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Historically, approaches used in manual medicine to explain patient reported symptoms

have been focused on the so-called exteroceptive paradigm. Arguably, this mindset

lacks an appropriate “reading system” able to interpret musculoskeletal disorders from

a different perspective, where the properties of the nervous system are embraced

into a more holistic and functional-related context. Interestingly, if the underpinning

mechanisms of a given treatment scenario/effect are taking into account, the majority

of research outcomes focuses on a proprioceptive/exteroceptive explanation, leaving

ting aside the additional or even central role of interoception. Currently, to date, the

application of theoretical knowledge acquired on the relatively recent neuroscientific

concepts and evidence concerning of interoception, sensitization, touch, autonomic

functions, inflammation, and pain into a clinical/research manual medicine scenario is

lacking, even if theoretically, the impact on the possible etiological mechanisms and

treatment effects seems to be important. Here, we propose the conceptual foundations

for a new way of interpreting and reading patients’ clinical reported outcomes scenario

based on interoception and sensitization. We argue that this will provide a foundation

to create the ground for future research focusing on the hypotheses that manual

therapies, specifically osteopathy, can intercede with sensitization states, at all levels,

using interoceptive pathways.

Keywords: osteopathic medicine, autonomic nervous system, interoceptive paradigm, allostasis, homeostasis,

inflammation, nociception

INTRODUCTION: INPUT—CENTRAL ELABORATION—OUTPUT

Interoception can be described as the moment-to-moment representation process of body
sensations coming from the body itself (Craig, 2002). A broader definition considers interoception
as a multi-dimensional construct, which includes how people evaluate and react to these
sensations (Cameron, 2001). Interestingly, several health problems involve altered interoceptive
processes, including chronic pain (Schmidt et al., 1989), post-traumatic stress disorder (Wald and
Taylor, 2008), affective disorders (Paulus and Stein, 2010), addiction (Naqvi and Bechara, 2010),
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eating disorders (Pollatos et al., 2008; Herbert and Pollatos,
2014), somatoform disorders (Mirams et al., 2012; Schaefer et al.,
2012), and dissociative disorders (Hankin, 2012; Michal et al.,
2014; Sedeno et al., 2014).

Sensitization is defined as the neurologically-based
amplification response produced by repeated stimuli. To
date, evidence consistently highlights that several subgroup
of patients, with or without pain-related syndromes, exhibit
a documented sensitization (Table 1). Notwithstanding this,
it is still unclear how to recognize a sensitization state using
clinical objective measure and tests (see Nijs et al., 2010, for
guidelines).

The close link between interoception and sensitization (Flor
et al., 2004), the individual time-course responses to sensitization
(Baron et al., 2013) and the interpersonal clinical variability,
create a scenario in which practitioners have to deal with a
range of clinical circumstances possibly characterized by the
following:

1. unexplainable symptoms, i.e., chest pain may depend upon
aberrant pain processing from the esophagus due to
sensitization of spinal dorsal horn cells and supraspinal
centers (Mertz et al., 1998);

2. indecipherable pathogenesis, i.e., angina attack could be
referred to the site of an old vertebral fracture (Henry and
Montuschi, 1978);

TABLE 1 | List of documented medical conditions with documented

sensitization state.

Medical condition References

Neuropathic pain Baron et al., 2013; Nijs et al., 2014

Chronic pelvic pain Baron et al., 2013

Irritable bowel syndrome Verne and Price, 2002

Rheumatoid arthritis Meeus et al., 2012

Chronic whiplash associated

disorders

Curatolo et al., 2001

Endometriosis Giamberardino et al., 2014

Migraine Aguggia et al., 2013

Chronic low back pain Giesecke et al., 2004

Tension-type headache Ji et al., 2003

Fibromyalgia Vierck, 2006

Temporomandibular disorders Maixner et al., 1998

Shoulder pain Borstad and Woeste, 2015;

N Sanchis et al., 2015

Primary, secondary, and

widespread hyperalgesia

Bourke et al., 2015

Allodynia Coppola et al., 2013

Spontaneous pain Baron et al., 2013

Hypersensitivity to bright light,

mechanical pressure

Nijs et al., 2010

Cold temperature Kasch et al., 2005

Heat temperature Meeus et al., 2008

Electrical stimuli Banic et al., 2004

Stress, emotion and mental

load

Nijs et al., 2010

3. clinical heterogeneity, considering the autonomic effects as
relevant co-aspect of patient’s clinical manifestations;

4. causal clinical validity of instrumental exams, i.e., the disease
progression of osteoarthitis seems to be better associated with
sensitization than with the actual joint destruction assessed by
radiological scorings (Arendt-Nielsen et al., 2010);

5. unintelligible treatment outcomes, i.e., referred muscle
hyperalgesia could persist even long time after
the disappearance of primary focus in the viscous
(Giamberardino, 2003);

6. unforeseeable prognosis, i.e., after an initial whiplash trauma,
the presence of a sensitization process is important to predict
the development of chronicity (Sterling et al., 2003);

7. clinical vs. scientific uncertainty of effects and mechanisms of
therapies.

The seven above-mentioned points could highlight common
heterogeneous scenarios in daily clinical practice, which in turn
could impair the practitioners’ ability to achieve better health
outcomes to their patients. However, the scientific neurological
underpinnings, mainly based on interoception and sensitization,
found in the last two decades of research, may arguably
revolutionize the way in which practitioners could “interact” with
their patient in the clinical context.

The aim of the present review is to introduce, discuss and
transfer the emerging concepts of interoception and sensitization
to the context of manual medicine, specifically osteopathy.
To this end, we propose an interdisciplinary, and innovative
paradigm (the “interoceptive paradigm”) to interpret patients’
signs and symptoms as well as patient’s phenomenological
changes and possibly use it for further clinical- and lab- based
research.

THE AFFERENT SYSTEM: THE INPUT
STIMULI TO THE CNS

The modern classification of the sensory system evolved from
the work of Sir Charles Sherrington who codified the senses
into teloreceptive (vision and hearing), proprioceptive (limb
position), exteroceptive (touch, including temperature and pain),
chemoreceptive (smell and taste), and interoceptive (visceral)
modalities (Sherrington, 1906). However, in the light of recent
findings on neurofunctional anatomy, the sensory system can
be divided into: teloreceptive, exteroceptive/proprioceptive (also
classified as A/sensory system), and interoceptive/nociceptive
(otherwise named B/sensory system; Craig, 2002). The
differences between A and B system arealso embryologically
proven: the development of small-diameter interoceptive
afferents originating from small (B) cells is coordinated with
the development of lamina 1 cells and represents a well distinct
entity from the large-diameter exteroceptive afferents originating
from large (A) cells that project to the deep dorsal horn,
not connecting with lamina I neurons (Prechtl and Powley,
1990; Woodbury et al., 2001). This embryological difference
implies not only different anatomical compounds (i.e., type and
distribution of receptors, type of primary afferent nerve fibers,
type of central afferent pathways), but also unique functional
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and physiological features (i.e., label lines, type of sensation—
epicritic vs. protopathic, fiber threshold, habituation process,
distinct phycophysically feelings). These characteristics generate
two clear and distinct roles in decoding external and internal
stimuli.

The stimuli can be diverse and organized by type—metabolic,
physics, chemical, mechanical, and fluidic—upon the function
of time—acute or chronic—frequency and intensity—low vs.
high. Therefore, the ability of the two sensory pathways to
detect variations (the major characteristics of any receptors)
producing action potentials, initiates the process of selectively
decoding stimuli coming from the outside and from the
inside. Consequently, animals have the ability to decode,
process, perceive the external (mainly using the teloreceptive
and exteroceptive that is the A/sensory system) and the
internal milieu (typically utilizing the interoceptive B/sensory
system).

INTEROCEPTION

Interoception has been recently reinterpreted by Craig as “the
sense of the physiological condition of the entire body” (Craig,
2002), not merely the input coming from the viscera as
historically described by Sherrington. This system is an ongoing
homeostatic afferent pathway, argued as the sensory complement
of the ANS (Craig, 2013), that carries signals from small-
diameter Adelta and C primary afferent fibers that represent the
physiological status of every tissue of the body. Once homeostatic
information from tissues are decoded, then they are conveyed up
to the anterior insula after making synaptic relays at different
levels (spinal cord–lamina I and II, brainstem–homeostatic
regions, thalamus). At the insular level, a meta-representation of
the perception of self-emerged as a feeling (sentient) entity, which
is a pre-stage for emotional awareness. Detailed reviews of the
interoceptive evidence are available elsewhere (Craig, 2002, 2003,
2009).

Converging neurobiological evidence pointed out that the
insular cortex (IC) is a critical hub for multimodal interoceptive
integration. Thus, the IC has been implicated in interoceptive
processes, such as awareness of bodily sensations (Khalsa et al.,
2009), but also exteroceptive processes, such as perception of
pain (Brooks et al., 2002; Gramsch et al., 2014), taste (Gagnon
et al., 2014; Iannilli et al., 2014; Parabucki and Netser, 2014;
van den Bosch et al., 2014), smell (Kurth et al., 2010), and
touch (McGlone et al., 2014). Furthermore, emotional domains
overlap in the anterior insula together with the interoceptive
and exteroceptive scenario (Kurth et al., 2010), suggesting an
underlying commonality (Critchley et al., 2002). As matter of
fact, the insula has been proposed a convergence point between
internal and external milieus (Azanon and Soto-Faraco, 2008;
Mazzola et al., 2009; Azanon et al., 2010; Ibanez and Manes,
2012). In addition, it has been showed that external signals might
also be considered as body-mapped signals of an interoceptive
peripersonal space (Couto et al., 2015), particularly in the
context of pain where afferent signals could be conceived as
an extension of interoceptive processing to peripersonal space
(Ferri et al., 2013). Notably, based on new evidence emerging

from the field of touch in relation to interoception, it can be
proposed the existence of an “interoceptive touch” (also referred
as gentle/affective touch), which is mediated by low mechanical
threshold C fibers (named C-tactile fibers or CTs), and whose
analyses take place in the interoceptive stations, that is, lamina
II of the spinal cord, thalamus, insular cortex (McGlone et al.,
2014).

Taken together, available evidence indicates that sensory
information (like nociception and touch) may be integrated by
insular networks in a peripersonal-like fashion way and then
further processed by emotional awareness and social behavior
mechanisms.

CENTRAL ELABORATION: THE
SENSITIZATION STATE

Sensitization is generally defined as a non-associative learning
process in which repeated stimuli bring to a progressive
amplification of a response (Ursin, 2014). Sensitization has been
considered a form of “nociceptive” memory because of similarity
between its mechanisms with memory mechanisms (Ji et al.,
2003). Considering the neuroanatomical and neurophysiological
compound, it is possible to distinguish peripheral sensitization
(PS) from central sensitization (CS). PS is defined as an increased
responsiveness and, therefore, reduced threshold of nociceptors
to stimulation (Sandkuhler, 2009). It has been argued that it
has an protective role (Nijs et al., 2014) as increasing pain
sensitivity into the site of inflammation (Ji et al., 2003) can
prevent further damages (Sandkuhler, 2007). Indeed, PS is
characteristic of tissue where inflammatory mediators such as
prostaglandin E2, bradikinin, nerve growth factor, substance P
(SP) are released altering, in turn, threshold and kinetics of
receptors and ion channels of the nociceptive Adelta and C fiber
nerve endings (receptor’ sensitization). PS is clinically expressed
through primary hyperalgesia (increased pain sensitivity at site
of injury; Cervero, 2009; Sandkuhler, 2009) and allodynia (pain
in response to a non-nociceptive stimulus; Sandkuhler, 2009).
CS is a cellular process of increased excitability (Sandkuhler,
2007) that occurs within the CNS. CS includes altered sensory
processing in the CNS, such as: (1) alterations of the descending
inhibitory pathways arising from the periacqueductal gray matter
and the rostral ventral medulla (Meeus et al., 2008), (2) temporal
summation of second pain (wind-up; Arendt-Nielsen et al.,
1994).

Historically, along the CNS, the spinal cord is the first station
in which CS was found. Spinal cord sensitization is characterized
by: (1) reduced threshold, (2) increased receptive field sizes, and
(3) greater evoked responses in hyperexcitable spinal neurons
of dorsal horn as a result of a short barrage of nociceptor
input (Woolf and Wiesenfeld-Hallin, 1986; Woolf, 1993). The
phenomenon is known as “activity-dependent CS” (Ji et al.,
2003) or “homosynaptic facilitation,” and is characterized by the
release of several neurotransmitters including SP (see Ji et al.,
2003; Sandkuhler, 2009 for reviews). Spinal cord sensitization
is a multifaceted phenomenon that has at least three, albeit
secondary, actors: (1) A-afferent system, (2) spinal glial cells,
and (3) ventral horn motoneurons. (1) Following both peripheral
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inflammation and nerve injury, it has been showed a phenotypic
switch in some large A-system (non-nociceptive), DRG neurons
that begin to express key molecules typical of CS, that is SP
and BDNF (Neumann et al., 1996; Mannion et al., 1999). (2)
Spinal glial cells have an intermediary role between the initial
insult and neuronal plastic changes leading to pain amplification
(Sandkuhler, 2009), and microglia in dorsal horn seems to
have a particular role in inducing neuropathic pain (Watkins
et al., 2001). Notwithstanding this, after a peripheral injury
or inflammation, microglia (Aldskogius and Kozlova, 1998),
and astrocytes (Lee et al., 2009) in spinal dorsal horn rise in
number. (3) Although research on CS only indirectly focuses
on ventral horn motoneurons by using the withdrawal reflex—
a surrogate of enhanced nociception (Sandkuhler, 2009)—,
recently it has been described a direct bradykinin-mediated
sensitization of spinal lumbar motoneurons of rats (Bouhadfane
et al., 2015).

Although, the precise mechanisms remain still understudied,
it appears that a mixed of events is necessary to start and sustain
the sensitization state in the spinal cord, clinically mainly showed
with secondary hyperalgesia, that is an increased pain sensitivity
in an area adjacent to the site of injury (Sandkuhler, 2009).

Several research studies have been conducted to examine
neuronal sensitization at higher levels along the interoceptive
pathway, in particular: (a) spinothalamic tract (Simone et al.,
1991;Willis, 2002); (b) brainstem: rostroventral medulla (Porreca
et al., 2002); and trigeminal nuclei (Hu et al., 1992)—especially
trigeminal subnucleus caudalis (Cao et al., 2013; Wang et al.,
2013); (c) diencephalum, thalamic neurons (Park et al., 2006;
Kaneko et al., 2011), in the thalamic-anterior cingulate pathway
(Shyu and Vogt, 2009), hypothalamic neurons (Peng et al.,
2011; Daviu et al., 2014; Donnerer and Liebmann, 2015), in
the hypothalamic-pituitary-adrenal axis (Daviu et al., 2014); (d)
telencephalic level, including the anterior cingulate cortex (Wei
and Zhuo, 2001), amygdala (Neugebauer and Li, 2003), and
insular cortex (Qiu et al., 2014).

Collectively, the studies on sensitization begin to show that
the PS is a well-studied phenomenon with clearly identified
biological pathways. On the contrary, a part from spinal cord
sensitization, CS is still an on-going area for research, which
showed several characteristics according to the neuronal level
considered, but a unified central sensitization state scenario is still
lacking.

THE EFFERENT SYSTEM: THE
VEGETATIVE-SOMATIC DICHOTOMY

The efferent pathway might be divided into a “somatic” and
“vegetative” systems throughout the central (upper neuron)
and peripheral (lower neuron) nervous system. The “somatic”
system is composed by all those tracts which control the motor
movements, the “vegetative” pathway generates control on all the
functions out of the control of the conscious self.

Vegetative Output
John N. Langley coined the terms “autonomic nervous system”
and “parasympathetic nervous system” about the turn of

the twentieth century (Langley, 1921), to describe a system
that is autonomous, involuntary, and regulates the body’s
“inner world.” However, the classical distinction between
sympathetic and parasympathetic has been recently reviewed in
the light of differential responses to stressors and differential
involvement in pathophysiological states (Buijs et al., 2003;
Buijs, 2013) between the various parts of the autonomic
nervous system (ANS). Goldstein proposed that the ANS has at
least five components with specific functions: the sympathetic
noradrenergic system, the sympathetic cholinergic system, the
parasympathetic cholinergic system, the sympathetic adrenergic
system, and the enteric nervous system (see Goldstein, 2001,
2006, 2013b; Goldstein and McEwen, 2002, for reviews). In
addition, the ANS should not only be seen as a system merely
carrying out the commands of the brain; it also functions as
a reflex circuit, using the sensory feedback of the organs, to
change and precisely adapt the its output in order to adjust the
physiological state of the body.

Although much is known about the organization of the
ANS output to organs, there is relatively little knowledge
regarding the feedback of organs to the brain. It is safe
to assume that every organ has the capacity to reach the
brain, i.e., via the release of hormones, and thus to provide
feedback to the control center of the ANS, mainly using
the interoceptive pathway. Most of these metabolic signals
may be aimed at regulating the function of the organ in a
“reflex” manner, but there is also evidence that this feedback
may influence the function of other organs, or behavior, via
neuronal sensory feedback (Uno et al., 2006; Warne et al.,
2007). This mechanism has been also described in the context
of inflammation as neurogenic inflammatory mechanism or
more recently “neurogenic neuroinflammation” (Xanthos and
Sandkühler, 2014) to define the participation of afferent nerve
fibers (mainly amyelinated afferent C fibers–B/afferent system),
using an antidromic transmission, to local inflammatory reaction
in response to local metabolic modifications due, for example,
to infection, trauma, stress, hormonal changes, thus variations
in the interoceptive milieu. The aim is to maintain the integrity
of the conditions of life within the internal environment,—
originally the “milieu intérieur” (Bernard, 1912) then extended
to “homeostasis” (Cannon, 1929)—through a mechanism of
allostatic adaptation (McEwen, 2007), which can involve the
release of key substances like SP, glucocorticoids, catecholamines,
and different cytokines (McEwen, 2007; Goldstein and Kopin,
2008).

The active process of responding to challenges is called
“allostasis.” This involves several mediators, including
autonomic, cortisol, immune/inflammatory, metabolic, and
neuromodulators within the brain, that interact non-linearly and
promote tuning adaptation in the short term. Overuse (i.e., too
much stress) or dysregulation among the mediators (e.g., too
much or too little cortisol; too much or too little inflammatory
cytokines) can produce cumulative changes that is referred
to as “allostatic load and overload” (McEwen, 1998), which
in turn can produce sensitization state. This allostatic load, a
wear and tear response, produced by the repeated activation of
adaptive mechanisms, can last for long and eventually result
in a significant alteration of physiological resilience systems
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(McEwen et al., 2015a,b), which can produce exacerbation of
clinical symptoms, including chronic pain.

In addition, several studies demonstrated as the neurogenic
inflammation may be evident also at a distant site from the
original exposure (Black, 2002). This can be established through
the use of different but specific metabolites (i.e., SP), mechanisms
(i.e., axon reflex, reverberation), and systems (i.e., immune
system; see Xanthos and Sandkühler, 2014, for a review).
Furthermore, recent available evidence suggests that neuronal
activity in primary afferent peptide C nerve fibers or higher-
order neurons is sufficient to elicit neurons in the spinal cord,
vascular cells and innate and adaptive immune cells (Xanthos and
Sandkühler, 2014).

Interestingly, the central control of the outflow of sympathetic
nervous information is strategically organized as a long chain
of motor neurons in the intermediolateral column of the spinal
cord. This segmental organization allows the ACh-producing
motor neurons to establish synapses with different and multiple
ganglions along the spinal cord which contain neurons that use
different neurotransmitters (i.e., noradrenaline/norepinephrine,
neuropeptide Y; Lundberg et al., 1983). This anatomical
and functional scenario permits to widen the vegetative
output responses to different organs and tissues, creating the
neurological ground formodifying the functions of distant bodily
sites.

Muscle-Skeletal Output (Alfa Gamma
Precision and Strength)
The second output pathway is the somatic efferent that is
characterized by a central and peripheral component. The
former is based on a series of tracts, which transport different
information from different brain areas (i.e., motor cortex,
cerebellum, basal ganglia, forebrain, midbrain) addressing
different functions. The latter is characterized by specific
efferent somatic neurons (alfa, beta, and gamma motorneurons)
interconnected in a fashion-like function (i.e., alfa-gamma
coactivation mechanism) controlling the striate muscles of the
all body for precision and strength (cortico-spinal tract from
the motor cortex), adjustment of head position in response
to visual/auditory information (tetto-spinal tract from the
superior/inferior colliculi), balance adjustment (cerebellum-
spinal tract–cerebellum, rubro-spinal tract–red nucleus, reticulo-
spinal tract–reticular formation).

Integration Between the Two Systems
The interconnection between the two systems is clear both
from a neurological and metabolic perspective. Neurologically,
vegetative output, and muscle-skeletal output are centrally
integrated and reciprocally modulated in many areas of neural
axis. Furthermore, are both integrated with the neuroendocrine
system, allowing a high-complex level of integration, crucial
to reach a coordinated response to ensure homeostasis (Jänig,
2006). Metabolically, nerves, both somatic and autonomic,
are intimately associated with inflammatory cells; this is
especially true of mast cells which resemble nerve cells in
many respects (Purcell and Atterwill, 1995) and confirmed
in the bradykinin-induced plasma extravasation inflammation

model (Janig and Green, 2014). Moreover, recent evidence
showed a mutual somato-vegetative relationship through the
activation of an immune-mediated pathway (Sankowski et al.,
2015).

CLINICAL APPLICATIONS AND
IMPLICATIONS

“Scientific integrative medicine is not a treatment method or
discipline but a way of thinking that applies systems concepts to
understand normal physiology and clinical disorders, providing
a framework for understanding complex and dynamic challenges
to our integrity as organisms and, in turn, for developing novel
treatments based on this complexity and dynamism” (Goldstein,
2013b, p. 16).

According to the homeostasis theory, stress is considered
a state or a condition, in which expectations mismatch the
perceptions of the external or internal environment (Goldstein
and McEwen, 2002). This incongruity produces patterned and
compensatory responses that can change not only the physiology
of a target organ but also the general bodily reaction. Stress can
be interpreted in terms of an error signal, due by different sources
or triggers (i.e., traumatic injury, psychological condition, genetic
and/or acquired diseases), which can reflect the difference
between input information as felt, neural central “multimodal”
elaboration and a series of effects determined by a regulator,
possibly the ANS (Goldstein, 2013a). This concept has an
intuitive clinical practice application for interpreting the patient’s
clinical history and treatment effects.

Implications in Manual Therapy,
Specifically in Osteopathy
As general rule, the above-mentioned concepts can be applied
at any (para-) medical approach including those methods that
use a touch-based practice. For the purpose of this review,
the following section will focus more on the translation
of sensitization and interoception concepts into the field of
osteopathy, a drug-free manual medicine approach, which uses
touch and manipulation as procedures to diagnose, evaluate
and treat (Cerritelli et al., 2015a,b). Osteopathic procedures
include a structural evaluation followed by a treatment. The
structural evaluation aims to diagnose somatic dysfunctions.
It includes an accurate manual assessment of the skull, spine,
pelvis, abdomen, upper, and lower limbs to locate bodily areas
with an alteration of specific tissue parameters. The treatment
includes the application of a range of manipulative techniques
aimed at relieving the somatic dysfunctions. Notwithstanding the
osteopathic interest, one of the goals of the current review is to
propose a modern clinical neuroscience-based praxis to “read
and interpret” patients’ signs and symptoms, which can be widely
shared across disciplines.

Very little research explored the effect of osteopathic
manipulation on brain functions. Fryer et al. pointed out that the
application of a single high-velocity low-amplitude lumbosacral
joint osteopathic manipulation decreases the corticospinal
and spinal reflex excitability measured with TMS and EMG
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suggesting an inhibitory effect at the level of the spinal cord
(Fryer and Pearce, 2012).

Moreover, OMT seems to be associated with a reduction
of pro-inflammatory substances both in vitro (Meltzer and
Standley, 2007) and in vivo (Licciardone et al., 2012, 2013)
hypothesizing an anti-inflammatory role of OMT, although
only partially confirmed by recent clinical-based research
(Degenhardt et al., 2014).

Osteopathic manipulations, therefore, could reduce the
release of cytokines and the sympathetic activity creating a
cascade of biological and neurological events that modulate
the inflammatory and ANS mechanisms. The application of
OMT was demonstrated to influence the ANS, producing a
parasympathetic effect (Henley et al., 2008; Giles et al., 2013;
Ruffini et al., 2015) and leading, therefore, toward a trophotropic
tuning state (Ruffini et al., 2015). Remarkably, no differences
were found in sham light-touch control in which only a simple
touch was used. This might imply that a “technical” touch must
be administered to produce effects. Thus, the operator and its
education have a central role.

More recently, starting lab-based evidence showed the effect
of specific osteopathic techniques on the enhancement of the
lymphatic and immune system (Schander et al., 2012, 2013)
by improving the leukocytes count and interleukin-8 (IL-
8). Findings were confirmed by a recent 2014 paper where
significant differences were detected in the levels of immune
molecules, including IL-8, between OMT and sham light-
touch control (Walkowski et al., 2014). OMT, therefore, could
also have an effect on the immunological profile of specific
circulating cytokines and leukocytes. As suggested by Xanthos
and Sandkühler, treatments and interventions that are targeted
at various levels to inhibit the source of inflammation and
neuroinflammatory processes, or to promote the resolution
of inflammation, would be recommended to interrupt the
neurogenic neuroinflammatory vicious cycle (Xanthos and
Sandkühler, 2014). Hypothesising that the osteopathic treatment
would fulfill those requirements, in particular the anti-
inflammatory action, it could be argued that being exposed
to osteopathy can terminate neuroinflammation and reduce
pathological outcomes.

However, although starting evidence tried to explore how
osteopathy might work, there is no consensus regarding which
“channels” osteopathy uses to produce its effects. In fact,
the diagnostic knowledge of manual medicine historically is
based and built on the prevalently exteroceptive consideration
of symptom (i.e., postural interpretation, muscular chains)
through the pure “muscle-skeletal paradigm” or “exteroceptive
paradigm” in which (1) proprioceptive/exteroceptive afferent
activity is integrated in (2) the central motor systems and (3)
the output goes out through the Sherrington’s final common
pathway (alfa-gamma motor neurons of anterior horn of spinal
cord). This kind of “exteroceptive paradigm” has been used,
for example, in Korr’s hypothesis of hyperactive monosynaptic
stretch reflex as explanation for the reduction of range of
motion (ROM) (Korr, 1975; Howell et al., 2006). However,
considering the routinely clinical practice, it is important for
clinicians to recognize that feelings from the body, such as

pain, are neurologically distinct from tactile mechanoreception
and proprioception at all levels. In fact, osteopathic medicine
(OM) practitioners face daily clinical cases that cannot be
fully explained by the “exteroceptive paradigm” as it lacks
of a “clinical reading system” which is able to consider the
patient as a whole and not merely a muscle-skeletal body
entity. Thus, a wider approach, able to possibly better explain,
evaluate, link and predict patients’ signs and symptoms is
recommended.

Here we propose the “interoceptive paradigm” in which (1)
altered (acutely and chronically) interoceptive information lead
to (2) neurological “sensitization states” (SS) that express their
dysfunction through (3) an altered firing of the autonomic
nervous system (ANS), which in turn (4) brings the peripheral
tissue to an hypersensitivity state and, thus, creating the
ground for a (5) vicious metabolic and neurologic cycle
(positive feedback loop) and rapid system failure (Figure 1). The
recognition of this paradigm will impact the clinical practice with
several advantages/benefits:

• Appropriate clinical interpretation of symptoms with respect
to the causal and pathogenetic aspects;

• Pertinent ability to “read” and “elucidate” the clinical history,
linking aspects related to organs functions, neurology, and
pathophysiological adaptation/compensation;

• Adequate comprehension of roles in themutual doctor-patient
relationship.

Although, according to some authors (Sandkuhler, 2007;
Cervero, 2009), sensitization is a status of increased excitability
at the cellular level, it can be also used in a broader perspective,
at clinical and behavioral levels (Coppola et al., 2013; Ursin,
2014), to describe an increased sensitivity to pain or an increased
excitability of the central nervous system (CNS). It has been
shown that an input is necessary to start, sustain, or impair
the sensitization process (Melzack et al., 2001; Affaitati et al.,
2011; Baron et al., 2013). Being stimulus-dependent, sensitization
can be seen has an adapting response of CNS to environmental
challenges presenting through the nociceptive afference that
not necessarily has to become subjectively perceived (Treede
et al., 1999; Kidd and Urban, 2001; Sandkuhler, 2009). This
is remarkable from a case history taking and, more generally,
a diagnostic point of view. From a therapeutic perspective, it
is important to consider that touch could be a potential input
able to modify the sensitization state. Indeed, emerging evidence
showed the relevance of a gentle/affective touch to elicit CT
fibers and therefore modulate the interoceptive pathway. This
produces a central reaction which in turn evokes a series of
neurological events that brings the ANS to respond to a given
stimulus. This type of touch is different from the well-known
“exteroceptive touch” that is mediated by the low-threshold
mechanoreceptors (LTMs) innervated by Abeta afferents. This
“exteroceptive touch” is able to rapidly detect, discriminate and
identify external stimuli to prepare an appropriate sensorimotor
transformation. On the contrary, CTs, found only in hairy
but not glabrous skin, respond to slow (1–10 cm/s), weak
(0.3–2.5 mN), mechanical stimuli (Perini et al., 2015). It has
been shown that CTs are also temperature tuned at 32◦C
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FIGURE 1 | Neuronal activity in physiological and sensitization processes. The figure schematically shows the antithetic processes and relative outcomes

occurring in physiological (Php) and neurological sensitization process (NSp) after that a stimulus (noxious stimuli, inflammation, wound, trauma) activates the

nociceptive afference (box A). Physiologically, antidromic activation of C fibers, the so-called neuorogenic inflammation, and specific autonomic efferences (box B)

sustain peripheral healing process restoring both homeostasis and physiological ongoing interoceptive-centrifugal communication between periphery and CNS (box

CPhp). In the right column (pink boxes) lacking of resolution of peripheral inflammation sustains nociceptive afference with a consecutive amplification of centrifugal

phenomena (boxes CNSp – DNSp) that can become maladaptive or neurotoxic, see Xanthos and Sandkuhler for details (Xanthos and Sandkühler, 2014). Maintenance

(Continued)
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FIGURE 1 | Continued

of this metabolic-neurological TISSUE-CNS vicious cycle (box ENSp)could bring to PS (1) and CS (2) as well as to a never-ending self-maintenance inflammation state

(3) (box FNSp). Several therapies (box FNSp), including OMT, could be theoretically administered to solve neurological sensitization in different clinical conditions where

PS and/or CS are present. CNS, central nervous system; ANS, autonomic nervous system; PS, peripheral sensitization; CS central sensitization; SP, substance P;

CGRP, calcitonin gene-related peptide; ATP, adenosine triphosphate; BDNF, brain-derived neurotrophic factor; NPY, neuropeptide Y; SOM, somatostatin; CB,

cannabinoid; DAMP, danger associated molecular patterns; OMT, osteopathic manipulative treatment; NSAIDs, non-steoridal anti-inflammatory drugs; CAM,

complementary alternative medicine.

and are associated to sensual touch (Ackerley et al., 2014;
Perini et al., 2015) suggesting not only a socially-relevant
function (Perini et al., 2015) but also a possible role in the
neurodevelopment during the perinatal period (Bystrova et al.,
2009).

Translating this evidence into a clinical touch-based manual
medicine perspective, although the role of CTs in pain
modulation (especially allodynic experience) remains an open
question (Nagi et al., 2011; Delfini et al., 2013), the interoceptive
affinity of a well determined type of touch able to activate
CTs provide a rational basis for complementary medical
approaches like therapeutic touch (Craig, 2013). In addition,
these findings reveal that feelings from the body, such as
pain, are inherently linked with autonomic conditions, such
as plasma extravasation or cardiac rhythmicity, because they
are, respectively, sensory and motor aspects of the same
homeostatic system. Moreover it is important to consider
that also the exteroceptive touch mediated by low-threshold-
mechanoceptors could modulate efferent activity of the ANS,
especially locally (Jänig, 2006; Craig, 2014). Thus, the relationship
between manual therapies effects, specifically osteopathy, and
interoception implications can be argued at the light of
the prevailing neuroscience literature, although not formally
tested.

Continuing to translate neuroscientific paradigms into
osteopathy, interestingly, Livingstone (1943) proposed that the
afferent activity produced by injured peripheral nerves elicits an
abnormal firing pattern within the spinal cord. The author argued
that a disturbance occurs in an internuncial pool of dorsal horn
interneurons resulting in reverberatory activity that spreads to
various areas of the spinal cord, including the sympathetic chain.
Increased activity in sympathetic output would interfere with
vasoregulation and induce further hypersensitivity of peripheral
tissue, leading to increased afferent input and a vicious circle
of peripheral-central activity. If this process lasts for long,
then a sensitization state is produced, as described above.
Therefore, if the osteopathic touch is supposed to produce
an anti-inflammatory and hyper-parasympathetic effect, it can
be argued that, potentially, modulating the vegetative firing,
it can produce positive feedback effects on the sensitization
state.

As final remarks, it is paradoxical the difference between
the presence of interoceptive and sensitization phenomena in
osteopathic clinical practice, and the almost absence of these
concepts in the philosophical, diagnostic, and therapeutic
body of OM. This paradox becomes dramatic considering the
neurological “qualitative” nature (intero/nociceptive) of the
ultimate symptom faced in medical setting: the pain. As Craig

argued, from a therapeutic perspective it is relevant to consider
that when patients report their symptomatology they are possibly
giving a description of the condition of homeostatic systems
(Craig, 2013). However it is uncertain patients’ accuracy in
describing internal states (Petersen et al., 2015). As a matter
of fact, it could be important listening to and reporting the
spontaneous patients’ feelings during the treatment phase.
It might represent a potential online homeostatic/allostatic
feedback, which can be used for optimizing the treatment
plan. In addition, it is important to consider that patients
emotional/psychological status (i.e., anxiety or fear) is
recognized as part of the perceptual process. This is particularly
relevant when given self-rated symptoms (i.e., pain and
dyspnea) are described (Petersen et al., 2015), generating
over- or under- estimation of interoceptive/nociceptive
reporting.

Furthermore, the importance of the interaction between
brain and body in order to maintain homeostasis has been
emphasized. This is not just a matter of a top- down- or
reflex regulation, it is also a matter of signals from the
organs influencing the functioning of the brain. The output of
the CNS to control its autonomic output shows an amazing
differentiation; not only there are different neurons, which
may influence selectively the parasympathetic or sympathetic
motor neurons, there are also different neurons that project to
different body compartments. Based on all that information,
the brain sets the balance of the different parts of the ANS,
changing the emphasis of the ANS output depending on the
situation. If that balance is disturbed, either by behavior or
by disease of the organ/tissue, this may lead to pathology that
may affect the functioning of the whole individual. Several
research studies, indeed, support the hypothesis that lack of
balance in the autonomic output to a single organ may have
effects not only on the organ itself but also on the entire body
physiology.

CONCLUSIONS

The current review presented the “interoceptive paradigm”
as a theoretical framework to explain how patient’s signs,
symptoms, and clinical history can be mutually related in
clinical practice. Moreover, it suggested that touch-based manual
practices, in particular osteopathy that seems to produce
anti-inflammatory and hyper-parasympathetic effects, can offer
an alternative but unique way to modify temporary or
permanent sensitization states throughout the interaction with
(treatment of) peripheral tissues. This is supposed to produce
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a biological and neurological cascade of events that change the
interoceptive processes, breaking the vicious cycle of an on-
going low threshold inflammatory condition. Therefore, this
work proposes the conceptual foundations for a new way of
interpreting and reading patients’ clinical scenario based on up-
to-date neuroscientific concepts. This will possibly create the
ground for future research focusing on the concrete possibility
of manual therapies, specifically osteopathy, to interactively
modify the sensitization states, at all levels, using interoceptive
pathways.
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