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In the last decade, several studies indicated that neuronal activity can be volitionally modulated
using real-time fMRI (rtfMRI) based neurofeedback. Human participants through rtfMRI
paradigms can learn to regulate the blood oxygenation level dependent (BOLD) response in several
localized cortical and subcortical regions (for extended reviews see Caria et al., 2012; Weiskopf,
2012; Sulzer et al., 2013). Increasing evidence also indicated that strengthening or weakening
specific BOLD activity using rtfMRI training leads to significant changes in cognitive, emotional
andmotor behavior (Caria et al., 2012;Weiskopf, 2012; Sulzer et al., 2013). These findings suggested
that rtfMRI might represent an important novel approach in cognitive neuroscience by potentially
providing indications of cause-and-effect relationships between brain and behavior, and also in
clinical applications (Subramanian et al., 2011; Linden et al., 2012; Ruiz et al., 2013; Sitaram et al.,
2014).

Although rtfMRI studies extend and enrich a large body of literature demonstrating operant
learning of neuronal oscillations, skepticism still exists on the validity and reliability of studies
showing learned control of the BOLD response. In particular, it is still debated whether this
phenomenon is a primary effect of learning or it just an epiphenomenon resulting, for instance,
from repeated execution of some mental processes.

Here, I will discuss specific psychophysiological and neurophysiological mechanisms
presumably underlying learned regulation of the BOLD response to attempt to clarify its nature.

OPERANT LEARNING OF THE BOLD RESPONSE

Direct manipulation of brain activity grounds on the principles of operant conditioning that
describe the relationship between changes in behavior (in this case the neurophysiological
response) as consequence of contingent environmental events. Reinforcement is the mechanism
that allows participants to increase the frequency of specific brain activity and to shape the desired
pattern of neuronal activations. During operant learning of the BOLD response participants are
reinforced proportionally to how much the ongoing metabolic signal approach or resemble the
target level of activation in single or multiple regions of interest. The information of the ongoing
signal fluctuations, provided as explicit visual feedback to the participants, represents the intrinsic
reward.

Operant learning is an important approach for manipulating brain functions (Birbaumer and
Kimmel, 1979) acting on intrinsic physiological properties of neuronal activity, which have been
extensively shown to undergo classical and operant conditioning (Kandel and Schwartz, 1982).

The application of operant control principles to metabolic signals builds on several previous
experiments demonstrating operant control of neuroeletric activity in non-human and human
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animals (Birbaumer and Kimmel, 1979; Fetz, 2007). Studies
on volitional control of neural activity dates back to the late
sixties and seventies when operant conditioning of central
nervous system activity was demonstrated (Olds, 1965; Fetz,
1969; Shinkman et al., 1974). CNS unit conditioning was shown
by operantly rewarding rats to increase the activity of midbrain
neurons using intracranial stimulation (Olds, 1965). In 1969, Fetz
demonstrated conditioning of the activity of single neurons in
precentral cortex in anesthetized monkeys by reinforcing high
rates of neuronal discharge with food reward and auditory or
visual feedback of unit firing rates (Fetz, 1969). More recently,
Brain-Computer Interface and Brain-Machine interface studies
reported volitional control of cortical cell activity, in particular
in the motor cortex, in both animals and humans (Serruya et al.,
2002; Taylor et al., 2002; Carmena et al., 2003; Moritz et al., 2008),
with food reward and visual feedback of neuronal ensembles’
activity. Altogether these findings robustly proved that neuronal
activity from localized brain areas can be manipulated through
operant conditioning.

On the other hand, there are unclear aspects of operant
conditioning of the BOLD response in humans that make rtfMRI
neurofeedback paradigms not fully established. Among these
is the role of mental and cognitive processes for learning.
Some rtfMRI studies indicated that successful BOLD regulation
relies on the use of mental imagery (Chiew et al., 2012; Banca
et al., 2015; Blefari et al., 2015). In particular, these studies
suggested that strategies based on mental imagery are important
for learning BOLD control considering the partial common
substrates for internal representations and overt behavior, which
holds in particular for the primary motor (Jeannerod, 1995; Roth
et al., 1996; Jeannerod and Frak, 1999; Niyazov et al., 2005) and
visual areas (Kosslyn and Thompson, 2003; Klein et al., 2004;
Slotnick et al., 2005). On the contrary, other studies indicated
that a combination of cognitive strategies (mental imagery) and
feedback information is critical for participants to learn BOLD
regulation, and that cognitive and imagery alone is not sufficient
(decharms et al., 2005; Bray et al., 2007; Caria et al., 2010;
Scharnowski et al., 2012). In particular, mere repetition of mental
strategies leads to an initial increase of BOLD signal but to a rapid
decrease in the following consecutive runs (Caria et al., 2010). In
fact, fMRI adaptation paradigms (Kourtzi and Kanwisher, 2001)
show that task repetition leads to a decrease of the BOLD signal.

In addition, while it is true that imagery and cognitive
processing certainly affect learning and physiological regulation,
studies on operant control of brain oscillations suggest that
feedback is more important than instructions for successful
slow cortical potentials regulation (Roberts et al., 1989;
Birbaumer et al., 1990). There are indications from EEG
based neurofeedback studies that mental imagery is efficacious
initially but it would be then dropped when participants
become more confident with self-regulation (Leuthardt et al.,
2004). Ultimately, control of neuroelectric activity turns to a
highly implicit process over training, and the contribution of
higher order cognitive processes becomes negligible. Indeed,
control of neurophysiological signals can even be attained
when participants have little or no direct experience of it
(Rockstroh et al., 1984). However, until now there exist no clear

demonstrations that these mechanisms, although plausible, hold
also for learned metabolic signals.

In most rtfMRI studies participants were aware of the
responses leading to reward. Only one study reported to have
employed implicit visual task and feedback to learn BOLD
control in V1/V2 areas, however participants still reported to
have used explicit mental strategies (Shibata et al., 2011).

In short, the fact that operant control of brain activity, even
single cell responses is possible also in animals speaks against
a fundamental influence of cognitive factors on the effect of
operant brain regulation. On the other hand, it is conceivable
that in human participants the combination of specific conscious
processes and operant strategies might support retention of
learned BOLD control out of the laboratory setting, and might
facilitate the (re-)activation of impaired or dormant mechanisms,
in particular in patients.

WHAT NEUROPHYSIOLOGICAL

MECHANISMS MEDIATE LEARNED BOLD

CONTROL?

A further issue of rtfMRI experiments is the unclear
neurophysiology of the BOLD signal, which prevents us to
univocally interpret the behavioral changes induced by operant
learning of the metabolic signal. We know from previous
investigations on instrumental learning of neuroelectric signals
that the brain has intrinsic neurophysiological processes
allowing regulation of neural activity even in the absence of
external stimuli (Wolpaw et al., 2002; Birbaumer and Cohen,
2007; Fetz, 2007). While no specific receptors directly support
regulation of brain oscillations, it exists a complex neurovascular
system that regulates and controls the BOLD signal.

At least three main blood flow regulatory mechanisms
have been described: cerebral autoregulation—the brain ability
to maintain a constant flow through changes of cerebral
perfusion pressure—neurogenic regulation—the cerebral
blood flow modulation through extensive arborization of
perivascular nerves—and flow-metabolism coupling, or
functional hyperemia—the brain capacity to vary blood flow
to match metabolic activity (Peterson et al., 2011). Endothelial
cells and astrocytes play a central role in all these regulatory
mechanisms (Iadecola and Nedergaard, 2007): the former by
providing several vasoactive factors for the regulation of cerebral
blood flow and the latter because of their anatomical position
that physically links the cerebral microvasculature with synapses.

Learned increase and decrease of BOLD activity might indeed
be associated with variations in the flow-metabolism coupling.
Local changes in neural activity have been shown to influence
BOLD signal (Buxton et al., 2004; Logothetis and Wandell, 2004;
Lee et al., 2010) through variations in cerebral blood flow (CBF),
cerebral blood volume (CBV) and cerebral metabolic rate of
oxygen consumption (CMRO2). It has been also demonstrated
that changes in the coupling ratio of CBF and CMRO2 in
response to neural activity strongly affect the BOLD response
(Kim and Ogawa, 2012; Buxton et al., 2014). Considering such
complexity of the neurovascular system, it is thus conceivable
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that learned control of the BOLD response might be based on
these sophisticated regulatory mechanisms.

An intriguing perspective for rtfMRI neurofeedback arises
from the hypothesis proposing that modulation of brain activity
is directly and causally affected by changes of metabolic
signals (Moore and Cao, 2008). Specifically, it has been
conjectured that the brain vascular system, being a complex
and interconnected network under tight regulatory control that
occurs in close communication with neurons and glia, might
directly contribute to information processing (Moore and Cao,
2008). Accordingly, the hemodynamic processes would not
only support metabolic demand but also directly shape brain
functions; self-regulation of metabolic signals might thus induce
changes of neuronal activations. In line with this perspective
non-invasive direct electrical stimulation (e.g., using transcranial
direct electric stimulation, tDCS) targeting cerebral microvessels
has been proposed to enhance brain functions trough changes of
cerebrovascular function (Dutta, 2015; Pulgar, 2015).

So far, despite the increasing number of hypotheses and
studies aiming to clarify the nature of the BOLD response,
the neurometabolic coupling of this signal remains unclear. It
has been shown that the BOLD fMRI response correlates with
local field potentials (Logothetis et al., 2001; Viswanathan and
Freeman, 2007), with spiking activity (Heeger and Ress, 2002),
and with both LFP and spiking activity (Mukamel et al., 2005).
In addition, BOLD signal can reflect different brain processing
such as excitatory and inhibitory activity, neuromodulation, and
bottom-up and top-down signals (Viswanathan and Freeman,
2007; Logothetis, 2008; Lee et al., 2010).

On the basis of this evidence it is difficult to infer whether
the net effect of self-regulation of BOLD signal is excitatory,
inhibitory or a combination or both. On the other hand, rtfMRI
studies, although sometimes controversial, often reported an
improvement of subjects’ performance associated with increased
amplitude of the BOLD response (decharms et al., 2005; Bray
et al., 2007; Rota et al., 2009; Caria et al., 2010; Scharnowski
et al., 2012, 2015; Zhang et al., 2013; Blefari et al., 2015). For
instance, studies showed a decrease in reaction times for task
execution associated with increase activity of the primary motor
cortex (M1), and for task initiation after up-regulation of the
SMA (Scharnowski et al., 2015). M1 activity was also positively
correlated with accuracy improvement of performance during
an isometric pinching task (Blefari et al., 2015) In the visual
domain, increased visual perception was induced by increased
BOLD response in the visual cortex (Scharnowski et al., 2012).
Moreover, enhanced emotional response was associated with
increased percentage BOLD signal change in the left anterior
insula (Caria et al., 2010). Importantly, these studies reported
poorer performance either during initial regulation runs or
after down-regulation. Altogether these findings suggest that
learned increase of the BOLD response might be associated with
increased excitatory activity. This assumption would be also
supported by studies showing improved memory performance

associated with decreased BOLD activity in the parahippocampal
cortex (Yoo et al., 2012; Scharnowski et al., 2015), which
was then interpreted as result of increased brain resources for
memory encoding because of decreased cortical processing (Yoo

et al., 2012). Indeed, increased BOLD signal might occur from
increased net excitation associated with glutamatergic activity
(Logothetis, 2008). However, this represents only one possible
interpretation, as larger BOLD signal can also be induced
by concurrent increase of both glutamatergic and GABAergic
activity, with changes in hemodynamic responses reflecting
balanced local recurrent activity (Logothetis, 2008). In line with
this alternative mechanism, it has been shown that enhanced
perceptual sensitivity induced by fMRI feedback training results
from a mixture of positive and negative activated voxels in the
targeted regions of interest rather than from uniform positive or
negative activity (Shibata et al., 2011).

Therefore, fMRI neurofeedback might also rely on, and
possibly alter, the capacity of the cerebral cortex to generate
persistent activity in the absence of sensory stimulation
(Haider et al., 2006), which would in turn influence neuronal
responsiveness to a wide range of inputs (Shu et al., 2003a).
In addition, as the ongoing network activity can be turned on
and off by synaptic inputs via electrical stimulation (Shu et al.,
2003b), it can also be postulated its self-regulation via operant
conditioning.

CONCLUSIONS

In short, the observed behavioral changes induced by rtfMRI
training might be related to several plausible neurophysiological
processes, and it is still not possible to conclusively ascertain the
actual mechanism on the basis of the current results. Multimodal
measurements such as simultaneous EEG-rtfMRI acquisition, as
well as alternative real-time functional imaging methods such as
MR perfusion and MR spectroscopy, might help to clarify the
neurophysiological mechanisms underlying learned control of
the BOLD response. Nevertheless, there exist clear indications
that self-regulation of BOLD signal is not an epiphenomenon but
a primary effect of operant learning, which can rely on precise
neurovascular regulatory mechanisms.
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