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Introduction: RoutineMR images do not consistently reveal pathological changes in the

brain in ALS. Texture analysis, a method to quantitate voxel intensities and their patterns

and interrelationships, can detect changes in images not apparent to the naked eye.

Our objective was to evaluate cerebral degeneration in ALS using 3-dimensional texture

analysis of MR images of the brain.

Methods: In a case-control design, voxel-based texture analysis was performed on

T1-weighted MR images of 20 healthy subjects and 19 patients with ALS. Four texture

features, namely, autocorrelation, sum of squares variance, sum average, and sum

variance were computed. Texture features were compared between the groups by

statistical parametric mapping and correlated with clinical measures of disability and

upper motor neuron dysfunction.

Results: Texture features were different in ALS in motor regions including the precentral

gyrus and corticospinal tracts. To a lesser extent, changes were also found in the

thalamus, cingulate gyrus, and temporal lobe. Texture features in the precentral gyrus

correlated with disease duration, and in the corticospinal tract they correlated with finger

tapping speed.

Conclusions: Changes in MR image textures are present in motor and non-motor

regions in ALS and correlate with clinical features. Whole brain texture analysis has

potential in providing biomarkers of cerebral degeneration in ALS.

Keywords: amyotrophic lateral sclerosis, cerebral degeneration, texture analysis, MRI, biomarker

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder of adulthood leading to
rapid accrual of muscle weakness and disability. The clinical features are secondary to degeneration
of both upper motor neurons (UMN) of the cerebral cortex and lower motor neurons (LMN)
in the brainstem and spinal cord. Cerebral degeneration exists beyond the motor cortex with
frontotemporal degeneration being the substrate for cognitive impairment in upwards of 50%
of patients. While the presence of LMN loss is supported by electromyography, an objective
measure of UMN damage is lacking. A quantitative measure of cerebral degeneration is needed
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to aid diagnosis, evaluate novel therapies, and further our
understanding of pathogenesis and the biological basis of the
marked phenotypic heterogeneity observed in this complex
disorder.

MRI holds promise in this regard to non-invasively quantify
cerebral degeneration. Early MRI studies in ALS reported
hyperintensity of the corticospinal tract (CST) on T2-weighted,
(Goodin et al., 1988; Cheung et al., 1995) proton density,
(Cheung et al., 1995; Waragai, 1997) and FLAIR, (Hecht et al.,
2002) sequences and hypointensity of the posterior bank of the
precentral gyrus on T2-weighted (Cheung et al., 1995) and FLAIR
images (Hecht et al., 2002). However, the increased intensity of
the CST in ALS is bilateral and symmetric relative to the normal
CST in healthy subjects which is already slightly hyperintense on
T2 and FLAIR compared to surrounding white matter. Thus, the
reported characteristics observed on routine structural MRI have
poor sensitivity and specificity, and conventional MRI remains
only a tool to rule out diseases that mimic ALS (Filippi et al.,
2010). As such, study of cerebral degeneration with imaging
has progressed to advanced MRI modalities and image analysis
methods such as diffusion tensor imaging (DTI), magnetic
resonance spectroscopy (MRS), positron emission tomography
(PET), voxel-based morphometry (VBM), and MR volumetry.

Our objective was to determine if MRI-based textures
are different in ALS. Texture refers to visual patterns in
images. Texture analysis uses image processing techniques and
statistical methods to quantitate such patterns of voxel intensity
relationships. It can capture such information as intensity
homogeneity in a region, correlation of the voxel intensity
value to its neighbors, and other relationships that are not
appreciated by the naked eye (Kassner and Thornhill, 2010).With
MR images, the methods have been successfully used to study
several neurological diseases including brain tumors, (Herlidou-
Même et al., 2003; Zook and Iftekharuddin, 2005) epilepsy,
(Sankar et al., 2008) Alzheimer’s disease, (de Oliveira et al.,
2011), and multiple sclerosis (Tozer et al., 2009; Zhang et al.,
2009). Robustness to MRI acquisition parameters (Mayerhoefer
et al., 2009) and noise (Maani et al., 2013a,b, 2014) makes
texture analysis a reliable and attractive tool for investigation of
neuropsychiatric conditions. However, the majority of methods
as applied to medical imaging have been restricted to 2
dimensions which has limited its utility in exploring whole-brain
pathology and brain-behavioral relationships. To address this
we developed a 3-dimensional texture analysis method called
VGLCM-TOP-3D that performs a voxel-by-voxel statistical
comparison of texture features in 3D volumetric MRI datasets
(Maani et al., 2015) and applied it to study cerebral degeneration
in ALS.

METHODS

Subjects
Subjects were recruited through the University of Alberta ALS
Clinic. Nineteen patients (10 males, 9 females) with clinically
probable or definite sporadic ALS according to the revised El
Escorial criteria (Brooks et al., 2000) were studied. Patients were
sporadic (non-familial) and all had clinical evidence of UMN and

LMN involvement. Patients had an average age of 56.7 ± 13.7
years (range 27–72 years) with symptom duration of 25.5 ± 16.3
months (median 20, range 9–72months). Twenty healthy control
subjects (9 males, 11 females) without neurological or psychiatric
disease were included. Their average age was 56.8 ± 12.4 years
(range 24–81 years). All subjects gave written informed consent,
and the study was approved by the Health Research Ethics Board
of the University of Alberta.

Magnetic Resonance Imaging
MR images were acquired on a 1.5 Tesla system (Magnetom
Sonata, Siemens Medical Systems) at the Peter S. Allen MR
Centre at the University of Alberta. A conventional 3D T1-
weighted MPRAGE (magnetization prepared rapid acquisition
gradient) sequence (TR = 1600 ms, TE = 3.8 ms, TI =

1100 ms, voxel size 1.0 mm × 1.0 mm, 1.5 mm thick) was
used to acquire coronal images of the whole brain for texture
analysis. Supplementary 2D images were also acquired (sagittal
T2, axial T2, coronal T2, axial FLAIR [fluid attenuated inversion
recovery]). All image sequences were used in a blinded review
by a neuroradiologist (DE) to classify cases as healthy controls
or ALS.

Clinical Measurements
Disability was graded using the Amyotrophic Lateral Functional
Rating Scale (ALSFRS). Finger tapping rates for right and left
sides (FiR, FiL) were recorded as measures of UMN function
(Kent-Braun et al., 1998).

Image Preprocessing
Images were normalized to the MNI152 atlas using the high-
dimensional DARTEL procedure, (Ashburner, 2007) followed
by correction for non-uniformity variations and intensity
standardization. The preprocessing steps were performed using
the VBM8 toolbox, an extension of the unified segmentation
model, (Ashburner and Friston, 2005; http://dbm.neuro.uni-
jena.de/vbm/) with default parameters.

Texture Analysis
Image textures are visual patterns in images defined by spatial
variations in intensity. Textures not perceptible to direct
visual inspection may be detected using various computational
techniques, including statistical analysis. We used a popular
statistical approach to texture analysis, the gray level co-
occurrence matrix (GLCM) which evaluates the relationship of
intensity levels between voxels in an image that are separated
by a defined direction and distance (i.e., vector). The statistical
information forms the basis for texture features.

Texture feature extraction was performed by the SMART
(Statistical Map From Texture) toolbox using the VGLCM-TOP-
3D method (Maani et al., 2015). This method calculates texture
features in three orthogonal planes at each voxel, with the final
texture feature value being the average of all three. The method
converts an image dataset to a 3D texture map suitable for voxel-
wise analysis (see Section Statistical Analysis). Default parameters
(quantization level = 8, neighborhood radius = 1, distance =

1, smoothing kernel = 0) were used for GLCM computation.
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Four texture features were computed including autocorrelation
(Auto), sum average (Savg), sum of squares variance (Sosv),
and sum variance (Svar). These 4 texture features represent
different statistical inter-relationships of voxel intensities and
have a relationship to image characteristics. Auto is a measure of
the regularity (i.e., measures the linear dependency of intensity
values). A high Auto texture means high predictability of pixel
relationships. Savg is a measure of intensity of texture. A higher
value shows higher concurrence of high intensities. Sosv provides
a measure of contrast. A higher value shows that there is a
high co-occurrence between high and low intensity values. Svar
is another measure of contrast. High values indicate a high
concurrence among high intensity voxels and at the same time
among low intensity voxels with each other. They were chosen in
part based on their favorable performance in our previous work
in Alzheimer’s disease (Maani et al., 2015).

Statistical Analysis
Texture maps for each feature underwent voxel-wise statistical
analysis using SPM8. Texture maps for patients were compared
to those of controls with an F-test generate statistical parametric
maps. A false discovery rate (FDR) at p < 0.05 was applied to
correct for multiple comparisons. To exclude the effect of age
and gender, these two factors were incorporated as covariates
in the analysis. Clusters larger than 10 voxels surviving after

correction for multiple comparisons were reported as regions
significantly different between healthy subjects and patients with
ALS. Receiver operating characteristic (ROC) curve analysis
was used to calculate optimal sensitivity-specificity profiles for
abnormal textures.

Regions with significant differences in texture underwent
correlation analysis. This was accomplished by generating a
mask for each region using the xjView Toolbox for SPM (http://
www.alivelearn.net/xjview8/). The average texture values in these
regions were correlated with clinical measures.

RESULTS

Regions Statistically Different in ALS
Statistical maps revealed significant differences between the
control and ALS patient groups in all four texture features
(Figures 1, 2). Autoc, Savg, Sosv, and Svar were different in 7,
2, 2, and 11 regions, respectively (Table 1). Changes were seen
with all texture features in the precentral gyrus and corticospinal
tract (CST). Savg and Sosv differences were found only in these
regions; whereas, Auto and Svar additionally were different in
the thalamus, hippocampus, and cingulum. Texture values were
increased in the CST and decreased in all other regions, regardless
of the texture feature.

FIGURE 1 | Statistical parametric maps of texture changes overlayed on a T1-weighted image reveal differences predominantly in the precentral

gyrus and corticospinal tract in all 4 texture features: autocorrelation (A, Auto), sum average (B, Savg), sum of squares variance (C, Sosv), and sum

variance (D, Svar).
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FIGURE 2 | Texture differences in ALS are presented in a glass brain representation: autocorrelation (A, Auto), sum average (B, Savg), sum of squares

variance (C, Sosv), and sum variance (D, Svar). Changes are restricted to the right precentral gyrus and corticospinal tract for Savg and Sosv, and additionally

include non-motor regions including the thalamus, temporal lobe, and cingulum for Auto and Svar.

Texture changes had high sensitivity and specificity in
discriminating ALS subjects from healthy controls (Table 1).
Changes in 8 regions had 95% or greater sensitivity; 6 of these
were in the motor regions (precentral gyrus or CST). Specificity
was 95% or greater in 3 regions, of which 2 were the CST. There
were several features which had high AUCs greater than or equal
to 0.90; the best combined sensitivity-specificity profiles were
seen with changes in the CST (e.g., Auto 2, Savg 1, Sosv 1, Svar 4).

In the review of the imaging by a neuroradiologist blind to
diagnosis, 30 of the 39 cases (15 correctly so) were classified as
being healthy controls and 9 of the 39 (4 correctly so) as ALS.
Sensitivity in this classification was 21% and specificity 75%.

Correlation with Clinical Measures
All texture features correlated inversely with symptoms duration
(Table 1). Correlations with symptoms duration were greatest
in the precentral gyrus (Figure 3), moderate in the thalamus,
hippocampus and midbrain, and absent in the CST. Finger
tapping on the left correlated inversely with Svar in the right CST
(r = −0.55, p = 0.01). Texture changes did not correlate with
ALSFRS.

DISCUSSION

The objective of this study was to evaluate cerebral degeneration
in ALS using a novel 3D texture analysis method (VGLCM-TOP-
3D; Maani et al., 2015). This method is comparable to VBM in
that it performs a whole brain voxel-wise analysis in a hypothesis-
free manner and generates a statistical map indicating regions
different between subject groups. In contrast to VBM, this texture

analysis method is not restricted to GM or WM and thus serves
utility in the study of neuropsychiatric disorders, including ALS,
that have pathology in both tissue classes.

Consistent with the core pathology of ALS, texture features
were different in motor regions, namely the precentral gyrus and
corticospinal tracts. This is concordant with changes detected
using other imaging modalities (Rooney et al., 1998; Chang
et al., 2005; Schoenfeld et al., 2005; Thivard et al., 2007; Iwata
et al., 2008; Pyra et al., 2010; Agosta et al., 2012). Also common
to other imaging studies, we found abnormalities in regions
beyond the motor system, including the thalamus, (Thivard
et al., 2007) hippocampus and temporal lobe, (Abrahams et al.,
2004; Agosta et al., 2007; Mezzapesa et al., 2007; Canu et al.,
2011; Abdulla et al., 2014) and cingulate gyrus (Abrahams et al.,
2004; Grosskreutz et al., 2008; Sudharshan et al., 2011; Li et al.,
2012; Hartung et al., 2014). We did not find changes in the
frontal lobes, as would have been expected as frontotemporal
lobar degeneration (FTLD) is the pathological substrate for the
cognitive impairment observed in some patients. It is possible
our patients did not have sufficient frontal lobe pathology to
be detected by texture analysis; clinically they did not have
frontotemporal dementia, however they had not had formal
cognitive testing and mild cognitive changes due to FTLD cannot
be ruled out.

The accuracy in discriminating ALS patients from healthy
controls was very good in general, but did vary by region and
texture feature. Many had AUCs greater than or equal to 0.90,
with sensitivities or specificities of 100% for some features. AUCs
and sensitivity-specificity profiles were greatest for the CST.
In comparison, a neuroradiologist reviewed the imaging and
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TABLE 1 | Regions showing significant texture feature differences in patients with ALS compared to healthy controls (corrected for multiple comparisons

by FDR at p < 0.05) and their correlation with disease duration.

Texture ID Side Region MNI coordinates Texture value* ROC analysis Symptom duration

X Y Z Controls ALS p Sens. (%) Spec. (%) AUC Cut-Off r p

Auto 1 R TH, HC 18 −34.5 1.5 66.1 ± 4.8 58.8 ± 6.3 0.03 85 74 0.82 63.8 −0.58 0.01

2 L CST −22.5 −16.5 9 84.3 ± 4.4 94.4 ± 3.8 <0.01 95 90 0.95 90.7 0.14 NS

3 L TH −1.5 −15 7.5 61.4 ± 6.5 51.5 ± 9.2 0.03 95 63 0.78 52.8 −0.52 0.02

4 R TH, HC 22.5 −33 6 70.0 ± 4.8 62.1 ± 5.4 0.02 85 84 0.90 67.0 −0.60 <0.01

5 R PrG 42 −13.5 36 51.0 ± 5.2 42.4 ± 5.8 0.02 85 79 0.87 45.5 −0.59 <0.01

6 R PrG 37.5 −19.5 39 59.6 ± 3.5 50.1 ± 6.5 <0.01 90 79 0.89 54.8 −0.73 <0.001

7 R Cing, PCL 10.5 −22.5 45 56.8 ± 3.9 47.1 ± 5.0 0.01 75 100 0.95 53.8 −0.42 NS

Savg 1 L CST −22.5 −16.5 9 82.9 ± 4.7 94.0 ± 4.3 0.02 95 90 0.95 90.2 0.16 NS

2 R PrG 37.5 −19.5 39 61.5 ± 3.1 52.2 ± 6.2 0.02 95 84 0.90 57.4 −0.73 <0.001

Sosv 1 L CST −22.5 −16.5 9 83.2 ± 4.6 94.1 ± 4.2 <0.01 90 95 0.95 89.2 0.15 NS

2 R PrG 42 −18 43.5 60.8 ± 3.2 51.1 ± 6.5 0.01 95 84 0.91 56.1 −0.73 <0.001

Svar 1 L TL −66 −13.5 −18 44.8 ± 2.8 37.2 ± 5.3 0.01 100 79 0.91 40.1 −0.30 NS

2 R MB 4.5 −3 −6 67.1 ± 2.8 61.6 ± 4.6 0.01 90 79 0.85 64.4 −0.55 0.02

3 R TH, HC 19.5 −34.5 3 69.3 ± 3.0 64.7 ± 4.2 0.02 65 90 0.84 69.4 −0.53 0.02

4 L CST −21 −16.5 13.5 85.3 ± 4.1 94.5 ± 3.7 <0.01 95 95 0.95 91.0 0.12 NS

5 L TH −1.5 −15 7.5 63.9 ± 5.3 55.9 ± 7.8 0.02 90 63 0.78 57.8 −0.52 0.02

6 R CST 22.5 −15 13.5 85.9 ± 3.8 94.1 ± 4.6 <0.01 100 79 0.90 93.6 −0.07 NS

7 L TH −1.5 −12 13.5 66.2 ± 4.9 58.1 ± 6.3 0.02 85 79 0.86 63.4 −0.41 NS

8 R PrG, PoG 51 −10.5 33 52.9 ± 5.5 44.2 ± 8.2 0.01 90 79 0.82 48.0 −0.44 NS

9 R PrG 42 −12 36 55.8 ± 4.2 48.2 ± 5.3 0.02 85 79 0.88 51.5 −0.57 0.01

10 R PrG 37.5 −19.5 39 68.2 ± 3.0 60.2 ± 4.8 <0.01 85 90 0.93 65.2 −0.74 <0.001

11 R Cing 10.5 −22.50 46.5 59.6 ± 4.2 50.4 ± 4.9 0.01 85 89 0.93 55.7 −0.41 NS

Auto, Autocorrelation; Savg, sum average; Sosv, sum of squares variance; Svar, sum variance; ID, Cluster identification number; Sens, Sensitivity; Spec, Specificity; ROC, Receiver

Operating Characteristic Curve; AUC, Area Under the ROC Curve; TH, Thalamus; HC, Hippocampus; CST, Corticospinal Tract; PrG, Precentral Gyrus; PoG, Postcentral Gyrus; Cing,

Cingulum; PCL, Paracentral Lobule; Temp, Temporal; MB, Midbrain; *(mean ± SD); NS, Not Significant.

classified cases blind to diagnosis. Results were of considerably
lower accuracy compared to those of texture analysis with a
sensitivity of 21% and specificity of 75%.

All texture features correlated with symptom duration; this
was present in all regions except the CST, with the strongest
association in the precentral gyrus. The biological validity of
the texture feature changes is further supported by a correlation
observed between Svar in the right CST with contralateral finger
tapping. A correlation was not present with ALSFRS, however
this is not unexpected as this disability scale is largely influenced
by weakness which in ALS predominantly arises from LMN
rather than UMN degeneration (Kent-Braun et al., 1998).

Since the computation of each texture feature is different,
similar statistical maps reported by four different texture
features suggest the findings are not spurious and reflect true
cerebral pathology. However, there are patterns in the results
suggesting that different textures have specificity for changes
in different tissue types or are related to different pathologies.
For example, although texture changes were present in the
precentral gyrus and CST, the texture values were abnormal
in opposite directions. Savg and Sosv changes were present
only in motor regions, namely the precentral gyrus and CST

and, as such, these textures features may be more specific
for motor system changes and less sensitive to extra-motor
phenomenon.

Furthermore correlations with symptom duration were
present in the precentral gyrus and the lack of a correlation of
symptom duration in the CST may suggest that changes in the
CST occur very early with a subsequent floor effect, whereas
motor cortex changes continue to evolve even later in the disease.
Alternatively, it may be reflective of the dynamics of the texture
response of different tissue types (gray vs. white matter). A
longitudinal study would be required to explore this further.

A recent publication reporting texture changes in ALS used
a 2D region of interest based approach (de Albuquerque et al.,
2016). It calculated textures in the deep basal gray structures and
the midbrain accessible in two MRI slices. Texture differences in
ALS were found in the right caudate and bilateral thalami, but
not putamen or cerebral peduncles. We also found changes in the
thalamus but none in the basal ganglia or midbrain. In contrast
to this report, our 3D method permitted a whole brain analysis
and, in particular, allowed analysis of the regions where the brunt
of the pathology is found (motor cortex, CST, frontotemporal
lobes).
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FIGURE 3 | Texture changes correlated with symptoms duration in

several areas and were most prominent in the precentral gyrus, for

example with sum variance in cluster 10 (Svar 10, r = −0.73, p < 0.001).

There are limitations to our study. It would have benefited
from inclusion of patients with lower designations of ALS where
there are fewer UMN signs (i.e., “possible ALS”), those suspected
of having ALS but not meeting criteria due to absent UMN signs,
and disease controls (e.g., neuropathies). Data from such sources
would allow evaluation of the potential diagnostic utility of the
texture analysis. Other limitations include the relatively small

sample size which limited the extent to which clinical associations
could be explored. In particular, future studies should have
a larger sample size with accompanying neuropsychometric
data to clinically validate the sensitivity of texture analysis to
frontotemporal lobar degeneration. Furthermore, larger studies
with more comprehensive clinical data sets would allow for a
valid comparison of 3D texture analysis with conventional VBM.

In conclusion, the analysis of texture in T1-weighted MRI
images of the brain revealed changes consistent with the
distribution of cerebral pathology in ALS that correlated with
clinical measures of cerebral dysfunction. 3D voxel-based texture
analysis has potential in providing a biomarker of cerebral
degeneration in ALS and other brain disorders.
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