotrophin
that promotes proliferation of human fetal neural stem and
progenitor cells in vitro (Zhang et al., 2011) and it is a potent
regulator of the survival and differentiation of adult NSCs (Park
and Poo, 2013), suggesting another mechanism linking the effect
of hyperexcitotoxycity on stem cell activation and neurogenesis.
I has been shown that in glioma-cell populations containing
cancer stem cells BDNF is able to increase directly cell division
through Akt activation and PTEN inactivation (Tamura et al.,
1999; Bertrand et al., 2009). Although Akt and PTEN also has
been independently implicated in the proliferation of neural stem
and progenitor cells (Amiri et al., 2012; Cai et al., 2014) it remains
to be elucidated whether BDNF is the direct regulator.

Stimulation by FGF
Neuronal activity also can regulate growth factors such as basic
FGF(bFGF) and FGF-2 (Riva et al., 1992). FGF-2 overexpression
increases excitability and seizure susceptibility (Zucchini et al.,
2008) and is acutely overexpressed after seizures (Indulekha
et al., 2010). It is well stablished that the morphology of reactive
astrocytes is controlled by FGF signaling. In a recent work
Goldshmit et al. demonstrated this pleiotropic cytokine is able
to decrease gliosis and increase radial glia and neural progenitor
cells in spinal cord injury (Goldshmit et al., 2014). However, Kang
et al. demonstrated that FGF signaling in brain is responsible for
astrocyte hypertrophy in response to an inflammatory stimulus
(Kang et al., 2014). Previous studies demonstrated that the
expression of FGF-2 and its receptors is induced in astrocytes
after epileptiform activity using KA injections in rats (Van Der
Wal et al., 1994). FGF signaling is a strong mitogenic factor
in vitro and in vivo when injected subcutaneously or in an
intravitreal manner, stimulating cellular proliferation including
astrocytes (Lewis et al., 1992; Wagner et al., 1999). In addition,
in FGF-2 knock-out mice, intraperitoneal KA injection fails to
trigger an increase in cell proliferation, as it does in wild-type
mice (Yoshimura et al., 2001). These results support the idea that
endogenously synthesized FGF-2 is necessary to stimulate adult
hippocampal neurogenesis after brain insult. Interestingly, in the
early phase of acute epilepsy FGF-2-expressing reactive astrocytes
are observed (Erkanli et al., 2007). However, FGF-2 expression
declines considerably in human chronic epilepsy (Hattiangady
et al., 2004), with a decrease in parallel of the number FGF-
2-positive reactive astrocytes (Erkanli et al., 2007). Reactive
astrocytes persist in the chronically epileptic hippocampus, but
it remains unclear whether reactive astrocytes that emerge in the
early phase after SE persist for prolonged periods of time, or there
is turnover and new reactive astrocytes are added progressively.
The involvement of FGF signaling in the transformation of NSCs
into hypertrophic reactive astrocytes (Sierra et al., 2015) has not
yet been addressed.

Sonic Hedgehog Signaling
Sonic hedgehog (Shh) signal acts directly on the astrocytes
and is sufficient to provoke stem cell response in both models
in vitro and in vivo (Sirko et al., 2013). Shh is one of three
ligands for hedegehog (Hh) signaling in mammals (Washington
Smoak et al., 2005). When secreted glycoprotein Shh binds
Ptc receptor on the cell surface it relieves the inhibition of
Smo. Activated Smo goes to the nucleus and triggers the
activation of transcription factors, which regulate proliferation,
migration, and differentiation. Mice lacking Smo in NSC during
development have a small DG with reduced proliferation and
reduced generation of neurons (Breunig et al., 2008; Han et al.,
2008).

Previous studies of ECS observed a strong and robust increase
of Hh signaling through Ptc upregulation and a rapid and
reduction of Smo in the hippocampal DG, proposing that both
acute and chronic ECS enhanced Shh signaling in the adult
hippocampus (Banerjee et al., 2005). In other experiments using
the Smo antagonist cyclopamine Lai et al. observed a reduction
of hippocampal neural progenitor proliferation in vivo (Lai et al.,

Frontiers in Neuroscience | www.frontiersin.org 4 March 2016 | Volume 10 | Article 74

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Pineda and Encinas Seizures and Hippocampal Neurogenesis

2003). In agreement with the effects of ECS, synaptic activity
involving glutamatergic transmission is proposed to regulate
Smo protein, suggesting additional roles for Hh signaling in the
control of hippocampal functions (Palma et al., 2005). In the
KA model of epilepsy, Shh expression and release by astrocytes
induces its own activation in a positive feedback loop, boosting
further autocrine Shh release which translates ultimately into
increased astrocytes proliferation and conversion into reactive
astrocytes (Pitter et al., 2014). One study documented increased
expression of Shh by neurons in the epileptic temporal lobe
of human and experimental rats, although the consequences of
elevated Shh were not studied (Fang et al., 2011).

CONCLUSIONS

Even though the relationship between epilepsy affecting the
hippocampus and adult hippocampal neurogenesis has been
known for almost two decades, many basic questions remain
unsolved. One of the characteristics of the studies published
so far is the apparent differential or even contradictory results
among them. More than perceiving these controversial results
as fruit of inconsistencies due to different animal models

and the impossibility to control certain variables (especially
when analyzing human tissue), we believe that they are
reflecting the overwhelming biological plasticity of neurogenesis.
Alterations of neurogenesis in different directions (excessive,
aberrant and impaired neurogenesis) in the pathophysiology
of epilepsy might be relevant to explain at least some of
the cognitive symptoms associated to this disorder and we
therefore conclude that further research should be carried
out with an open mind in lieu of the variety of possible
outcomes.
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