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The development of power-efficient neuromorphic devices presents the challenge

of designing spike pattern classification algorithms which can be implemented on

low-precision hardware and can also achieve state-of-the-art performance. In our

pursuit of meeting this challenge, we present a pattern classification model which

uses a sparse connection matrix and exploits the mechanism of nonlinear dendritic

processing to achieve high classification accuracy. A rate-based structural learning rule

for multiclass classification is proposed which modifies a connectivity matrix of binary

synaptic connections by choosing the best “k” out of “d” inputs to make connections

on every dendritic branch (k << d). Because learning only modifies connectivity, the

model is well suited for implementation in neuromorphic systems using address-event

representation (AER).We develop an ensemblemethodwhich combines several dendritic

classifiers to achieve enhanced generalization over individual classifiers. We have two

major findings: (1) Our results demonstrate that an ensemble created with classifiers

comprising moderate number of dendrites performs better than both ensembles of

perceptrons and of complex dendritic trees. (2) In order to determine the moderate

number of dendrites required for a specific classification problem, a two-step solution

is proposed. First, an adaptive approach is proposed which scales the relative size of

the dendritic trees of neurons for each class. It works by progressively adding dendrites

with fixed number of synapses to the network, thereby allocating synaptic resources

as per the complexity of the given problem. As a second step, theoretical capacity

calculations are used to convert each neuronal dendritic tree to its optimal topology where

dendrites of each class are assigned different number of synapses. The performance of

the model is evaluated on classification of handwritten digits from the benchmark MNIST

dataset and compared with other spike classifiers. We show that our system can achieve

classification accuracy within 1 − 2% of other reported spike-based classifiers while

using much less synaptic resources (only 7%) compared to that used by other methods.

Further, an ensemble classifier created with adaptively learned sizes can attain accuracy

of 96.4% which is at par with the best reported performance of spike-based classifiers.

Moreover, the proposed method achieves this by using about 20% of the synapses used

by other spike algorithms. We also present results of applying our algorithm to classify the

MNIST-DVS dataset collected from a real spike-based image sensor and show results
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comparable to the best reported ones (88.1% accuracy). For VLSI implementations,

we show that the reduced synaptic memory can save upto 4X area compared

to conventional crossbar topologies. Finally, we also present a biologically realistic

spike-based version for calculating the correlations required by the structural learning

rule and demonstrate the correspondence between the rate-based and spike-based

methods of learning.

Keywords: active dendrite, structural plasticity, binary synapses, multiclass classification, neuromorphic

1. INTRODUCTION

There has been significant research in the last decade aimed
at designing neuromorphic systems which can emulate the

architectural and computational principles of the brain. These
systems exploit the spike-based operation of human brain, with
minimal power consumption during long inactive periods, to
implement power-efficient neuromorphic devices. Moreover, this
attempt to mimic the neuronal function can enable us to design
event-driven, compact hardware systems which can provide
efficient, real-time, intelligent solutions for several applications

like robotics and brain-machine interfaces. Conversely, the
neuromorphic systems can be used to understand the working
principles of brain. The development of event-driven sensors like
the artificial retina (Lichtsteiner et al., 2008; Posch et al., 2011;
Serrano-Gotarredona and Linares-Barranco, 2013) and cochlea
(Liu et al., 2013), which produce continuous and asynchronous
spikes encoding the sensory information, make it essential to
interface these sensors with spike-based classifier systems to
enable the classification of real-world complex stimuli. The spike
classification algorithms designed to this effect can also attain
large computational power of spiking neural networks (Maass
and Schmitt, 1999).

The spike-based neuromorphic systems implemented in
very-large-scale integration (VLSI) technology consist of
hybrid analog-digital circuits, where the neuronal and synaptic
computations are usually performed in analog form on the
chip (though TrueNorth Merolla et al., 2014 and Spinnaker
Painkras et al., 2013 are notable exceptions) while the synaptic
connectivity information is stored on or off-chip in a digital
memory. An asynchronous communication protocol called the
address-event representation (AER; Boahen, 2000; Choi et al.,
2005; Serrano-Gotarredona et al., 2009; Vogelstein et al., 2007),
is used to transmit neuronal spikes between neuromorphic
chips on a shared fast digital bus. The AER-based neuromorphic
systems have the added advantage of reconfigurability since
the configuration details of a network are stored in a separate
memory, thereby giving the user flexibility to reconfigure the
network connectivity.

However, the statistical variations in VLSI devices which
reduce the accuracy of the synaptic weights are a major
cause for concern in attaining performance comparable to
software simulations. To mitigate the effect of increasing
device mismatch with progressively shrinking transistor sizes,
the usual solutions are to increase device sizes or employ
a large number of neurons, both of which increase chip

area. For example, a spiking network classifier implemented
on a neuromorphic hardware system achieved performance
comparable with standard machine learning linear classifier and
exhibited tolerance against variability by using population coding
(Schmuker et al., 2014). However, a limitation of this model is
the large number of high resolution weights used to attain the
reported performance. Similarly, spike classifiers consisting of
Restricted BoltzmannMachine (RBM) constructed with integrate
and fire neurons, use a large number of recurrent synaptic
connections (Neftci et al., 2014; O’Connor et al., 2013) rendering
these algorithms impractical for compact VLSI implementation.
A simple and robust solution to the problem of device mismatch
can be obtained by using binary synaptic weights. A spike-based
STDP learning rule using bistable synapses was implemented
in Brader et al. (2007) with the VLSI implementation in
Mitra et al. (2009) to classify complex stimuli. A pool of
neurons was used to improve the classification accuracy by
employing a voting scheme, which again leads to the problem
of increased number of synapses. Digital implementations do
not suffer from mismatch issues like their analog counterparts;
however, the usage of a lot of memory to implement high
resolution weights for deep networks increases chip area
significantly.

A spike classification model proposed in Hussain et al. (2013,
2015) offers a solution to the problem of large number of
synaptic weights by using a structural plasticity based learning
rule which involves formation of sparse connections with binary
weights. Moreover, it was shown that a simple correlation-based
learning rule provides an alternative to the traditional weight-
based learning rules and is more suitable for implementation on
neuromorphic chips. The problem of reduced memory capacity
of a network with binary synapses as compared with that of
continuous-valued synaptic weights (Senn and Fusi, 2005) is
alleviated by the use of nonlinear dendritic processing, which
emerges due to the presence of voltage gated ion channels
(London and Hausser, 2005; Magee, 2000). A limitation of
this method is that it uses a preassigned network size and
the number of dendrites and synapses required for solving
a classification problem of given complexity is not known.
Hence, it is desirable to use an approach which learns to
allocate the required number of synaptic resources for a specific
problem.

Several adaptive approaches have been used to control the
network size and structure. A constructive approach involves
training with a minimal architecture, for example a single
hidden-layered network with one hidden neuron, and then
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adding further hidden units and weights to implement the
desired mapping (Islam et al., 2009; Kwok and Yeung, 1997;
Lahnajarvi et al., 2002). The second approach for automating
the design of appropriate neural network is by pruning in which
a network larger than necessary is trained and then redundant
connections and/or neurons are removed until an acceptable
solution is obtained. A group of pruning algorithms eliminate
a neuron or a connection which have the least effect on the
error function (Karnin, 1990). The other group of pruning
algorithms are referred to as regularization methods which add a
penalty term proportional to the sum of weights to the objective
function. Hence, the unnecessary weights are driven to zero
during training and are eliminated in effect (Kwok and Yeung,
1996). Several other pruning methods are reviewed in Islam et al.
(2009) and Reed (1993). Another class of algorithms that are
developed to control the network size and structure use a hybrid
approach of combining the constructive and pruning methods
(Fiesler, 1994). The growth and pruning algorithms discussed
here have not considered the number of dendrites as an adaptive
parameter.

In this paper, we present a multiclass classifier using neurons
with nonlinear dendrites (NNLD) and a structural learning
rule for finding sparse, binary weight matrices. The unique
contributions of this work are: (1) Showing that for ensembles
of NNLD with the same number of synapses, having a single
dendritic branch (perceptron) or having too many dendrites
are sub-optimal; the optimal cases is a moderate size of the
dendritic tree. (2) Developing an algorithm that adapts the
size of the dendritic tree for each class according to the
difficulty of classifying that pattern category. (3) Applying
this network to the problem of handwritten digit recognition
task from MNIST and MNIST-DVS datasets to show its
benefit in achieving high accuracy with very small memory
usage for weights. (4) Demonstrating memory size reductions
possible in VLSI implementations by using this training
method.

The paper is organized as follows. First, the rate-based
multiclass spike pattern classification model is presented in
Section 2.1.1, followed by the description of an ensemble method
which combines the outputs of several dendritic classifiers to
obtain improved classification accuracy in Section 2.1.2. In
Section 2.1.3, we propose an adaptive structural learning scheme
which involves growth of the network by adding dendrites based
on the progress of learning process. The performance of different
learning schemes on classification of handwritten digit samples is
demonstrated in Sections 3.2–3.4, while noise sensitivity analysis
is in Section 3.5 and analysis of dendrite weights in Section 3.6.
Next, in Section 3.7, we present an approach to optimize the
performance of our method by utilizing theoretically determined
optimal neuron topology. Finally, the evaluation of our algorithm
on event-based MNIST-DVS dataset is presented in Section 3.8
followed by a comparison of the performance of our model
with the results obtained using other spike-based classification
algorithms in Section 3.9. The relevance of our work in terms
of the biological plausibility, comparisons with other related
studies, hardware considerations and a discussion of future work
is included in Section 4.

2. MATERIALS AND METHODS

2.1. Spike Classification with Nonlinear
Dendrites and Structural Learning
We have proposed a margin-based neuron model with nonlinear
dendrites (NLD) for spike pattern classification (Hussain et al.,
2015). The model comprises nonlinear neurons having lumped
dendritic nonlinearity where a nonlinear neuron (NL-neuron)
consists of multiple (m) dendritic branches with each branch
governed by its nonlinearity b() and k excitatory synapses on each
branch driven by one of the d input components (Figure 1A).
The model uses binary weight for the ith synapse on the jth
dendrite, wij ∈ {0, 1}, where i ∈

{

1, · · · d
}

, j ∈ {1, · · ·m}. The
advantage of such binary weight connections are in hardware
implementations since they require much less memory resources,
are more resistant to mismatch in analog implementations and
also enable easy digital implementations as done in Merolla
et al. (2014). Moreover, we enforce sparse connectivity on each
dendritic branch (k << d) and allow the learning to choose the
best “k” connections on each branch. Hence, we can write:

d
∑

i=1

wij = k for j = 1, · · · ,m (1)

This model was used to perform supervised binary classification
of spike patterns. In our current work, we extend the model
to perform multiclass classification of spike patterns belonging
to NC classes. The multiclass classifier consists of (+) and (−)
neurons corresponding to all NC classes. The inputs to the
neurons for class µ are received from a pair of excitatory and
inhibitory dendritic trees, also referred to as positive and negative
dendritic trees (PDT and NDT), respectively, each with m
dendrites. These input currents for class µ neurons are given by:

I
µ+
in (t) = I

µ

PDT(t)− I
µ

NDT(t) (2)

I
µ−
in (t) = I

µ

NDT(t)− I
µ

PDT(t) (3)

where µ ∈ {1, · · ·NC} and I
µ

PDT(t), I
µ

NDT(t) are the currents
generated by the PDT and NDT of class µ, calculated by
taking the sum of dendritic output currents I

µ
PD,j(t) and I

µ
ND,j(t)

respectively, which can be expressed as nonlinear functions of the
total synaptic current on a dendrite. To make notations simpler
for the ease of reading, we drop the superscript µ for the µth
class in the rest of the paper except where the outputs of two
or more classes are compared. Hence, we denote the PDT/NDT
currents for class µ neuron as IDT(t) and the output current of
the jth dendrite of PDT/NDT as ID,j(t). Therefore, the equations
for IDT(t) can be written as:

IDT(t) =
∑

j

ID,j(t) (4)

=
∑

j

b





∑

i

wij





∑

tij<t

K(t − tij)







 (5)

=
∑

j

b(zj(t)) (6)
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Here K(t) denotes the postsynaptic current (PSC) generated by
the spike input at a synapse of the PDT or NDT of class µ and is
given by Gutig and Sompolinsky (2006):

K(t − tij) = I0
(

exp[−(t − tij)/τf ]− exp[−(t − tij)/τr]
)

(7)

where tij denotes the times at which spikes arrive at this synapse;
I0 is the normalization constant; and τf and τr are the fall and
rise time constants of the PSC respectively; zj(t) is the total
synaptic activation on the jth dendrite and b(zj(t)) is the dendritic
nonlinear function given by:

b(zj(t)) = g(zj(t)− zleak,j(t))(zj(t)− zleak,j(t))
2 (8)

Here, g() is a Heaviside step function that gives an output 1 at
all times where the argument (zj(t) − zleak,j(t)) is positive and
0 otherwise and zleak,j(t) is the average synaptic activation on
the jth branch corresponding to the initial random connections.
The use of zleak,j(t) term serves to balance the excitation on each
branch by subtracting the mean activation level on that branch,
which can be regarded as a signal from a pool of inhibitory
neurons. Finally, the spike output nspk of a neuron of class µ,
receiving the input current Iin(t), is generated using the leaky
integrate and fire neuron model described next.

The dynamics of the membrane potential Vm(t) of the (+) and
(−) neurons of class µ is explained through the equations given
below:

τV
dVm

dt
= (u− Vm)+ Iin(t) (9)

τu
du

dt
= −u (10)

If Vm ≥ Vthr , Vm → Vreset ;

u → ureset

ureset = Vreset < 0

nspk → nspk + 1

where u denotes a hyperpolarization variable which relaxes back
to 0 with a time constant τu and is set to ureset after a postsynaptic
spike and τV and τu are the time constants governing the fast and
slow dynamics of the membrane voltage and hyperpolarization
respectively. Here, the variables Vm(t), u and nspk are used to
describe the dynamics of both (+) and (−) neurons of class µ

and the input current Iin(t) can be computed using Equations (2)
and (3).

As shown in Figure 1B, the outputs of all the (+) and (−)
neurons are connected to a WTA circuit to generate the overall
classifier output as:

yµ = g(o
µ

spk
− oν

spk), oν
spk ≥ o

ξ

spk
, ∀ν, ξ 6= µ (11)

where µ, ν, ξ are integers in the range [1,NC] and yµ is the

binary-valued µth component of the NC-dimensional output y,
o
µ

spk
= n

µ+
spk

− n
µ−
spk

; n
µ+
spk

and n
µ−
spk

are the spike counts of the (+)

and (−) neurons of class µ respectively.
In this paper, we have developed rate-based and spike-time-

based learning schemes for our multiclass classification model

with NLDs. For these schemes using binary synapses, we present
structural learning rules, which involve the modification of
connectionmatrix instead of connection weights. Themotivation
for using rate-based learning is driven by the fact that the spike-
time-based learning requires significant processing time and
therefore, to mitigate this problem we have used the strategy of
training onmean rate inputs to reduce the training time.With the
use of faster rate-based learning, we further propose an ensemble
method which combines the outputs of several NLD classifiers in
order to achieve performance gain over individual classifiers. We
also develop an adaptive learning scheme which learns to allocate
the required number of dendrites to a neural network along
with learning the connection patterns on these dendrites. The
bio-realistic spike-based approximation of the structural learning
rule for multiclass classification is an extension of an online
spike-based binary classification rule proposed in our earlier
work (Hussain et al., 2015). The derivation of this rule and the
correspondence between our spike-based and rate-based learning
schemes are presented in the Appendix. Next, we describe the
rate-based learning rule.

2.1.1. Rate-Based Learning Scheme for Multiclass

Classification
The rate-based learning rule for NLD model is valid for rate
encoded inputs like Poisson spike trains and place/synchrony
encoded single spike patterns. This validity results from the
fact that for such spike inputs, the average synaptic activation

zsyn,ij = 1
T

∫ T
0

∑

tij
K(t − tij)dt is directly proportional to the

input arriving at that synapse, xij, where T is the pattern duration
(Hussain et al., 2015). This reduced model was developed to
improve the training time and it uses encoded binary vectors
obtained by mapping spike train with “high” firing rate or single
spike to binary value “1” and spike train with “low” firing rate
or absence of spike to binary value “0.” A rate-based NLD model
for multiclass classification was proposed in Hussain et al. (2014),
which consisted of NC neurons representing NC classes. Here, we
present a modified version of this model consisting of PDT and
NDT corresponding to each of the NC classes. The output of the
PDT and NDT of class µ to input x is given by:

aPDT(x) =

m
∑

j=1

b





d
∑

i=1

wPDT,ijxPDT,ij



 (12)

aNDT(x) =

m
∑

j=1

b





d
∑

i=1

wNDT,ijxNDT,ij



 (13)

The difference of outputs of the positive and negative dendritic
trees of each class, o(x) = (aPDT(x) − aNDT(x)), are then used as
inputs to theWTA circuit which computes the overall output and
therefore decision of the classification task, y(x) using a similar
logic as in Equation (11).

yµ(x) = g(oµ(x)− oν(x)), oν(x) ≥ oξ (x), ∀ν, ξ 6= µ (14)

During training, the classifier output is computed using amargin-
based output function, gmargin(x) instead of g(x) to enforce a
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margin around the classification boundary. The g(x) function
is only used during the testing phase to calculate the output.
Therefore, the classifier output during training calculated using
the gmargin(x) function is given by:

yµ(x) = gmargin(o
µ(x)− oν(x)), oν(x) ≥ oξ (x)

yν(x) = gmargin(o
ν(x)− oµ(x)), ∀ν, ξ 6= µ (15)

The function gmargin() is defined as:

gmargin(α) = 1 if α ≥ δ

= 0 if α ≤ −δ

=
0.5

δ
α + 0.5 otherwise (16)

where the margin is set using different values of the parameter δ

for different classes to which input patterns belong. The value of
margin δ for each class is determined using the following steps:

(1) Multi-class model is first trained using the g(x) function,
where the output of the model is calculated using 14.
Connection matrices for all neurons are saved.

(2) Cross validation set patterns are presented and the values
αµν = (oν(x)− oµ(x)) are recorded for all the cases for which
patterns from class µ are misclassified as belonging to class ν.

(3) The set of αµν values for each classµ ∈ {1, · · ·NC} are saved.
The margin for class µ, δµ is set to the highest value of αµν .

(4) δµ value is reduced to 80% of its present value whenever
learning algorithm gets stuck in the same local minimum for 5
consecutive times.

The learning process which is based on the mechanism
of structural plasticity involves formation and elimination
of synaptic connections. The connections are modified by
computing a metric based on correlation values cij for each
synapse of the PDT and NDT. Hence, the learning rule for the
rate-based learning scheme is given by:

For class µ, for PDT:

cPDTij =< xPDTij bPDTj sgn(ydµ − yµ) > (17)

For class µ, for NDT:

cNDTij = − < xNDTij bNDTj sgn(ydµ − yµ) > (18)

where the desired output yd is available as the teacher signal
during the training phase and is a NC-dimensional binary vector
consisting of (NC − 1) zeros and a 1 corresponding to the class
to which the input pattern belongs; bj is the output of the jth

dendrite of a PDT or NDT; sgn() is the signum function with a
value of 1 for ydµ > yµ, −1 for ydµ < yµ and 0 for ydµ = yµ; and
the output y is computed using Equation (15).

The connection changes are done by using the following logic:
a synapse with the smallest cij value corresponds to a poorly-
performing synapse and is a candidate for replacement. To
replace this synapse, a set of silent synapses are first formed on the
chosen branch as possible candidates for the new connection. The
silent synapse with the highest cij is chosen as the replacement.

At the start of the learning process, the input connections for
all the PDT and NDT corresponding to NC classes each with m
dendritic branches, k synaptic contacts per branch and s = m×k
total synapses are initialized by randomly selecting afferents from
among d input lines with weight wij = 1. Training set consisting
of P input patterns (x) belonging to NC classes is presented. The
learning process comprises the following steps in every iteration
consisting of the presentation of all P patterns:

(1) The misclassification error rate is calculated by taking the
average of the fraction of patterns for which yµ 6= ydµ for any
µ ∈ {1, · · ·NC}.

(2) For each dendritic tree of class µ, a random set T consisting
of nT (< s) synapses is selected as candidates for replacement.

(3) The synapse with the lowest cij in T is targeted for
replacement and the dendrite jT on which it is located is
identified. A random replacement set R is created by placing
nR “silent” synapses from d input lines (nR < d) on the jthT
dendrite. The synapse with the lowest cij in T is replaced by
the best-performing (maximum cij) synapse in R. The silent
synapses do not contribute to the calculation in step (1).

(4) Synaptic connections are modified if the replacement led
to either a reduction or no change in error rate. If the error
increased with the replacement, a new replacement set R is
created. If the error does not decrease after repeating this step
nch (= 50) times, we assume a local minimum is encountered.
We then do a replacement with the last choice of R, even if
it increases error in an attempt to escape the local minimum.
The connection matrix corresponding to the local minimum
that gave the least error is saved.

(5) Steps (1)–(4) are repeated until either all the patterns
have been memorized or nmin (= 150) local minima are
encountered. At this point, the learning process is stopped.
The connection patterns corresponding to the best minimum
become the final learned synaptic connections of the neuron.

After the completion of training, the final learned connections
are saved and then used to calculate the error rate on the
spike test pattern set for the testing phase. This is done by
mapping the learned connections onto an equivalent spiking
network by introducing synaptic integration and spike initiation
mechanisms. The testing classification output is computed using
Equation (11).

2.1.2. Ensemble Learning Scheme for Multiclass

Classification
We have also used an ensemble method in this work,
where several classifiers when combined together yield better
classification accuracy than any of the single classifiers in
the ensemble. Our ensemble model consists of individually
trained NLD classifiers which are then combined to classify
novel test patterns. Since, previous research has demonstrated
that combining identical classifiers doesn’t produce any gain
over individual classifiers (Opitz and Maclin, 1999), hence we
created ensemble by combining several classifiers which are
individually trained and disagree on their predictions. The
complementary information about the novel patterns obtained
from different classifiers can be exploited to produce a more
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FIGURE 1 | (A) A neuron consisting of nonlinear dendrites characterized by the lumped nonlinear function b() for every dendritic branch. It forms k binary connections

from d input afferents on m dendrites. (B) Architecture of a multiclass pattern classifier consisting of nonlinear neurons receiving inputs from PDT and NDT and the

neurons connected to a WTA to compare the outputs of the NC classes. The output of the classifier is equal to 1 for the class corresponding to the highest output oµ.

accurate overall output. In order to generate different predictions
for different classifiers, individual networks were initialized with
different random synaptic connections. Figure 2 shows the basic
framework for the classifier ensemble scheme. It consists of
N individually trained multiclass classifiers as members of the
ensemble. Each classifier generates the intermediate output,
o
µ
n (x), which is the difference in outputs of PDT and NDT
for class µ of the nth classifier. The intermediate outputs
are combined in a class-specific manner to give Oµ(x) =
∑N

n=1 o
µ
n (x). Finally, the ensemble output is generated using:

ŷµ(x) = g
(

Oµ(x)− Oν(x)
)

, Oν(x) ≥ Oξ (x), ∀ν, ξ 6= µ (19)

The performance of ensemble model gives us an insight into
the number of component classifiers needed in an ensemble.
However, it is impractical to use a large number of classifiers
in an ensemble due to the long training time required and
also because it leads to increased synaptic resources. Therefore,
we use the ensemble created with a few classifiers as a trade-
off between trainability and accuracy. Moreover, it is not clear
what level of complexity is required for individual classifiers and
whether an ensemble of perceptrons will perform better than that
of complex dendritic trees. To address this problem, we have
developed an adaptive learning rule for allocating the number of
dendrites according to the difficulty of the problem being solved
as well as the difficulty to learn a specific class. This scheme is
discussed next.

2.1.3. Adaptive Learning Scheme for Multiclass

Classification
For the learning schemes described above, a fixed number of
dendrites (m) was chosen and assigned to all the dendritic

FIGURE 2 | Ensemble classifier combining the intermediate

class-specific outputs o
µ

n to compute the combined class outputs Oµ,

which are compared by the WTA to generate the final classifier

output ŷ.

trees in the model. Since, it is difficult to choose an optimal
value of m that matches the complexity of a given problem, we
have proposed an algorithm in which the number of dendrites
corresponding to each class is learned during the training
process. The value of m is adapted for each class dendritic trees
independently while the number of synapses per branch, k, is kept
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constant throughout. Hence, the learning process generates the
relative sizes of the connection matrix for each neuron as well as
the optimal sparse connections within that matrix. The learning
rule used is same as that for the rate-based scheme with fixed
m except that all the computations in every iteration are done
for the current value of m for each neuron. Additional steps are
included in the learning algorithm to adapt the value of m. After
making a correlation-based connection change, we check if the
learning process for a particular class µ has slowed down using
the following steps:

(1) If the error rate for class µ, which is calculated as the average
of the number of patterns for which yµ 6= ydµ, does not
decrease after nch (= 50) iterations, the learning process for
class µ has encountered a local minimum. In this case, a new
dendrite is added to both PDT and NDT corresponding to
class µ, if the error is the highest amongst all the NC classes.

(2) This is done by drawing k random connections from the d
input lines to represent a new dendrite. The connection matrix
is updated by appending the new dendrite to the existing
matrix as a new row. The value ofm for class µ is incremented
according to:

mPDT → mPDT + 1

mNDT → mNDT + 1 (20)

(3) After adding a dendrite, error rate for cross validation set
is computed. If this validation error increases in the last 3
dendrite addition steps, the learning process is stopped. The
connections are frozen and saved for the testing phase.

The above steps are added after the step (4) of the rate-based
learning algorithm in Section 2.1.1 as steps 4.1, 4.2, and 4.3. All
the steps from (1)–(4.3) are then repeated until learning stops by
one of the stopping conditions discussed in step (5).

This adaptive learning method is guided by the level of
difficulty of each neuron’s classification task and moreover, it
is used to learn the relative size of each neuron and not the
optimal neuron topology. While performing this adaptation, we
keep the number of synapses per branch, k, to be a constant for

all neurons and just vary the number of dendrites per neuron,
m. Hence, at the end of the adaptation, both PDT and NDT of
the µth class have a total number of synapses s

µ

adapt
given by

s
µ

adapt
= m

µ

adapt
× k, where m

µ

adapt
is the number of dendritic

branches learned for the µth class neurons after adaptation. This
is shown as the step-1 in Figure 3, where the topology of a class
neuron is denoted by the rectangle with its sides representing m
and k values.

However, from theoretical considerations of function
counting as shown in Poirazi and Mel (2001), the theoretical
capacity of a neuron with nonlinear dendrites with a fixed value
of total number of synapses (sopt) is maximum for a relatively
large value of mopt and small value of kopt . This theoretical
capacity was given by the combinatorial expression derived by
counting all possible ways in which d afferents can connect to
synapses on dendrites resulting in distinct memory fields (Poirazi
and Mel, 2001). Hence, for a neuron with NLDs, the capacity
CNL in bits was calculated as:

CNL = 2log2

(

f +m− 1

m

)

(21)

where f =

(

k+ d − 1

k

)

is the number of distinct branch

functions. As shown in the inset plot for the optimal topology
determination step in Figure 3, CNL plotted as a function of
m has a maximum at mopt for a fixed value of sopt . These
derivations were also discussed in our previous work (Hussain
et al., 2015). We can now use this theory to change the structure
of the µth neuron to optimize capacity while preserving the
same number of synapses. Hence, by setting s

µ
opt = s

µ

adapt

(fixing the area of rectangle as shown in step-2 in Figure 3), the
theoretical optimal topology (m

µ
opt , k

µ
opt) is determined such that

s
µ
opt = s

µ

adapt
= m

µ
opt × k

µ
opt . The use of this approach to

boost the capacity of our adaptively learned dendritic network
is demonstrated in Section 3.7.

FIGURE 3 | Dendritic classifier is trained adaptively by adding dendrites (step-1) and keeping the number of synapses/dendrite (k) as a constant for all

neurons. The total number of synapses for the µth neuron learned in this manner (s
µ
adapt

) is fixed and the corresponding optimal topology (m
µ
opt, k

µ
opt inset plot) is

theoretically determined (step-2). The length of sides of the rectangle denote m and k values and the area represents the total number of synapses, s.
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3. RESULTS

3.1. Input Generation
We have demonstrated the performance of our multiclass
classification NLD model on the MNIST dataset consisting of
grayscale images of handwritten digits belonging to one of
the NC = 10 classes (0 to 9). It is a benchmark machine
learning dataset used previously to test the performance of many
classification algorithms (LeCun et al., 1998). The input patterns
consisting of 28 × 28 images were converted into d = 784
dimensional binary vectors by thresholding. The training set
consists of 20, 000 patterns randomly selected from the full
MNIST dataset, with equal number of samples of each digit.
The testing set consists of a total of 10, 000 patterns. In case of
adaptive learning scheme, 20% of the training patterns comprise
the cross validation set which is used to compute the error
whenever a dendrite is added to the network and finally to
stop adding dendrites when the cross validation error doesn’t
reduce further. The learning procedure is stopped when either
all the patterns are correctly classified or when 150 minima
are encountered. For different training runs 150 minima are
encountered in different number of learning iterations and for
each data point generated, this training process is repeated 3
times.

The binary input vectors are used for rate-based training. For
spike-based training, patterns of single spikes are used, which
are generated by mapping binary input “xi = 1” to a single
spike arriving at Tsyn = 100 ms and “xi = 0” to no spike,
where the stimulus duration T = 200 ms. Testing for both
forms of rate-based and spike-based learning is done on two types
of spike inputs: 1) place/synchrony code of single spikes with
jittered spikes arriving within a time window [Tsyn−

1
2 ,Tsyn+

1
2 ]

corresponding to binary input “1” and no spike for “0” input and
different amounts of jitter 1; and 2) rate encoded Poisson spike
trains with mean firing rates of fhigh and flow mapped to binary
inputs “1” and “0” respectively. The Poisson spike inputs have
only been used to test the noise sensitivity of the model. The
parameters used for the rate-based and spike-based models are
given in Tables 1, 2 respectively, unless stated otherwise.

The significance of using these spike inputs can be understood
by considering that single spike representations are commonly
used in time-to-first-spike (TTFS) imagers (Chen and Bermak,
2007; Qi et al., 2004). These imagers when presented with binary
images such as in the MNIST dataset used in this work, generate
a cluster of spikes corresponding to the white pixels and another
cluster much later in time corresponding to the black pixels. Such
place/synchrony code is also abundantly used in neuroscience
(Gerstner and Kistler, 2002). Moreover, rate encoded outputs
are commonly available from neuromorphic sensors such as
the artificial cochlea in Chan et al. (2007). Such rate encoded
Poisson spike trains are also often used to test the performance of
neuromorphic classifiers as demonstrated in Marti et al. (2015),
O’Connor et al. (2013), and Brader et al. (2007).

3.2. Effect of Training Set Size
In the first experiment, we measured the effect of training set
size on the classification performance by training the model

TABLE 1 | Parameters for rate-based multiclass model.

d m k nR nT Tsyn

784 10 10 25 25 100 ms

TABLE 2 | Parameters for spike-based multiclass model.

τV τu τpre τpost Vthr T Tsyn

5 ms 200 ms 10 ms 200 ms 0.1 mV 200 ms 100 ms

on P = 200 − 20, 000 patterns using the rate-based learning
scheme. Each training accuracy is obtained by averaging over 3
trials and the testing accuracy is computed by averaging across
10 presentations of 10, 000 test patterns for each of the learned
network, where testing is done on jittered single spike inputs with
1 = 10 ms. The training was done on a network consisting
of m = 10 dendrites in the PDT and NDT of all NC = 10
classes. Hence, the total number of dendrites used isM = 200. As
shown in Figure 4, for the rate-based learning, the training error
increases while the testing error on spike versions of the inputs
reduces as the training set size increases. It is clear from this
result that as more data is added, it becomes difficult to memorize
the data. However, the generalization performance improves with
more training data. A comparison between the spike-based and
rate-based learning schemes is included in the Appendix, where
we have shown that we can achieve similar performance for these
two forms of learning. However, due to the long simulation times
of the spike-based learning, we have used rate-based learning for
the remaining analyses in the paper.

3.3. Performance of the Ensemble Method
Next, we studied the effect of combining several NLD multiclass
classifiers in an ensemble. These individual classifiers were
trained on P = 5000 patterns using rate-based learning rule and
tested on 10, 000 jittered single spike inputs with1 = 10ms. The
network consisted of m = 2, 5, 8, 15, and 20 dendrites in PDT
and NDT for each ofNC = 10 classes. Hence, the total number of
dendrites used in the ensemble is given byM = 2×m×NC×N.
As shown in Figure 5A, the error rate for m = 2 reduces by
about 48% when up to 25 classifiers are added in the ensemble.
However, the error rate doesn’t change by much or it increases
slightly if further classifiers are combined. Moreover, most of the
error reduction, 40% out of the total change of 48%, is achieved
when first 5 classifiers are added. We have also looked at the
effect of size of individual networks in the ensemble. Figure 5B
illustrates this effect where error rate is plotted as a function of
the total number of dendrites in the ensemble,M. As shown, the
error rate reduces with the number of classifiers for all values of
m. For a fixed value of M, m = 2 gives the highest error rate,
which reduces with larger values ofm. However, asm is increased
beyond a certain value (m = 8 in this case, the reduction in
errors is not significant, and therefore the use of more complex
dendritic trees is not leading to significant advantage in terms of
performance.
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These results indicate that the ensemble model can attain
reasonably good performance when the member classifiers
are trained using a moderate number of dendrites. In an
ideal scenario, we can use a large number of classifiers to
achieve significant improvement in performance. However, it is
impractical to train several classifiers and hence, we use only
a few classifiers which result in most of the performance gain
of the ensemble. In case of limited resources (total number of
dendritesM), an intermediate level of complexity of the ensemble
comprising a moderate number of member classifiers with a
moderate number of dendrites in each classifier can be used.
Next, we investigate how to determine this intermediate level
of complexity for a particular classification problem. For an

FIGURE 4 | Training and testing error rates for rate-based learning as a

function of the training set size. Test performance is measured on 10,000

jittered single spike input patterns with 1 = 10 ms. Each data point is obtained

by averaging over 3 training simulation trials and testing on 10 randomly drawn

test sets for each learned network; m = 10 and k = 10.

ensemble created with a few classifiers (3−5), we do not know the
number of dendrites required by each classifier and also further,
if different levels of network complexity underlie representation
of different classes to which data belongs. Therefore, we use
the adaptive learning rule to automatically learn the number of
dendrites suitable for each class of a given classification problem.

3.4. Performance of the Adaptive Learning
Scheme
We have used the adaptive learning scheme in which P = 20, 000
patterns were used for training by initializing the network with
m = 5 dendrites in each dendritic tree of a class, and then
adaptively increasing m in a class-specific manner. The learning
process was stopped when 150 minima were encountered and
therefore, each adaptively learned classifier took different number
of iterations to complete 150 minima. If dendrites are added to
only 5 worst-performing classes whenever their learning slows
down, referred to as scheme-1, the accuracy obtained on 10, 000
test single spike inputs is 92.1%. The number of dendrites learned
by each class in one simulation run is shown by the bar plot at the
top of Figure 6A. It can be seen that the digits “2,” “3,” “5,” “8,”
and “9” use most of the dendrites and hence are most difficult to
learn while “0,” “1,” and “6” are the easier ones requiring only a
small number of dendrites. The confusion matrix at the bottom
of Figure 6A shows the classification accuracy when an actual
digit (column-wise) is predicted by themodel as represented row-
wise. We can see that the neurons for easier digits “0,” “1,” and “6”
can attain good accuracy by utilizing small number of dendrites
whereas the difficult digits like “8” and “9” exhibit lower accuracy,
where “9” is mostly misclassified as “4” and “7” having similar
features.

A drawback of scheme-1 is that we are not allocating the
resources appropriately in this case since adding dendrites to only
“difficult to learn” classesmight not be helpful beyond a point and
adding dendrites to the easier classes also can allow the learning
to converge faster and attain better performance. This idea was
supported by our results obtained by adding dendrites to all the

FIGURE 5 | (A) Ensemble error rate as a function of the number of classifiers combined, N, for 10,000 test samples; m = 2 and k = 10. (B) Ensemble error rate as a

function of the total number of dendrites used, M, showing that a moderate number of dendrites per dendritic tree (m = 8) gives reasonably good performance and

there is no significant improvement when m is further increased. Training done on P = 5000 patterns randomly drawn from the MNIST samples. Each data point is

obtained by randomly selecting a subset (N) of the total number of learned classifiers for each case of m (37 for m = 2). This process is repeated 10 times and the

average of the test errors of the combined classifiers is computed.
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FIGURE 6 | (A) The number of dendrites learned using adaptive scheme-1 (top) and the resulting confusion matrix (bottom) showing higher accuracy for easier

classes (0, 1, 6) and lower accuracy for difficult digits (8, 9). (B) Number of dendrites learned using adaptive scheme-2 (top) demonstrating all the class neurons

adding dendrites when required. Confusion matrix (bottom) showing improved accuracy for all the classes. Training set consists of 20,000 binary digit samples and

testing done on 10,000 jittered single spikes (1 = 10 ms). Model was initialized with m = 5 dendrites for all the classes.

classes, referred to as scheme-2, which yielded a classification
accuracy of 94.2%. The number of dendrites learned by all classes
is shown at the top of Figure 6B, indicating that the dendrites
are added to not only the difficult classes but the easier digits
like “0,” “1,” and “6” also utilize more resources. The confusion
matrix shows that the classification accuracy of almost all the
digits increase as compared to scheme-1, thereby contributing to
the overall improved performance.

3.5. Test of Noise Sensitivity
We have also tested the performance of an ensemble created with
classifiers learned using the adaptive scheme-2, in the presence
of noisy spike inputs. Figure 7 shows the classification accuracy
for 10, 000 test patterns consisting of single spike inputs with
different levels of jitter 1 and Poisson spike inputs with fhigh =

250 Hz and flow = 1 Hz. For reference, we also present the
testing accuracy obtained when non-spiking binary inputs are
used (solid blue), which increases from 94.6% to 96.1% by adding
just 3 classifiers to the ensemble and further increases to about
96.4% by adding 2 more classifiers. The accuracy for single spikes
with no noise (1 = 0) is about 0.2 − 0.5% less than that of
binary vectors, which can be attributed to the effects of integrate
and fire process of the neurons in the model. As noisy single
spikes are presented, accuracy reduces further. However, the
change is only about 0.5% for 1 = 20 ms as compared to
1 = 0. Further, the performance of the ensemble on spiking
inputs with and without noise become very similar when just 3
dendritic classifiers are combined together. Similarly, for Poisson
spike inputs the ensemble yields similar classification accuracy
as in the absence of noise. Hence, the ensemble consisting of a

FIGURE 7 | Error rate of ensemble consisting of NLD classifiers trained

on P = 20,000 MNIST samples using the adaptive scheme-2. The

ensemble accuracy on 10,000 test patterns is computed for binary vectors

and spike inputs with different levels of noise. The accuracy obtained for single

spike inputs with time window size 1 = 20 ms is 96.1% by combining 5

classifiers. For Poisson spike inputs, fhigh = 250 Hz and flow = 1 Hz. Each

data point is obtained by randomly selecting a subset (N) of the total number

of learned classifiers (5). This process is repeated 5 times and the average of

the test errors of the combined classifiers is computed.

few classifiers where each classifier is individually trained using
the adaptive learning scheme offers the following advantages:
(1) performance gain; (2) feasible to train few classifiers; (3)
automatically learned network complexity; (4) noise sensitivity
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and (5) limited resources due to the use of a few classifiers with
adaptively learned network size.

3.6. Analysis of Dendrite Weights: Feature
Maps
We also analyzed the weights of dendrites to understand the
features of inputs learned by the nonlinear dendrites. Since our
learning rule encourages correlated inputs to be grouped together
on the same dendrite, we expected the dendrite weight maps to
capture the input correlations. For this purpose, we mapped the
d = 784-dimensional binary weight vector w.j = [w1jw2j . . .wdj]
for the jth dendrite to a 28 × 28 matrix consisting of binary
elements (since there can be multiple connections from the same
afferent on a dendrite, the weight vector can have integer values
> 1). For this analysis, 20, 000 patterns were trained using the
adaptive scheme-2 by initializing the network with m = 5
dendrites for each class.

The weight matrices are visualized as shown in Figure 8.
The first row depicts the mean weights of all the dendrites
corresponding to a digit. It can be seen that the dendrites
learn the features of digit images presented to the network. The
dendrites belonging to a particular digit class together represent
the complete digits. The featuremaps look pixelated due to sparse
integer weights learned by each dendrite. The remaining rows
show the weights of 4 individual dendrites, m1 to m4, randomly
selected out of the total learned dendrites for each digit. These
maps demonstrate that each dendrite learns some features of the
input digits. However, some of the dendrites like m4 of digit
“3” and m3 of digit “7” can learn to represent complete digits,
which suggests that some of the dendrites for these classes are
redundant and hence, can be removed. A hybrid approach which
involves adding new dendrites and pruning the superfluous ones
can therefore be used to design the network.

3.7. Boosting the Performance using
Optimal Neuron Topology
Next, we determine the theoretically optimal configuration of
the network which can be used to boost the performance of our
structural learning scheme, as discussed in Section 2.1.3. For this
analysis, we used one instance of the final number of dendrites
learned for each class using the adaptive scheme-2 (Figure 6B).
We then computed the theoretical capacity for each neuron of
all classes by fixing the total number of synapses learned by the
µth neuron, s

µ

adapt
, and varying the m and k values such that

s
µ

adapt
= s

µ
opt = m × k (step-2 in Figure 3). Figure 9A shows

the theoretical capacity of class “5” neuron plotted as a function
of m, where m5

adapt
is the number of dendrites learned using the

proposed adaptive method whilem5
opt is the number of dendrites

corresponding to the maximum capacity for a neuron with the
same s5opt = s5

adapt
as that of a neuron trained adaptively. The

number of dendrites, m7
adapt

learned by our method and the

corresponding optimal value,m7
opt for class “7” neuron are shown

in Figure 9B.
We then trained a network with neurons consisting of

m
µ
opt dendrites on 20, 000 MNIST samples using our structural

learning rule. Figure 9C shows the comparison between the
performance of our adaptively learned network (blue) and
the corresponding theoretically optimal network (red). These
classifiers were combined in ensembles and tested on 10, 000
non-spiking binary inputs and jittered single spike patterns.
The results show that the optimal topology can achieve
about 0.5 − 0.9% higher accuracy than the adaptively learned
configuration. Moreover, the use of optimal m and k values
also helps to generate the highest accuracy of our model,
96.6%, obtained on the binary test inputs. Further advantage
of using a network with optimal topology can be understood
by comparing these results with the accuracies depicted in
Figure 7. We can see that the ensemble of 3 classifiers with
optimal network topology can attain higher accuracy than the
ensemble of 5 adaptively learned classifiers. Hence, theoretical
capacity predictions of the optimal network configuration can
be used to boost the classification performance of our structural
learning rule while using same synaptic resources as the
adaptive case.

3.8. Classification of Event-based
MNIST-DVS Dataset
We also evaluate the performance of our adaptive learning
algorithm on the actual event-based MNIST dataset consisting of
dynamic vision sensor (DVS) recordings of different handwritten
digits (Serrano-Gotarredona and Linares-Barranco, 2014). This
dataset was generated by using 10, 000 of 28 × 28 pixel digit
images from the original MNIST dataset which were enlarged to
three different scales using smoothing interpolation algorithms.
These upscaled digit images were displayed on an LCD monitor
with slow motion and a 128 × 128 pixel AER DVS (Serrano-
Gotarredona and Linares-Barranco, 2013) was used to record
these moving digits for a total time duration of 2 s. We used
10, 000 recordings of moving digits upscaled to scale-4 for our
analysis, which were also used to evaluate the performance of
the event-driven categorization system proposed in Zhao et al.
(2015). The training was performed on randomly selected 90% of
the total 10, 000 recordings while the remaining 10% recordings
were used for testing. For training, the event streams for 128×128
DVS recordings were converted to 128 × 128 pixel images by
calculating the total number of events occurring at each pixel
location for two different time durations, 100 ms and full length
of 2 s. The 128 × 128 images were then cropped to digit patches
by selecting the location of 28×28 squares with maximum events
occurring.

The rate-based adaptive schemewas used for training followed
by testing on event streams occurring at the 28 × 28 patch
extracted from the original 128 × 128 DVS recordings. The
training procedure was repeated 3 times and the average testing
accuracy over 3 trials was determined as shown in Table 3, which
also compares with the performance of the event driven system
in Zhao et al. (2015). The results show that our adaptive dendritic
algorithm can achieve comparable testing accuracy (88.1% for 2
s) with the other reported performance on MNIST-DVS dataset,
with higher accuracy attained when longer recordings are used.
Moreover, our method yields lower training accuracy than Zhao
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et al. (2015) while the testing accuracy is similar, suggesting that
our method is more robust to overfitting.

3.9. Comparison with Other Spike-based
Classification Models
Finally, we compare the performance of our model with other
spike classification models consisting of a network of spiking
neurons. The spike classifiers considered here use the two main
approaches of rate-based and spike-based learning. The models

consisting of spiking Restricted Boltzmann Machines (RBM)
map the weights learned using offline rate-based scheme onto
spiking neural network in O’Connor et al. (2013) and use a spike-
based event-driven learning rule based on STDP in Neftci et al.
(2014). In Brader et al. (2007), a stochastic spike-driven synaptic
plasticity rule was used to train a network of binary synapses
and classification accuracy determined by voting over a pool of
neurons. Table 4 compares the training, test sizes, number of
neurons or dendrites, synapses used and the accuracy attained by

FIGURE 8 | Weight maps of all dendrites of neurons belonging to a particular digit class (top row). Maps in the remaining rows show individual dendrite

weights with completely or partially learned features of input digits.

FIGURE 9 | (A) Theoretical capacity of neuron corresponding to digit “5” as a function of number of dendrites (m). The number of dendrites learned adaptively is

m5
adapt

and the optimal number of dendrites corresponding to maximum capacity is m5
opt. (B) Adaptively learned and optimal m values for digit “7.” (C) Performance

comparison of adaptively learned network (blue) with theoretically determined optimal network (red). Training was done on 20,000 binary digit samples and test

performance was measured on 10,000 binary inputs (solid) and jittered single spike input patterns with 1 = 10 ms (dashed).
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TABLE 3 | Performance on MNIST-DVS dataset.

Time length of recording used Training accuracy

(%)

Testing accuracy

(%)

100 ms (Zhao et al., 2015) 98.9 76.9

2 s (Zhao et al., 2015) 99.1 88.2

100 ms (this work) 93.7 80.2

2 s (this work) 97.3 88.1

these classification algorithms onMNIST dataset. The number of
neuronsmentioned is the total number of neurons in the network
excluding those in the input layer. For our model, each dendrite
can be considered as a processing subunit and is therefore also
shown here. For the other networks, all synaptic currents sum
up linearly implying the use of only one dendritic branch per
neuron. The number of training examples used by Brader et al.
(2007) and Neftci et al. (2014) and our method is 20, 000 while
the training set in O’Connor et al. (2013) consisted of 120, 000
samples generated by introducing small random translations,
rotations and scalings in the original MNIST training examples.
The number of test patterns used by all the models is 10, 000.

The results suggest that the NLD model can achieve accuracy
comparable with other algorithms by utilizing significantly less,
which is about 2 − 7% of the total number of synapses used by
the other methods. Moreover, the use of low resolution integer
weights in our work in contrast with the high resolution weights
used by spiking RBMmodels (Neftci et al., 2014; O’Connor et al.,
2013) renders our structural learning rule for NLDsmore feasible
for implementing spike classification in hardware. Further, the
ensemble of NLD classifiers yielded 96.1% accuracy by using rate-
based learning and testing on Poisson spike inputs. Moreover, the
use of optimal network topology, which was determined using
the theoretical capacity calculations, enabled us to attain even
higher accuracy by reducing the synaptic resources by about
1.7 times. These results are at par with the best performance
achieved by Brader et al. (2007). It is important to note that
both models in Brader et al. (2007) and our work use binary
synapses; however, we obtain similar performance as in their
work by training an ensemble of only a few classifiers resulting in
still less number of synaptic resources, about 20% of that used in
Brader et al. (2007). We also expect that our learning rule will be
more amenable for hardware implementation since the dendritic
polynomial nonlinearity is much simpler than implementation
of a full neuron as in the population of output neurons in Brader
et al. (2007). Therefore, the use of much less number of synaptic
resources with binary weights and a more simpler learning rule
render our NLD model more hardware-friendly.

4. DISCUSSION

Here, we discuss the neurobiological relevance of our work
and its potential for future hardware implementation. We
also compare our method with other studies based on these
neurobiological mechanisms. Finally, we discuss the future
directions of our work.

4.1. Role of Dendritic Nonlinearity in
Neuronal Processing
Several experimental evidences support the nonlinear processing
in dendrites including active backpropagation of axonal spikes
into the dendritic tree and dendritic spikes (Hausser et al.,
2000; Schiller et al., 2000). However, there are not many
evidences regarding the role of these nonlinear mechanisms in
synaptic integration in pyramidal neurons. Experimental and
compartmental modeling studies of pyramidal neurons have
indicated that nearby synaptic inputs on the same dendrite sum
sigmoidally while inputs on different dendrites sum up linearly
(Poirazi et al., 2003b; Polsky et al., 2004). These findings support
the notion of a two-layer model of neurons, thereby having
implications for the synaptic plasticity and the computational
capacity of cortical tissue. Mel and his group presented several
computational studies to elucidate the role of dendrites in
neuronal processing. (Mel, 1991; Poirazi et al., 2003b). In more
recent studies, an abstract two-layer model using sigmoidal
dendritic nonlinearity was shown to predict the firing rate of a
detailed compartmental model of a pyramidal neuron (Poirazi
et al., 2003a) and much larger storage capacities were computed
for dendritic neurons with degree 10 polynomial nonlinearity in
Poirazi and Mel (2001). In contrast to these studies, we use a
more hardware-friendly quadratic nonlinearity which is easier to
implement than a sigmoid or a high order polynomial. We also
modify the learning rule to adapt the structure of the dendritic
tree of different neurons in the network according to difficulty of
the classification task.

4.2. Structural Plasticity as a Learning
Mechanism
The phenomenon of structural plasticity involving formation
and elimination of synapses thereby leading to alterations to
the cortical wiring diagram (Butz et al., 2009; Chklovskii et al.,
2004) provides for alternative form of long term information
storage in addition to the traditional synaptic weight plasticity.
The information storage capacity associated with structural
plasticity lies in the ability to change wiring diagram in a
sparsely connected network, which provides a large number
of functionally distinct circuits available to encode information
(Chklovskii et al., 2004) and hence has important implications for
the computational properties of the network. The computational
modeling study by Poirazi and Mel (2001) demonstrated the use
of structural plasticity to modify binary synaptic connections on
dendritic branches. Similar to our model, a poorly performing
active synapse is eliminated and replaced by the best performing
synapse in a set of silent synapses. However, our learning rule is
simple and easier to implement in hardware systems as compared
with the learning rule used by Poirazi and Mel (2001).

4.3. Binary Synapses: Computational
Challenges
There is accumulating experimental evidence that biological
synapses exist in only a small number of states which can be
restricted to even two states (O’Connor et al., 2005; Petersen et al.,
1998). The use of synapses with only one or two bits of long-term
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TABLE 4 | Comparison with spike classifiers on MNIST data.

Model #Train #Test #Neurons #Dendrites #Synapses Accuracy %

O’Connor et al., 2013 120,000 10,000 1010 1010 647,000 94.09

Neftci et al., 2014 20,000 10,000 540 540 412,000 91.9

Brader et al., 2007 20,000 10,000 150 150 117,600 96.5

Adaptive NLD 20,000 10,000 20 440 6720 94.2

Ensemble NLD 20,000 10,000 100 2312 35,285 96.1

Optimal NLD 20,000 10,000 100 3960 20,163 96.4

information has severe implications for the storage capacity of
networks working as classifiers or associative memories with
capacity for binary synapses reducing by more than half as
compared to the capacity using continuous-valued synapses
(Senn and Fusi, 2005). Some studies have presented learning
algorithms as biological solutions to deal with the reduced storage
capacity of networks with binary synapses. A stochastic spike-
driven synaptic plasticity rule was used to train a network of
binary synapses, where a pool of output neurons was used
to calculate the classification accuracy by a voting mechanism
(Brader et al., 2007). This results in a large number of synapses
being used. In comparison to this study, our model employs
a sparsely connected network of binary synapses which learns
by using a correlation-based structural plasticity rule. The use
of dendritic nonlinearity yields higher computational power
thereby alleviating the problem of reduced capacity of binary
weights. Also, the adaptive learning of number of dendrites
according to problem complexity reduces the number of synapses
compared to a brute force approach. Hence, our model can
achieve higher accuracy by utilizing a small number of binary
synapses.

4.4. Binary Synapses and Structural
Plasticity: Considerations for Hardware
Implementation
Over the past decade, several low-power neuromorphic systems
have been built to perform classification of spike patterns. A
common feature in several of these systems is the usage of binary
synapses (Arthur and Boahen, 2007; Indiveri et al., 2006; Mitra
et al., 2009). One reason for this is the ease with which two states
can be stored in current CMOS technology using a latch. This
also makes the system more robust to parametric variations due
to mismatch in device - it is unlikely that high resolution weights
can be obtained from a massive array of analog synapses due
to a combination of systematic and random mismatch (Linares-
Barranco et al., 2003). Even a recently introduced multi-core
asynchronous digital chip (Merolla et al., 2014) uses a limited
number of weight values per axon per core. Our algorithm
is consistent with this philosophy of low-resolution weights
since we limit the number of synaptic connections per dendrite
and each connection is a binary value. Effectively each input
afferent (or axon) connects with a small integer weight to
a dendrite.

Another advantage of our architecture is that the learning
happens by modifying connectivity patterns of the network.

In most current event-based neuromorphic systems, this
connection matrix is stored in a separate memory (Liu, 2014)
either on or off chip. This implies that since our hardware
architecture enforces sparsity, we require less memory and
memory reads to store and access connection information
respectively. Before expanding on this point, it is important
to note that we are not considering advantages of hardware
implementations of on-chip learning to find optimal connections
(though we have presented some initial results on the same in
Roy et al., 2014b). We are only comparing the advantages of
using our proposed architecture to implement the final network
and using structural plasticity to reduce the memory requirement
of this implementation. In this context, it should be noted that
normal weight learning methods do not necessarily produce
sparse weights and simple quantization of small weights to
zero values increase errors. This was shown to be true for an
ensemble of perceptrons trained by the p-delta algorithm in Roy
et al. (2014a). More recently, there have been efforts to improve
rounding algorithms to reduce weight resolution for efficient
implementation of deep networks (Muller and Indiveri, 2015).
Even with these methods, a two layer fully connected neural
network with 500 hidden nodes needs at least 4 bits per synaptic
weight to achieve comparable performance (∼ 96%) as our
network on the MNIST dataset. This results in approximately
397, 000 4-bit weights as opposed to ∼ 21, 000 1-bit weights in
our case.

To generalize this result, let us consider a two layer network
for the conventional case with d inputs, H hidden layer neurons
andC output neurons for “C” classes. The comparable network in
our proposed case has H dendrites and C output neurons. “2m”
out of the H dendrites connect to each of the C output neurons
(H = 2m × C) using unit weights and hence can be implicitly
implemented by accumulators. Considering each weight of the
conventional network having resolution of “b” bits, the total
number of bits required by the conventional network (NOBconv)
is given by:

NOBconv = b×H×d+b×H×C ≈ b×H×d for C << d (22)

For the proposed case, the connection matrix is of size d × H
though only k × H entries are non-zero where k << H. To
implement this sparse connectivity efficiently in an address event
framework, we propose to use a two tier addressing scheme as
shown in Figure 10. Here, the incoming address will be used to
index into a pointer array of “d” entries with ⌈log2(H×k)⌉ bits per

Frontiers in Neuroscience | www.frontiersin.org 14 March 2016 | Volume 10 | Article 113

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Hussain and Basu Structural Learning with Binary Synapses

entry. An incoming spike address, say “i,” is used to index into this
array and read the two consecutive values ai and ai+1. As shown
in the figure, suppose ai = p and ai+1 = q. ni = ai+1 − ai is
the number of synapses connected to this input. If ni > 0, then
ai = p is used as a pointer to the pth location in a dendrite address
array. This second array has H × k entries with ⌈log2(H)⌉ bits
per entry that hold the address of the dendritic branch where the
synapse is located. ni consecutive values (dp to dq−1) are read as
destination addresses to route the spikes. Now, the total memory
required by the look up table in the proposed method (NOBprop)
can be estimated as:

NOBprop = d× ⌈log2(H × k)⌉ +H × k× ⌈log2(H)⌉ (23)

The memory requirements for proposed and conventional
methods are compared in Figure 11 by setting b = 4, H =

104 and varying d over a wide range for k = 16, 32, and 64.
It can be seen that the proposed method requires much less
memory than the conventional case for large values of d when
the sparsity is higher while the overhead of having a pointer array
is more for small values of d. The crossover typically happens for
d < 200 for values of k as large as 64. Since for most practical
cases d is much larger, we expect our method to be widely
applicable.

To underline the importance of this memory reduction,
we consider a digital implementation of this system following
principles similar to the ones in Merolla et al. (2014) and
Seo et al. (2011). In particular, we assume that the dendritic
nonlinearity/hidden neuron can be a shared physical circuit that
can be time multiplexed across all required instances and we
assume synaptic weight resolution is 4 bits following Seo et al.
(2011). Here, for simplicity we ignore the overhead needed if
the network is spread across multiple cores. Using the numbers
quoted in Merolla et al. (2014), the area requirement of a neuron
circuit is 2900 µm2. Compared to that, the area required to
implement a conventional crossbar of 4 bit weights for the
MNIST case of d = 784 and say H = 1000 is 470, 400
µm2 where we estimate 0.15 µm2 area per bit from Merolla
et al. (2014). This is clearly the dominant factor in chip area.
Compared to this, our scheme with even k = 64, H = 1000 and
d = 784 requires approximately 98, 000 µm2 area, a reduction
by > 4X.

4.5. Future Work
The classification performance attained by our model on the
benchmark MNIST data is not state-of-the-art. The best MNIST
classification result achieved so far is 99.06% accuracy using
maxout networks (Goodfellow et al., 2013). Hence, we need
to bridge this gap by enhancing our model. Our present
model consists of lumped dendritic nonlinearity such that each
dendrite is considered to be a single compartment where all
the synaptic inputs are lumped together. The storage capacity
of this network can be increased by introducing multiple
compartments on each dendrite. The dendritic compartments
represent time delays in signal propagation along a dendrite
and therefore, the information about the location of synaptic
inputs on a dendrite is important. We will utilize this

FIGURE 10 | To implement the sparse connectivity matrix, a two level

addressing scheme is proposed where the first memory (indexed by

the incoming address of the event) holds pointers to valid connection

addresses stored in the second memory.

FIGURE 11 | Memory requirement of proposed sparse connectivity

scheme is compared with that of a normal fully connected weight

memory with 4 bits per weight. The proposed scheme is far more memory

efficient for high dimensional inputs (d > 200).

additional source of spatial information to enhance our dendritic
structural learning rule which will involve finding the optimal
location on the optimal dendritic branch for a synaptic
connection.

The storage capacity of the network can further be increased
by including distributed nonlinearity along a dendrite such that
the nonlinear output of each compartment serves as input to
the next compartment on the dendrite. This scheme is also
more bio-realistic from the perspective of real neurons consisting
of extended dendritic trees with complex branching patterns.
We will also enhance our adaptive learning rule to prune the
redundant or least “salient” synapses. This pruning method
combined with the progressive addition of dendrites will yield
an optimally sized network that will fit the data. The network
will learn both the number of required dendrites as well as
the number of synapses on each dendrite. This approach to
obtain the smallest network can also improve the generalization
performance.

In this work, we have not used temporal information to
classify input patterns and have focussed on rate and place
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encoding of the binary images from the MNIST dataset. In a
recent work (Roy et al., 2015), we have used structural plasticity
to learn binary classification spatiotemporal patterns as used in
Gutig and Sompolinsky (2006). Hence, a natural extension of our
present work is to combine the use of spike timing information
with structural learning to enable classification of multiclass
temporal codes.
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A. APPENDIX

We have proposed a biologically realistic branch-specific spike-
time dependent structural plasticity (BSTDSP) rule for binary
classification in Hussain et al. (2015), which was inspired from
a recent study in which reverse spike-timing dependent plasticity
(RSTDP) in concert with hyperpolarization of the postsynaptic
neuron was used to modify the synaptic weights (Albers et al.,
2013). Our learning rule involving modification of connections
instead of synaptic weights, is in contrast with Albers et al.
(2013) and is used to find the bio-realistic correlation values
cij. However, the bio-realistic basis of adapting the number of
dendrites is not clear.

The correlation values needed for structural plasticity rule
were obtained from an online spike-based learning rule. The
biological relevance of these correlations can be found in calcium
concentration in spines which is a correlation sensitive, spike-
time dependent signal and has been implicated as a guide
for structural plasticity (Helias et al., 2008). Here, we present
an extension of BSTDSP to multiclass classification and also
demonstrate the correspondence between rate-based and spike-
based learning approaches.

A. Spike-based Structural Learning for
Multiclass Classification
The multiclass BSTDSP is derived using the example of
synchronous single-spike inputs such that each afferent either
fails to fire or fires a spike at a fixed time Tsyn and these spike
inputs are assigned to NC classes. The single-spike input is
denoted by the presynaptic spike train sij(t) at the ith synapse of
the jth dendrite, and the postsynaptic spike train is denoted by
r(t) given by:

r(t) =
∑

tpost

δ(t − tpost) (A1)

where tpost is the postsynaptic spike time. These pre- and
postsynaptic spikes also drive exponentially decaying memory
traces–the presynaptic trace s̄ and the postsynaptic trace r̄ given
by:

s̄ = exp(−t/τpre) (A2)

r̄ = exp(−t/τpost) (A3)

If a pattern belonging to class µ is presented, a teacher signal
forcing a postsynaptic spike (at time t = 1 ms) is present for
the (+) neuron and absent for (−) neuron of class µ. For the
remaining (NC − 1) classes, opposite conditions for the teacher
signal exist, i.e., teacher signal is absent for (+) neuron and
present for (−) neuron.

The spike-based structural plasticity learning rule is similar
to the rate-based learning method and also involves computing
correlation values cij for each synapse belonging to the PDT
and NDT corresponding to class µ. This learning scheme is
analogous to the RSTDP rule such that if a postsynaptic spike
arrives before a presynaptic spike, then the correlation value for
that synapse is potentiated. The condition for depression does

not use postsynaptic spike–instead, the relevant event is when
the membrane voltage Vm(t) crosses a subthreshold voltage Vst

from below, where 0 < Vst < Vthr . These subthreshold crossing
events occurring at times tst are denoted by rst(t) =

∑

tst
δ(t−tst).

The correlation value is decreased when presynaptic spike time
tsij occurs before tst . The reason for using rst(t) instead of r(t)

is to enforce a margin as will be explained later in this section.
Finally, the change in correlation value 1cij(t) for every pattern
presentation is computed using these plasticity conditions in a
branch-specific manner. Hence, the learning rule for the PDT
and NDT belonging to the µth class can be written as:

For PDT of class µ:

1cPDTij (t) = IPDTD,j (t)r̄PDT(t)sPDTij (t)−

γ IPDTD,j (t)s̄PDTij (t)rPDTst (t) (A4)

For NDT of class µ:

1cNDTij (t) = INDTD,j (t)r̄NDT(t)sNDTij (t)−

γ INDTD,j (t)s̄NDTij (t)rNDTst (t) (A5)

where γ is a constant used to balance the potentiation and
depression and ensure that cij = 0 when a pattern is learned.
The correlation values averaged over all the patterns can be
written as: cPDTij =< 1cPDTij (t) > and cNDTij =< 1cNDTij (t) >,

where < . > indicates average calculated over an epoch. It was
shown in Hussain et al. (2015) that by assuming the presynaptic
time constant τpre to be much greater than the membrane time
constant τV , the value of γ can be computed as:

γ =
exp(−Tsyn/τpost)

exp(−Trise/τpre)
(A6)

where the presynaptic spike arrives at time Tsyn andVm(t) crosses
Vst at time Trise. The connection changes are done on the basis
of cij values using the same process as discussed for rate-based
learning. The use of a subthreshold voltage Vst leads to a margin
δspike for classifying spike patterns. A desired margin δspike for a
particular class µ can also be preset, which can then be used to
calculate the class specific values of Vst and Vreset as explained in
Hussain et al. (2015). The class margins suited for a particular
problem can be assigned by using margins set for rate-based
learning. The value of the desired margin, δspike is determined by
using the spike equivalent value of δ. This is done by computing
the difference in the membrane voltage of the neuron (analogous
to aPDT − aNDT) when a single synapse is activated. This value
1Vm multiplied by δ gives δspike, since in the binary input case
the synaptic strength is normalized to 1.

The spike-based and the rate-based structural learning rules
were compared in Hussain et al. (2015) and a relationship
between the correlation terms [1cij]spike and [1cij]rate for the two
forms of learning was derived as given below.

[1cij]spike = exp(−Tsyn/τpost)[1cij]rate (A7)

Therefore, any differences between the performance of the
two learning methods can be understood on the basis of this
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relationship. This suggests that as the value of τpost is increased,
the correlation values for the rate-based learning, [1cij]rate well
approximate the correlation values for the spike-based learning,
[1cij]spike. Since the two forms of learning tend to coincide with
increasing τpost , therefore, we have used the faster rate-based
approach instead of the computationally prohibitive spike-based
learning scheme for the enhancements proposed in the model.

B. Comparison of Spike-based Learning vs
Rate-based Learning Schemes
We have compared the performance of the spike-based and rate-
based learning schemes. Since spike-time-based learning takes
very long and the training time increases with the size of training
set, therefore, we have trained the spikemodel on smaller number
of training patterns, 200 − 1000. For both forms of learning
schemes, the networks consisted of m = 10 dendrites in the
PDT and NDT of all NC = 10 classes. Hence, the total number
of dendrites used by both models is M = 200. Figure A1A
shows the comparison between the performance of spike-based
and rate-based learning schemes. Both forms of learning exhibit
the trend of decreasing test error with the training set size.
However, the spike-based learning method results in about
1.5 times higher errors than that for rate-based learning. This
difference in performance of the two methods can be attributed
to three reasons: (1) Firstly, the relationship between these two
methods (Equation A7) suggests that as the value of τpost is
increased, the correlation values for the two learning methods

FIGURE A1 | (A) Comparison of performance of rate-based and spike-time-based learning schemes. The test error rates for the spike-based learning rule are about

1.5 times higher than the rate-based test errors; (B) Comparison of test error rate for P = 200 patterns learned with rate-based (blue line) and spike-based (red plot)

methods as a function of τpost. Each data point is obtained by averaging over 3 training simulation trials and testing on 10,000 single spike inputs with jitter 1 = 10

ms; m = 10 and k = 10.

become more similar. Therefore, we need to repeat our spike
learning simulations with higher values of τpost to achieve greater
agreement between the two forms of learning; (2) Secondly, our
estimation of γ in Equation (A6) is based on the assumption that
τpre ≫ τV . Hence, smaller τpre will result in a non-ideal value of
γ which will give different results for the two learning schemes;
and (3) Finally, the discrepancy in results can arise if the margin
setting is not exact. As discussed above, the margin for spike-
based learning was set using δspike = 1Vm × δ, where a wrong
estimate of the constant 1Vm will mean that δspike and δ are not
truly analogous to each other, leading to different results.

Based on this discussion, we attempted to reduce the
difference between the performance of rate-based and spike-
time-based learning approaches. Therefore, we increased the
value of τpost from 200 to 500, 1000 and 2000 ms and τpre
from 10 to 50 ms. As shown in Figure A1B, the test error for
τpost = 200 ms corresponds to our prior parameter settings for
P = 200 patterns (Figure A1A, blue curve). As τpost is increased,
the testing performance of spike-based learning rule improves
and gradually becomes closer to the testing performance of rate-
based method, shown with blue line. We expect that we can
achieve further agreement between the two forms of learning by
getting the margin values δspike and δ to be analogous to each
other or by determining the desired δspike directly in the spike
domain. Hence, we have shown that the error rate for spike-based
learning becomes similar to that of rate-based learning if τpost is
long enough.
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