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Currently, network-oriented analysis of fMRI data has become an important tool for

understanding brain organization and brain networks. Among the range of network

modeling methods, partial correlation has shown great promises in accurately detecting

true brain network connections. However, the application of partial correlation in

investigating brain connectivity, especially in large-scale brain networks, has been limited

so far due to the technical challenges in its estimation. In this paper, we propose an

efficient and reliable statistical method for estimating partial correlation in large-scale

brain network modeling. Our method derives partial correlation based on the precision

matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently

developed statistical method that is more efficient and demonstrates better performance

than the existing methods. To help select an appropriate tuning parameter for sparsity

control in the network estimation, we propose a new Dens-based selection method

that provides a more informative and flexible tool to allow the users to select the

tuning parameter based on the desired sparsity level. Another appealing feature of

the Dens-based method is that it is much faster than the existing methods, which

provides an important advantage in neuroimaging applications. Simulation studies show

that the Dens-based method demonstrates comparable or better performance with

respect to the existing methods in network estimation. We applied the proposed partial

correlation method to investigate resting state functional connectivity using rs-fMRI data

from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that

partial correlation analysis removed considerable between-module marginal connections

identified by full correlation analysis, suggesting these connections were likely caused by

global effects or common connection to other nodes. Based on partial correlation, we find

that the most significant direct connections are between homologous brain locations in

the left and right hemisphere. When comparing partial correlation derived under different

sparse tuning parameters, an important finding is that the sparse regularization has

more shrinkage effects on negative functional connections than on positive connections,

which supports previous findings that many of the negative brain connections are due to

non-neurophysiological effects. An R package “DensParcorr” can be downloaded from

CRAN for implementing the proposed statistical methods.

Keywords: network analysis, functional connectivity, fMRI, partial correlation, precision matrix, CLIME, L1
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INTRODUCTION

In recent years, network-oriented analyses have shown
great promise for understanding brain organization and its
involvement in mental disorders. With the advancement of
neuroimaging technologies, the study of whole-brain functional
connectivity analysis using functional magnetic resonance
imaging (fMRI) data has stimulated an enormous amount of
interest (Biswal et al., 1995; Bullmore and Sporns, 2009; Deco
et al., 2011; Satterthwaite et al., 2015; Zhang et al., 2015). In
particular, there has been a strong focus on investigating intrinsic
brain connectivity using resting-state fMRI (rs-fMRI), which
measures the spontaneous low-frequency fluctuations in the
blood oxygen level dependent (BOLD) signal in subjects at rest
(Ogawa et al., 1990; Dosenbach et al., 2010).

Various methods have been proposed for assessing the
brain connectivity between selected network nodes. One of the
simplest and most frequently used methods in the neuroimaging
community is via pairwise correlations between BOLD time
courses from two brain network nodes. These correlations are
of great interest to neuroscientists in that they can reflect the
functional connectivity between brain regions and help explore
the overall network structure of the whole brain (Church et al.,
2009; Seeley et al., 2009).

However, there are well-known limitations in the correlation
analysis. Pearson correlation, which we will henceforth refer to as
“full correlation,” only reflects the marginal association between
network nodes and is not an appropriate tool for capturing the
true or direct functional connection between them. For example,
a large correlation between a pair of nodes can appear due to
their common connections to a third-party node, even if the two
nodes are not directly connected (Smith et al., 2011). Using full
correlation, investigators often identify significant connections
between a large number of node pairs in brain networks. It
is difficult to distinguish which of these significant correlations
reflect true functional connections and which are caused by
confounding factors such as global effects or third-party nodes.

A network modeling method that has shown great potential
in addressing this major issue is partial correlation (Smith, 2012).
Partial correlation measures the direct connectivity between two
nodes by estimating their correlation after regressing out effects
from all the other nodes in the network, hence avoiding spurious
effects in network modeling. A partial correlation value of zero
implies an absence of direct connections between two nodes
given all the other nodes. Through a set of extensive and realistic
simulation studies, Smith et al. (2011) compared the performance
of a wide range of network modeling methods for fMRI data
and found that partial correlation is among the top methods
that performed excellently under various types of scenarios and
showed high sensitivity to detect true functional connections.

Although it has been shown to have major advantages in
studying brain connectivity, the application of partial correlation
in the neuroimaging community has been limited. This is mainly
because the estimation of partial correlation is more difficult
than full correlation. Direct estimation based on the regression
approach is inefficient in terms of computational time and often
fails due to the multicollinearity among node time series. A

more efficient way to estimate the full set of partial correlations
is via the inverse of the covariance matrix, also known as the
precision matrix (Marrelec et al., 2006), where the off-diagonals
of a precision matrix have a one-to-one correspondence with
partial correlations (Peng et al., 2009).

Estimation of the precision matrix is not a trivial task since
it involves the inversion of the covariance matrix, especially for
a large dimensional case. Furthermore, a precision matrix needs
to satisfy the positive definite condition which further increases
difficulty in its estimation. In neuroimaging applications, this task
could become even more challenging because there are often a
large number of nodes in brain networks and a limited number
of observations at each node (e.g., shorter fMRI scans) (Zhang
et al., 2015). Under this setting, estimation of the precision
matrix requires a huge computational load and may not be
stable. A few methods have been developed for this purpose
in the neuroimaging community (Schmittmann et al., 2015).
Schäfer and Strimmer (2005) developed a shrinkage approach
to estimate the covariance matrix. Moore-Penrose inverse of the
covariance matrix can also be applied to directly estimate the
precision matrix (Ben-Israel and Greville, 2003). Moreover, the
most popular approach is to apply the sparse regularization via
the L1 penalty (Meinshausen and Bühlmann, 2006; Friedman
et al., 2008; Liu and Luo, 2012) in estimating the precision
matrix under the normality assumption (Smith et al., 2011).
As an extension, several works were proposed to relax the
normality assumption for graphical models (Liu et al., 2012; Han
et al., 2013). The existing approaches can become quite time
consuming when the dimension of the precision matrix becomes
high. Furthermore, based on our experiments, when estimating
large-scale brain networks, the existing computational tools used
in the community often either have computational issues or lack
of accuracy in capturing some key features in brain organization.
Finally, the sparse regularization estimation usually requires the
selection of a tuning parameter to control the sparsity of the
estimated precision matrix, and the results vary significantly
depending on the choice. Currently, the selection of the tuning
parameter is often fairly subjective in applications.

In this paper, we present a more efficient and reliable statistical
procedure for estimating partial correlation in brain network
modeling under the regularized precision matrix framework.
The proposed procedure first estimates the precision matrix
via the Constrained L1-minimization Approach (CLIME) (Cai
et al., 2011). Compared with other regularization methods such
as Lasso, CLIME is shown to have better theoretical properties
as well as computational advantages. Theoretically, CLIME
precision matrix estimators are shown to converge to the true
precision matrix at a faster rate as compared to the traditional L1
regularization methods. Computationally, CLIME can be easily
implemented by linear programming and is scalable to a high
dimensional precision matrix with a large number of nodes.
As with the other regularization methods, CLIME requires the
setting of a tuning parameter for controlling the sparsity. The
existing selection methods often face challenges in estimating
large-scale brain networks in that they either tend to select overly
dense networks or are computationally expensive. To address this
issue, we propose a method to provide a systematic approach that
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allows the users to make a more informed choice of the tuning
parameter. Specifically, we propose a Dens criterion function
that reflects how dense the estimated precision matrix is under
various tuning parameters. Then by setting a desired density level
one would like to achieve, the users can find the appropriate
tuning parameter to use for CLIME. The proposed Dens-based
selection method is easy to implement, computationally much
faster than existing methods, and provides users the flexibility to
control the sparsity of the estimated precision matrix. Simulation
studies show that our Dens-based method demonstrates similar
or better accuracy in estimating the precisionmatrix as compared
to themore complicated and computationally expensive selection
methods. We also show via a real fMRI data example that the
selection of the tuning parameter based on the proposed method
is highly consistent across subjects. After estimating the precision
matrix using CLIME with the chosen tuning parameter, we
provide the formula for deriving the partial correlation matrix
from the precision matrix.

We apply the proposed partial correlation estimation
procedure to investigate direct brain functional connectivity
using resting state fMRI data collected in the Philadelphia
Neurodevelopmental Cohort (PNC) study (Satterthwaite et al.,
2014). We compare the direct brain connectivity pattern based
on partial correlation with the marginal brain connectivity based
on full correlation. We examine edges in the brain network that
are consistently identified by both the partial correlation and full
correlation method vs. edges for which the two methods show
inconsistent results. Additionally, we examine how the partial-
correlation-based direct connectivity networks change when we
impose different levels of sparsity in the estimated network.

METHODS

Partial Correlation: Definition and
Derivation
In this section, we first introduce the concept and definition of
partial correlation under the brain networkmodeling framework.
To set notation, let X={X1,...,XM} denote the fMRI BOLD signal
atM nodes (Mx1 vector) in the network in an fMRI scan. Let Xt,
t = 1,...,T, denote the T realizations of X in fMRI scans obtained
during a scanning session. Partial correlation between nodes i and
j is defined as the correlation between Xi and Xj conditioning on
all the other nodes, i.e.:

ρij = corr
(
Xi,Xj|X−(i,j)

)
,X−(i,j) =

{
Xk:1 ≤ k 6= i, j ≤ M

}
,

i, j = 1, . . . , M, i 6= j.

In the context of brain networks, partial correlation is the
correlation between time series of two nodes, after adjusting for
the time series from all other network nodes (Smith et al., 2011).
As an example, consider a simple three-node network (M = 3).
To derive the partial correlation between nodes 1 and 2, we first
regress the time series of node 1 against the time series of node
3 and denote the residual as R1|3, then regress the time series of
node 2 against the time series of node 3 and denote the residual
as R2|3; the partial correlation between node 1 and 2 can then be
obtained as the correlation between R1|3 and R2|3.

In addition to the derivation based on linear regression, partial
correlation can also be derived from the inverse covariance
matrix, also known as the precision matrix. Let 6 be the MxM
covariance matrix based on X and let � = 6

−1 = {ωij}MxM be
the precision matrix. The partial correlation between node i and
j can be derived from the precision matrix as Peng et al. (2009):

ρij = −ωij/
√

ωiiωjj. (1)

Under the Gaussian assumption, one can infer that node i and
j are conditionally independent given the other nodes when
ρij equals 0. Therefore, partial correlation provides a way to
assess the direct connection between nodes and allows correct
estimation of the true network by removing all the confounding
effects (Smith et al., 2011).

To illustrate the difference between full correlation and partial
correlation, we provide a toy example using a 3-node network.
X1, X2, X3 represent the measurements from the 3 nodes, where

X1 = α1X2 + ε1,X3 = α2X2 + ε2, ε1, ε2,X2 ∼iid N(0, 1). (2)

Here both X1 and X3 are directly associated with X2, but X1

and X3 are not directed related to each other given X2. We
then estimated both the full correlation and partial correlation
based on the time series generated from (2) with α1 = 0.3
and α2 = 0.8. The results are presented in Figure 1. Both
correlation methods were able to detect the true connectivity
between nodes 1 and 2, and between nodes 2 and 3. However,
for nodes 1 and 3, the full correlation estimate implies that they
were also associated. From the data-generating model (2), we
know that this association is not due to the true connection
between nodes 1 and 3 but rather caused by their common
connection with node 2. The partial correlation estimate for this
connection had a value of zero, correctly reflecting that there was
no direction connection between nodes 1 and 3. This toy example
demonstrates the ability of partial correlation in removing
spurious associations due to a third-party node, and hence
provides a more reliable measure for direct connectivity in brain
networks.

The Proposed Procedure for Estimating
Partial Correlation Using Neuroimaging
Data
Unlike full correlation which can be readily calculated from
the observed fMRI data, the estimation of partial correlation is
less straightforward and more computationally challenging. The
precision matrix method provides an efficient way to obtain the
full set of partial correlations between all node pairs in a network.
However, since estimating the precision matrix commonly
involves inverting the covariance matrix, this approach becomes
challenging as the number of nodes (and the dimension of the
covariance matrix) increases. In particular, direct inversion of
the covariance matrix is not feasible when the number of nodes
is larger than the number of observations at each node, such
as the case of estimating large-scale brain networks in relatively
short fMRI scanning sessions. Various approaches based on
regularization methods such as Graphical lasso have been applied
to address this issue in neuroimaging studies (Friedman et al.,
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FIGURE 1 | Toy example on partial correlation (bottom) and full

correlation (top). Within a 3-node network, where X1 = 0.3X2 +ε1, X3 =
0.8X2 +ε2 and ε1, ε2, X2∼iidN(0,1), we estimated the connectivity based on

full correlation and partial correlation. As shown in the figure, partial correlation

can detect the conditional independence between X1and X3, whereas full

correlation only measures the marginal correlation which is resulted from X2.

2008). The issues with the existing approaches are that they
require long computation time and often fail when the number
of nodes is large. Another difficulty is that the regularization
methods require the selection of a tuning parameter to control
the sparsity of the estimated precision matrix, and in current
neuroimaging applications, this selection is often conducted in
a fairly subjective manner.

In this section, we propose a new statistical procedure for
estimating the partial correlations in a brain network. Our
proposed procedure consists of three parts: (1) estimating the
precision matrix using Constrained L1-minimization for Inverse
Matrix Estimation (CLIME), which is a recently developed
statistical method that is computationally more efficient and
demonstrates better performance as compared to many existing
algorithms; (2) choosing the tuning parameter for the CLIME
algorithm based on our proposed Dens-based method, which is
fast and can be easily understood and controlled by the users; and
(3) deriving the full set of partial correlations from the estimated
precision matrix.

A Constrained L1 Approach (CLIME) to Sparse

Precision Matrix Estimation
The CLIME method is an approach that has been recently
developed in the statistical community for estimating a sparse

precision matrix (Cai et al., 2011). The CLIME estimator of the
precision matrix � is derived using the following procedure.
First, we find the solution �

1 of the following optimization
problems:

�
1 = argmin||�||1 subject to |6̂� − I|∞ ≤ λ, (3)

here, �
1 ={ω̃ij}MxM is an initial estimator of the precision

matrix �, 6̂ is the estimated covariance matrix, λ is a tuning
parameter ranging from 0 to 1, where a larger λ imposes a
stronger sparsity regularization and hence yields a more sparse
�

1. Because �
1 is not necessarily symmetric, the final CLIME

estimator �̂∗ is obtained by symmetrizing �
1 as follows.

�̂∗ = {ω̂ij}MxM, (4)

with ω̂ij = min(ω̃ij, ω̃ji).

A unique feature of the CLIME method is that it develops an
approach to solve the convex program (3) by decomposing it
intoM vector minimization problems that estimate each column
of�1 one at a time. It can be shown that solving the optimization
problem in (3) is equivalent to solving theM vector minimization
problem, which can be achieved via linear programming. By
estimating the precision matrix column-by-column, CLIME
significantly reduces the computational and statistical difficulties
in its estimation. Another appealing feature is that the final
CLIME estimator �̂∗ is shown to be positive definite with high
probability (Cai et al., 2011). This means that the CLIMEmethod
has a high chance of producing a valid precision matrix estimate
for brain network modeling.

Regularization Selection
As with other regularization methods, the CLIME approach also
requires the specification of a tuning parameter, i.e., λ in (3).
This parameter controls the sparsity of the estimated precision
matrix and the subsequent estimate of the partial correlation
matrix. An advantage of the CLIME method is that the tuning
parameter is selected within the finite range of 0–1, whereas
the tuning parameter in other regularization methods does not
have a finite range. For example, graphical lasso involves a
tuning parameter that ranges from 0 to 8. From (3), a smaller
λ yields a denser graph and larger λ yields a sparser graph.
When λ approaches toward 1, which means imposing strongest
sparsity regularization, �∗ will approach an empty matrix which
corresponds to an empty network without any edges. When
λ approaches toward 0, the minimum sparsity regularization,
�̂∗ will approach the precision matrix estimate that is obtained
without the sparsity constraint.

Two common ways to select the tuning parameter in
regularization methods are AIC and BIC (Schwarz, 1978; Akaike,
1998). Let �̂∗(λ) be the estimated precision matrix based on
tuning parameter λ. AIC selects λ such that:

λ̂ = argminλ

{
−2log|�̂∗(λ)| + 2trace

(
6̂�̂∗ (λ)

)
+2d(λ)

}
,

and BIC selects λ such that:

λ̂ = argminλ

{
−2log

∣∣�̂∗ (λ)
∣∣+2trace

(
6̂�̂∗ (λ)

)
+d (λ) log(T)

}
.
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Here, d(λ) denotes the degrees of freedom of the underlying
Gaussian model. The d(λ) is difficult to estimate in the high-
dimensional setting where the number of nodes in the network
(M) exceeds the number of observations (T) at each node. In
this case, the d(λ) is often estimated by the number of non-
zero elements in �̂∗ (λ). It has been shown that AIC and BIC
methods tend to yield an overly dense precision matrix in the
high-dimensional case (Liu et al., 2010).

Another commonly used method for selecting λ is the k-fold
cross-validation (K-CV) method (Efron, 1982). In this type of
procedure, the observed data are partitioned into k blocks, where
k-1 blocks are used as training data to estimate the precision
matrix and the remaining block is retained as validation data. For
each λ value in the search grid, one estimates the precisionmatrix
and corresponding partial correlations using the k-1 blocks of
training data and then evaluates a loss function of the estimates
using the validation data. Two typical loss functions are the
negative log-likelihood and Trace L2 defined below.

Negative log–likelihood: − log|�̂∗(λ)| + trace
(
6̂�̂∗ (λ)

)
−M

Trace L2: trace
(
diag

(
6̂�̂∗ (λ) − IM

)2)

The K-CV methods based on these two loss functions are
implemented in the CLIME R package (Cai et al., 2012).
One issue with K-CV methods is that they are typically
computationally expensive. Furthermore, it has been shown that
K-CV based on the negative log-likelihood loss function tends to
select overly dense graphs (Wasserman and Roeder, 2009).

In this paper, we present a new method for selecting λ.
Specifically, we propose a Dens criterion function that measures
how dense the estimated precision matrix is. Then we consider
a series of λ within the finite range (0, 1). We start with a large
value of λ which results in an extremely sparse graph with little
or no edges, then decrease λ so that the estimated precision
matrix becomes denser and more edges are allowed to appear
in the graph. We continue to decrease λ until the density of the
precision matrix, measured by the proposed criterion function,
reaches its plateau and remains stable. Finally, we examine the
profile of the Dens criterion function across the series of λ values
and select the value of λ that corresponds to the desired density
level that the investigator would like to achieve.

To measure how dense an estimated precision matrix is, we
propose the following Dens criterion function:

Dens (�) =
∑

ij

|ωij|,where � = {ωij}. (5)

That is, Dens is the sum of the absolute values of all elements in
the estimated precision matrix, and measures the density level of
the precisionmatrix. Essentially,Dens is thematrix-wise L1 norm
of �.

For the CLIME procedure, we consider a monotonically
decreasing sequence {λn, n = 0, 1, . . .} within the range (0,1)
with λ0 → 1 and λn → 0 as n increases. For simplicity,
we denote Dens

(
�̂∗ (λ)

)
as Dens(λ). For λ0 →1, the CLIME

estimator �̂∗ (λ) approaches a zero matrix which corresponds to

an empty network without any edges; hence, Dens(λ0) is close to
zero. As λn decreases, �̂∗ (λ) becomes denser andmore elements
become non-zero, resulting in the increase in Dens(λn). As n
increases and λn → 0, Dens (λn) reaches a plateau and becomes
stabilized with further decrease in λn. With a finite sequence
of {λn} we can find the maximum of Dens(λn), and denote it
as Densmax. In practice, it is not necessary to select λmax that
corresponds to Densmax, because it is somewhat arbitrary and
depends on the smallest value specified in the finite sequence of
{λn}. Instead, based on the profile of Dens(λn), users can choose
the value in the sequence that corresponds to the plateau point
in the profile, which is denoted as λ∗

platu
. After λ∗

platu
, Dens(λ)

becomes stabilized and only increases by a trivial amount when
further decreasing the tuning parameter. Specifically, we define
λ∗
platu

as the largest λn in the sequence such that for any λk ≤ λn,

we have

|Dens (λk) − Densmax|
Densmax

≤ ε,

where ε is a user-specified small value such as 0.01. Since the
estimated network is close to the maximum density level at λ∗

platu
,

�̂∗
(
λ∗
platu

)
corresponds to the estimate of the precision matrix

that is obtained under minimum sparsity constraint.
As the number of nodes in the network increases, it may be

desirable to impose a certain sparsity regularization to reduce
the number of false positive edges in the estimated precision
matrix. In this case, we propose the following method to select
the tuning parameter based on a user-specified Dens level for the
precision matrix estimate. Suppose the user would like to obtain
an precision matrix estimate that would reach p percent of the
maximum density level, that is Dens (λn)=p×Densmax, then the
corresponding tuning parameter λ∗

p can be selected from {λn} as
follows:

λ∗
p = argminλn

{
|Dens (λn) − p×Densmax|

}
. (6)

After we select the tuning parameter and obtain the CLIME
estimate �

∗ of the precision matrix, we can derive the partial
correlation matrix estimate, Pcorr = {ρij}MxM, via the following
equation:

Pcorr = −diag(�)−1/2
�diag(�)−1/2+2IM. (7)

In summary, we have proposed a novel tuning parameter
selection criterion for the sparse precision matrix estimation in
brain network modeling. A detailed summary of the steps of our
procedure is provided in Table 1.

SIMULATION STUDIES AND RESULTS

In this section, we investigate the empirical performance of the
proposed tuning parameter selection method using synthetic
data. We simulated spatially- and temporally-dependent data
that mimic real fMRI data. Specifically, to induce spatial
dependence between the nodes, we generated data from specified
networks and considered various sparsity levels for the network.
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TABLE 1 | Proposed Dens-based partial correlation estimation approach.

Summary steps:

Input: Estimate the sample covariance matrix 6̂ based on the observed fMRI time series fromM nodes in the brain. If one would like to impose sparsity regularization on

the precision matrix estimate, specify a percentage p, where p ∈ (0, 1), for selecting the tuning parameter based on the desired density level of the precision matrix

estimate.

Step 1, Select the Tuning Parameter

•Specify a monotonically decreasing sequence {λn, n = 0,1,. . ., } within the range (0,1) with λ0 → 1 and λ1 → 0 as n increases.

•Obtain CLIME estimate based on each value in {λn} starting from λ0. Keep decreasing λn until Dens(λn ) reaches its plateau and remains stable afterwards.

•Denote the maximum Dens(λn ) in its profile as Densmax and the tuning parameter that corresponds to the plateau point in the profile as λplatu.

•If the user specifies a percentage p that represents the desired Dens level, find the corresponding tuning parameter λ*p from the sequence {λn} based on (4).

Step 2, Estimate the precision matrix using CLIME

Based on the selected tuning parameter λ, obtain CLIME estimate �̂* (λ) through the procedure in (3) and (4)

Step3, Derive estimate for the partial correlation matrix

Obtain P̂corr from �̂* (λ) using Equation (7)

We then evaluated the performance of the proposed tuning
parameter selection method based on the Dens criterion and
compared that to the existing selection methods.

Synthetic Data
We generated time series data forM nodes over T time points.
Real fMRI data, which are collected over a series of time points,
demonstrate both temporal and spatial dependence. In order
to mimic this complex covariance structure, we first specified
a precision matrix � that represent the network connectivity
among theM nodes, the spatial covariance matrix 6s can be
derived from �. We then induced temporal correlation in the
node time series via an AR(1) model. The detailed procedure is
presented as follows. Let Y be the TxM data matrix. Based on a
pre-specified precision matrix �, Y� were generated as:

Y� =X+Z (8)

where X = {X1, . . . ,XM}T was a TxM matrix where each row
X′

is ∼iid NM (0,6s). Here 6s = �
−1 − τ2IM is the spatial

covariance matrix derived from �. Z = {Z1, . . . ,ZM} was also
a TxM matrix where each column Z′

is∼iidNT (0,6T) with 6T ={
6T,ij

}
= {τ2γ|i−j|} being the temporal covariance matrix based

on an AR(1) model.
In the data generation model (8), X induces the spatial

covariance structure in the data which is controlled by the
precision matrix, and Z induces the temporal correlations in the
data which are AR(1) time series with variance τ2 and adjacent
correlation γ. In order to ensure that the spatial covariancematrix
6s is positive definite, the variance τ2 is set to be half of the
inversed largest eigenvalue of �. As a result, Y� generated from
(8) has a matrix normal distribution and the precision matrix of
Y� in the spatial domain is �.

In our simulation, we generated data from (8) withM = 10
and T = 50. To examine the performance of the proposed Dens
criterion under various scenarios, we considered 9 sparsity levels
ranging from 0.29 to 0.93, where the sparsity level represents the
percentage of non-zero elements in the off-diagonal. For each
scenario, we had 100 simulation runs.

In the next section, we evaluated the performance of
the proposed Dens-based regularization selection method, and
compared to four existing selection methods including the AIC,

BIC, and K-CV approaches with the negative log likelihood and
trace L2 loss functions. For our proposed Dens-based selection
method, we selected three tuning parameters corresponding to
different density levels: λ∗

platu
which leads to an estimate which

corresponds to the plateau point in the Dens profile, and λ∗
0.45

and λ∗
0.75 which lead to estimates that reach 45 and 75% of the

maximum density level, respectively. For K-CV methods, we
used 5-fold cross validation for selecting λ.

To evaluate the performance of the various methods in
estimating the partial correlation matrix, we calculated the MSE,
sensitivity, and specificity by comparing the true and estimated
partial correlations from different methods. Here, the MSE is
obtained as the average MSE across all off-diagonal edges in the
partial correlation matrix.

Results from the Simulation Study
We present detailed simulation results for each of the 9 sparsity
levels in Tables 2–4. We also present the average results across
all sparsity levels and as well as the average computation time for
these methods in Tables 5, 6.

Compared with the existing methods, the proposed Dens-
based method is much more computationally efficient, especially
compared to the K-CVmethods (Tables 5, 6). The computational
efficiency provides an important advantage in estimating brain
networks based on high-dimensional fMRI data. In addition, our
proposedmethod provided themost accurate estimation in terms
of the average MSE and the number of times it achieved the
lowest MSE value across different sparsity levels (see Tables 2,

5). This indicates that our method has better accuracy, on
average, across different sparsity levels. In terms of sensitivity and
specificity, AIC, BIC, and K-CV with a negative log likelihood
loss function tended to select an overly dense network with
extremely low specificity, which was consistent with previous
findings in the literature. In comparison, K-CV based on Trace
L2 loss function provided more balanced performance in terms
of sensitivity and specificity. For our method, λ∗

platu
, also tended

to select an overly dense network, which is expected since it
imposes the minimum sparsity regularization. For the λ∗

0.45
and λ∗

0.75 which applied sparsity constraints, we achieved much
better balance between sensitivity and specificity. In particular,
λ∗
0.45 offers the best average of sensitivity and specificity at
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TABLE 2 | Comparison of MSE for estimated partial correlation matrix based on different regularization selection methods across various sparsity levels

with the simulated data.

Methods Sparsity level

0.29 0.36 0.47 0.49 0.56 0.76 0.87 0.89 0.93

K-CV log like 0.016 0.031 0.026 0.014 0.015 0.014 0.019 0.011 0.010

K-CV Trace L2 0.012 0.018 0.017 0.009 0.010 0.011 0.011 0.011 0.011

AIC 0.016 0.031 0.026 0.014 0.015 0.014 0.019 0.011 0.010

BIC 0.016 0.031 0.026 0.014 0.015 0.014 0.019 0.011 0.010

λ*0.45 0.010 0.015 0.012 0.006 0.010 0.012 0.011 0.015 0.016

λ*0.75 0.010 0.020 0.017 0.008 0.009 0.009 0.012 0.009 0.008

λ*platu 0.014 0.027 0.023 0.012 0.012 0.012 0.016 0.010 0.009

Based on simulated data, we examined our proposed Dens method and commonly used regularization selection methods including K-CV with negative log likelihood, Trace L2, AIC,

BIC. For Dens method, we adopt three different density level: 45, 75% and plateau, corresponding to λ*0.45, λ*0.75, and λ*platu separately. The MSE values in bold are the optimal result

across the different methods at each sparsity level.

TABLE 3 | Comparison of Sensitivity for identifying connections based on different regularization selection methods across various sparsity levels with

the simulated data.

Methods Sparsity level

0.29 0.36 0.47 0.49 0.56 0.76 0.87 0.89 0.93

K-CV log like 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

K-CV Trace L2 0.95 0.86 0.81 0.86 0.85 0.83 0.81 0.86 0.84

AIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

BIC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

λ*0.45 0.85 0.79 0.63 0.74 0.67 0.65 0.62 0.57 0.61

λ*0.75 0.96 0.92 0.86 0.93 0.87 0.91 0.90 0.91 0.93

λ*platu 0.99 0.97 0.96 0.98 0.97 0.98 0.97 0.99 0.99

0.706, which is much higher than those of the four existing
methods (see Table 5). In summary, our proposed Dens-based
method provided comparable or better performance with respect
to the existing methods but only used a small fraction of
computation time required by the other methods (see Table 6).
Furthermore, the Dens-based method provides investigators
an intuitive and flexible way to select the tuning parameter
according to desired density level they would like to impose on
the network estimates.

APPLICATION TO RS-FMRI DATA FROM
THE PHILADELPHIA
NEURODEVELOPMENTAL COHORT (PNC)

PNC Study and Description
The PNC is a collaborative project between the Brain Behavior
Laboratory at the University of Pennsylvania and the Children’s
Hospital of Philadelphia (CHOP), funded by NIMH through the
American Recovery and Reinvestment Act of 2009 (Satterthwaite
et al., 2014, 2015). The PNC study includes a population-based
sample of over 9500 individuals aged 8–21 years selected among
those who received medical care at the Children’s Hospital of
Philadelphia network in the greater Philadelphia area; the sample

is stratified by sex, age and ethnicity. A subset of participants
from the PNC were recruited for a multimodality neuroimaging
study which included resting-state fMRI (rs-fMRI). In this
paper, we considered rs-fMRI data from 881 participants in
the PNC study that were released in the dbGaP database.
Compared to many other large-scale publicly available rs-fMRI
datasets, the PNC data has a major advantage that all the
images were acquired on a single MRI scanner using the same
scanning protocol. Hence, the images from the PNC data do
not suffer from extra variation caused by different scanners or
protocols.

All images from the PNC study were acquired on a Siemens
Tim Trio 3 Tesla, Erlangen, Germany using the same imaging
sequences. The rs-fMRI scans were acquired with 124 volumes,
TR 3000ms, TE 32ms, flip angle 90◦, FOV 192× 192mm, matrix
64× 64 and effective voxel resolution 3.0× 3.0× 3.0mm. More
details about experimental settings and image acquisition can be
found in Satterthwaite et al. (2015).

Prior to analysis, we performed a quality control procedure
on the rs-fMRI. Specifically, we removed subjects who had more
than 20 volumes with relative displacement >0.25mm to avoid
images with excessive motion (Satterthwaite et al., 2015). Among
the 881 subjects who had rs-fMRI scans, 515 participants’ data
met the inclusion criterion and were used in our following
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TABLE 4 | Comparison of Specificity for identifying connections based on different regularization selection methods across various sparsity levels with

the simulated data.

Methods Sparsity level

0.29 0.36 0.47 0.49 0.56 0.76 0.87 0.89 0.93

K-CV log like 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

K-CV Trace L2 0.22 0.35 0.30 0.39 0.29 0.37 0.40 0.28 0.41

AIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

λ*0.45 0.75 0.61 0.64 0.77 0.72 0.73 0.75 0.81 0.82

λ*0.75 0.20 0.13 0.16 0.19 0.25 0.21 0.23 0.22 0.24

λ*platu 0.04 0.03 0.04 0.04 0.05 0.04 0.05 0.04 0.05

TABLE 5 | Averaged performance of regularization methods across various sparsity levels with the simulated data.

Methods MSE Sensitivity Specificity Average of Sens. and Spec. Computation time (Secs)

K-CV log like 0.017 1.000 0.000 0.500 2.7268

K-CV Trace L2 0.012 0.853 0.333 0.593 2.7079

AIC 0.017 1.000 0.000 0.500 0.0027

BIC 0.017 1.000 0.000 0.500 0.0016

λ*0.45 0.012 0.680 0.731 0.706 0.0004

λ*0.75 0.011 0.910 0.204 0.557 0.0004

λ*platu 0.015 0.978 0.041 0.509 0.0004

The values in bold are the optimal result across the different methods.

TABLE 6 | Comparison of computational time to select the tuning parameter for one randomly selected subject from the PNC study using different

regularization selection methods.

Methods K-CV log like K-CV TraceL2 AIC BIC λ*0.45 λ*0.75 λ*platu

Computational time (Secs) 8575.93 8257.72 0.242 0.229 0.004 0.004 0.004

The values in bold are the optimal result across the different methods.

analysis. Among these 515 subjects, 290 (56%) were female and
the mean age was 14.51 years (SD= 3.32).

Rs-fMRI Data Preprocessing
The rs-fMRI data were preprocessed using the preprocessing
script released from the 1000 Functional Connectomes Project.
Specifically, skull stripping was performed on the T1 images
to remove extra-cranial material, then the first four volumes
of the functional time series were removed to stabilize the
signal, leaving 120 volumes for subsequent preprocessing. The
anatomical image was registered to the 8th volume of the
functional image and subsequently spatially normalized to the
MNI standard brain space. These normalization parameters
from MNI space were used for the functional images, which
were smoothed with a 6mm FWHM Gaussian kernel. Motion
corrections were applied on the functional images. A validated
confound regression procedure (Satterthwaite et al., 2015)
was performed on each subject’s time series data to remove
confounding factors including motions, global effects, white
matter (WM) and cerebrospinal fluid (CSF) nuisance signals.

The confound regression contained nine standard confounding
signals (6 motion parameters plus global/WM/CSF) as well as
the temporal derivative, quadratic term and temporal derivative
of the quadratic of each. Furthermore, motion-related spike
regressors were included to bound the observed displacement.
Lastly, the functional time series data were band-pass filtered to
retain frequencies between 0.01 and 0.1Hz which is the relevant
frequency range for rs-fMRI.

Brain Network Construction
In fMRI, brain activity is measured at voxel level, which are
regions a few cubic millimeters in size. A typical 3D fMRI scan
contains hundreds of thousands of voxels across the brain. The
first step in brain network construction is usually to select a
set of network nodes across the brain. Using individual voxels
as network nodes has several issues: it results in an extremely
high-dimensional connectivity matrix that is computationally
challenging to estimate, and the voxel-based network tends to be
very noisy due to the high noise level of fMRI BOLD signals in
individual voxels. Additionally, a voxel-based network is highly
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FIGURE 2 | Functional module maps. The functional module z-score maps (thresholded at z > 3) defined by the 10 primary resting state networks (RSNs, Smith

et al., 2009). To categorize nodes by module membership, we find the RSN map with the largest z-score in the location of the node, above a certain threshold (z > 3).

variable across subjects due to the difficulty of matching different
subjects’ brains at the voxel level. On the other hand, defining
nodes by a coarse parcellation of the brain into large functionally
homogenous regions can cause a loss in spatial resolutions
when investigating the connectivity between brain locations.
In our paper, we adopted the 264-node cortical parcellation
system defined by Power et al. (2011). This system of nodes was
determined using a combination of meta-analysis of task-based
fMRI studies and resting state functional connectivity mapping
techniques. In this network, each node is a 10mm diameter
sphere in standard MNI space representing a putative functional
area, and the collection of nodes provides good coverage of
the whole brain (see Figure 2). This node system provides a
good balance of spatial resolution and dimension reduction. It
is a finer spatial resolution than the commonly used Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002),
but is not as granular as using a system of single voxels. This
kind of intermediate node scheme is recommended to balance
the trade-off between increased spatial resolution and attenuate
signal-to-noise ratio (Fornito et al., 2010; Power et al., 2011).

To facilitate the understanding of the functional roles of
the nodes, we assigned them to 10 functional networks or
“modules” that correspond to the major resting state networks
(RSNs) described by Smith et al. (2009) (see Figure 2). The RSN
maps, determined by ICA decomposition of a large database of
activation studies (BrainMap) and rs-fMRI data, are coherent
during both task activity and at rest. The functional modules
include medial visual network (“Med Vis,” 15 nodes), occipital

pole visual network (“OP Vis,” 15 nodes), lateral visual network
(“Lat Vis,” 19 nodes), default mode network (“DMN,” 20 nodes),
cerebellum (“CB,” 6 nodes), sensorimotor network (“SM,” 31
nodes), auditory network (“Aud,” 29 nodes), executive control
network (“EC,” 39 nodes), and right and left frontoparietal
networks (“FPR” and “FPL,” 32 and 26 nodes, respectively). To
determine the module membership at each node, we found the
RSN map with the largest z-value in the location of the node,
above a certain threshold (z > 3). Thirty two of the 264 nodes
were not strongly associated with any RSN maps, and were
therefore not included. A visualization of the remaining 232
nodes, classified by functional module, is shown in Figure 3.
All brain visualizations were created using BrainNet Viewer (Xia
et al., 2013).

To construct the network, we extracted the time series
from each node with the following steps. First, the time series
at each voxel were detrended, demeaned, and whitened. We
then averaged the time series for all the voxels in each node
to represent the node-specific time series. These node-specific
time series were then used in subsequent analyses to estimate
connectivity in the network. We note that using the within-
node average or SVD time series in network construction is
only appropriate when such summarized time series sufficiently
represent the temporal dynamics within each node. When one
uses a coarse brain parcellation such as the AAL regions in
network construction, such this dimension reduction can cause
problems in accurate estimation of the conditional independence
structure in a network (Han et al., 2014). In the next section,
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FIGURE 3 | Parcellation scheme and network assignment. The 232

nodes used in our network analysis are adapted from the 264-node

parcellation system (Power et al., 2011). Each node is a 10mm diameter

sphere in MNI space representing a putative functional area, and is

color-coded to indicate its module membership. Functional modules are

defined by 10 primary RSNs (Smith et al., 2009).

we describe the estimation of the 232 × 232 connectivity matrix
using partial correlation tomeasure direct brain connectivity. For
comparison, we also estimated a connectivity matrix based on
full correlation for each subject to examine marginal connectivity
between the nodes.

Estimation of the Partial Correlation Matrix
We applied the proposed method to estimate the partial
correlation matrix based on the rs-fMRI data from the PNC
study. For a given subject, we first obtained the sample covariance
matrix based on the time series from each node. We then
estimated the precision matrix from the sample covariance
matrix using the CLIME method.

Comparison between Dens-Based Method and

Existing Methods for Selecting the Tuning Parameter
To choose the tuning parameter for CLIME, we applied the
proposed method based on the Dens criterion and considered
λ∗
platu

, λ∗
0.45 and λ∗

0.75. In comparison, we also considered

other existing methods including AIC, BIC, and a 5-fold K-CV
approach with the negative log likelihood and Trace L2 loss
functions. In Figure 4, we plotted the profiles of the objective
functions adopted by these methods for choosing the tuning

FIGURE 4 | Comparison between different Regularization methods.

Based on a randomly selected subject, we compared the performance

between 5 different regularization methods including Dens method, 5-CV

based negative log likelihood, 5-CV based TraceL2, AIC, and BIC, where λ

values are on the −log10 scale, ranging from 10−10 to 0.4. The selected λ

under each method is in blue.

parameter across a series of λ values, ranging from 1e-10 to
0.4, for a randomly selected subject in the PNC study. In
Table 5, we present the selected tuning parameter and the
associated computation time based on each of these methods.
From Figure 4, we can see the profile of the objective function
based on Dens shows a similar pattern with the profiles of
the AIC, BIC and the negative log likelihood 5-CV. All four
of these profiles show that the objective functions improve
significantly when λ was decreased from 0.4 to 1e-3, reach a
plateau around 1e-4, and then only had very small changes when
λ was further decreased. However, since these three existing
methods (negative log likelihood 5-CV, AIC, BIC) all choose the
λ that maximizes their corresponding objective function, they
ended up choosing the minimum λ, i.e., 1e-10, in the series.
In contrast, the Trace L2-based 5-CV method had a different
pattern which selected a value of λ = 0.2. This corresponds
to a fairly strong sparsity constraint in CLIME and leads to the
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sparsest estimate of the partial correlation matrix among all these
methods.

Our proposed Dens-based selection method was the most
efficient of all the methods considered. In particular, it showed
a dramatic reduction in computation time as compared with
the cross-validation methods. Unlike the AIC, BIC and negative
log likelihood-based 5-CV methods which always selected the
minimum λ = 1e-10, our proposed Dens-method was much
more flexible in terms of selecting tuning parameters that
correspond to various density levels that users may be interested
in. Specifically, we found that the network corresponding to
λ∗
platu

=1e-4 was extremely close to the estimated network based

on λ =1e-10 chosen by the AIC, BIC and negative log likelihood-
based methods. We found that λ∗

0.45 = 0.032 and it induced less
stringent sparsity control as compared to λ = 0.2 as selected by
the Trace L2 method. For λ = 0.2, we can see from Figure 4

that it only reaches 10% of the Dens level in the unconstrained
estimates of the network.

We also investigated the consistency of the results based on
the Dens-based selection method across subjects. We randomly
selected 100 subjects from the PNC study and applied the
proposed method for choosing the CLIME tuning parameter for
estimating subject-specific precision matrices. Figure 5 displays
the profiles of the Dens objective function across subjects.
The results show that the proposed Dens objective function
demonstrates a consistent pattern across subjects, and we also
found consistent values across all 100 subjects for λ∗

platu
, λ∗

0.45,

and λ∗
0.75. Based on this finding, it is well-justified for us to

apply the same tuning parameter to estimate partial correlation
matrices for all subjects in the PNC study. This greatly facilitates
between-subject comparisons and also allows the construction
of a group-level partial correlation matrix by combing subject-
specific estimates.

Comparison between the Proposed Method and

Existing Methods for Estimating Partial Correlation
Using the fMRI data from the PNC study, we compared the
performance of the proposed Dens-based method with two
existing methods for estimating partial correlation. We first
compared to the method referred to as the L1 precision method
(Schmidt, 2006) which was used to obtain partial correlation in
the well-known network modeling paper by Smith et al. (2011).
The L1 precision method requires selection of a regularization-
controlling parameter λ#. We considered the values within the
range used in Smith et al. (2011) which includes λ#= 1 and 5. For
these regularization values, the L1 precision method produced
a diagonal matrix, which is an overly sparse estimate for the
precision matrix. To fix this issue, we decreased λ# to 0.1 and 0.5
to obtain a less sparse precision matrix. However, in these cases,
the L1 precision algorithm failed to provide valid estimates and
produced precision matrices with complex values. Furthermore,
the L1-precision method is much more time-consuming than the
proposed approach, using 1573 s for estimating a single subject’s
precision matrix at λ#= 5. When we specified λ#= 0.1 in order
to obtain a less sparse precision matrix, the computation time
dramatically increased to 12,849 s per subject. In comparison,

FIGURE 5 | Between-subjects consistency analysis for the proposed

Dens-based method. We randomly selected 100 subjects to check the

consistency of the proposed Dens method, where λ values are on the −log10
scale, ranging from 1e-10 to 0.4. As shown in the figure, Dens method is

highly consistent across subjects serving as a reliable property to select the

tuning parameters for large group level study.

our proposed method produced valid estimates of the partial
correlation matrix for all 515 subjects in PNC data. Our method
was also significantly faster than the L1 precision method, only
taking about 58–60 s per subject. In addition, we also considered
another existing method for estimating partial correlation based
on the glasso R package (Schmittmann et al., 2015). When
comparing the results (Figure 6), one major distinction is that
connectivity matrix based on our proposedmethod showedmore
positive connections within-modules nodes suggesting within-
module are more densely connected to one another than to the
rest of the network. In comparison, glasso-based connectivity
matrix showed less within-module positive connections and in
some cases even produced strong negative connections within
the same functional module. Based on the network comparison
criterion in the literature (Power et al., 2011), these results suggest
that the connectivity matrix based on our proposedmethodmore
accurately reflects the brain organization in the sense that it better
captures the strong positive functional connections within the
established functional modules.

Comparison of Network Connectivity
Based on Partial Correlation and Full
Correlation
In the section, we compare the partial-correlation-based network
connectivity and full correlation-based connectivity for the PNC
study. Following the method from Satterthwaite et al. (2014),
we did not threshold the correlation matrix, yielding a fully
connected correlation matrix. Thus, to ensure comparability, we
imposed minimum sparsity control in the partial correlation
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FIGURE 6 | Comparisons of partial correlation estimates based on the

proposed CLIME-based method and based on GLASSO method. The

symmetric 232× 232 partial correlation matrices are estimated via the (A)

existing GLASSO approach and the (B) proposed CLIME-based approach

using rs-fMRI data from a randomly selected subject in the PNC study.

Sparsity regularization was set at similar level in both methods. Red indicates

the positive edges and blue indicates the negative edges.

estimation and selected λ∗
platu

for the CLIME. Figure 7 displays

the partial correlation matrix and correlation matrix averaged
across the 515 subjects in PNC data.

Full correlation values ranged between −0.45 and 0.83, and
in comparison, partial correlation values ranged between −0.03
and 0.18. As expected, the magnitude of partial correlation was
much smaller than full correlation since the partial correlation
reflects the direct connections between nodes after removing the
confounding effects from all the other nodes. Based on the 10
functional module system defined by Smith et al. (2009), we
divided the upper-triangle of the 232×232 edgewise connectivity

FIGURE 7 | Averaged edgewise partial correlation matrix (λ*platu) and

full correlation matrix. The symmetric 232× 232 connectivity matrices under

partial correlation (λ*platu, bottom) and full correlation (Pearson correlation,

top). Red indicates the positive edges and blue indicates the negative edges.

matrices into 55 module-wise blocks including the 10 within-
module blocks and 45 between-module blocks. In the full
correlation-based connectivity matrix, we can see the majority
of positive marginal connections were found in within-module
blocks, that is the diagonal blocks in the connectivity matrix.
We also found positive connections in several between-module
blocks, in particular between the three visual networks (Med
Vis, Op Vis, Lat Vis) and also between the Auditory (Aud)
and Sensorimotor (SM) network. In the partial correlation-
based connectivity matrix, the strong positive connection in
within-module blocks became even more prominent, indicating
that the most significant positive direct connections in the
brain are observed within functional modules, and for between-
module node pairs we observed fewer positive connections
as compared to the full correlation matrix. For example, we
observed fewer positive connections between the Auditory (Aud)
and Sensorimotor (SM) network. Similarly, the connections
between the three visual networks had dropped considerably
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FIGURE 8 | Modulewise Spearman’s rank correlation between partial

correlation and full correlation. We calculated Spearman’s rank correlation

between partial correlation and full correlation within each of the 55 functional

module pairs (Smith et al., 2009), where the Spearman’s rank correlation

between the full correlation and partial correlation for within-module edges

[Mean(SD) = 0.825(0.098)] was significantly higher than those [Mean(SD) =
0.702(0.103)] for between-module edges (p = 0.003).

too as compared to the full correlation matrix. These findings
suggest that a lot of the marginal connections for between-
module node pairs are mainly due to some confounding
factors and not necessarily due to the direct connections
between modules. Another important finding is that in the full
correlation-based connectivity matrix, there were considerable
negative functional connections in the between-module blocks.
Several of these negative marginal connections disappeared
in the partial correlation matrix, indicating that many of the
negative connectionsmay be caused by confounding factors. This
finding agrees with some recent findings in the neuroimaging
community that showed many negative functional connections
in rs-fMRImay be due to non-neurological reasons such as global
signal removal performed during imaging pre-processing (Giove
et al., 2009; Murphy et al., 2009; Weissenbacher et al., 2009; Chen
et al., 2011) or inhomogeneous cerebral circulation across the
brain (Goelman et al., 2014).

We examined the consistency between partial correlation
and full correlation findings across all edges in the network.
Since the measures have different scales, we utilized Spearman’s
rank correlation coefficient (Spearman’s Rho) to measure their
association at all edges. As shown in Figure 8, the Spearman’s
Rho between the full correlation and partial correlation for
within-module edges (Mean ± SD = 0.825 ± 0.098) was
significantly higher than those for between-module edges (Mean
± SD = 0.702 ± 0.103; p = 0.003). This demonstrates that
partial correlation and full correlation were more consistent for
within-module edges compared to between-module edges.

Furthermore, since researchers are mostly interested in
significant connections, we examine the consistency between
the partial correlation and full correlation for these significant
edges. Given the large sample size of the PNC data, we have

FIGURE 9 | Effect size-based analysis. Each edge is classified into four

categories based on its effect size under partial correlation and full correlation,

where the significant threshold for absolute effect size is set to be 0.5.

high statistical power to detect even very small deviations from
zero in the correlations. Therefore, even edges with very small
effect size demonstrated highly significant p-values in hypothesis
testing. Therefore, we used the effect size instead of p-values
for thresholding purpose. Specifically, we first performed the
Fisher’s Z transformation on both the partial correlation and
full correlation values. We then calculated the effect size for the
connectivity at each edge by diving the mean of z-transformed
full correlations or partial correlations to its standard deviation
(Kemmer et al., 2015). The effect sizes ranged from−2 to 4 for full
correlation and −1 to 2.5 for partial correlation (see Figure 9).
We then defined significant edges as those with an effect size of
greater than 0.5.

After the thresholding to define the significant edges, each
edge is classified into one of the following four categories:
(A) significant in partial correlation but insignificant in
full correlation (2%); (B) significant in full correlation but
insignificant in partial correlation (34%); (C) significant in both
(10%); (D) insignificant in both (53%), shown in Figure 9.
Moreover, we evaluated the sign consistency between the full
correlation and partial correlation on the edge level. The
percentage of edges with sign consistency within each of those
four categories are A: 83.54%, B: 86.52%, C: 100% and D: 66.05%.

Among the four categories, category C reveals the significantly
consistent edges based on full correlation and partial correlation.
Figure 10 displays edges mapped to the module-wise blocks.
Results show that consistently significant positive edges
were more concentrated at the within-module regions and
consistently significant negative edges were more concentrated
at the between-module regions. In particular, we found that
considerable consistently negative connections were observed
between the default mode network and other modules,
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FIGURE 10 | Edges in category C. Category C contains the significant

edges in both partial correlation and full correlation (absolute effect size > 0.5);

Red denotes positive edges and blue denotes negative edges.

especially with the executive control module. To provide better
visualization of these consistently significantly edges, we selected
the top 130 positive edges and top 130 negative edges from
category C and mapped them onto the brain (Figure 11). An
important observation from Figure 11 is that the strongest
positive connections based on both partial correlation and
full correlation were the connections between homologous
brain locations in the left and right hemisphere. This finding is
consistent with some previous findings based on PET resting-
state data collected on rats which also showed that the largest
partial correlation coefficients in rate brain were between
homologous brain regions (Horwitz et al., 1984). Another
important observation from Figure 11 is that the strongest
negative connections based on both partial correlation and full
correlation tend to have longer spatial distance than strongest
positive connections, which is consistent with the previous
findings showing that the percentage of negative functional
connectivity and spatial distance are significantly correlated
(Chen et al., 2011).

We further examined edges in category B, which represented
edges that were significant based on full correlation but
insignificant based on partial correlation. We examined the
proportion of category B edges in each of the module-wise blocks
and found that these inconsistent edges were more likely to
be observed in between-module connections than for within-
module connections. In particular, we found that the following
three between-module pairs showed the highest inconsistency
between the marginal and direct connectivity: Med vis and FPL
for which 56% of all edges between these two networks were
in category B, that is only significant based on full correlation;
Lat vis and EC for which 50 of all edges between them were in
Category B.

FIGURE 11 | Highly consistent positive and negative edges between

partial correlation and full correlation. We selected the top 130 positive

edges and top 130 negative edges with an absolute effect size larger than 0.5

in both partial correlation and full correlation. (left: positive; right: negative).

Comparison between Network
Connectivity Using Partial Correlation
Matrix Based on Different Dens level
In this section, we explore the difference in the estimated
direct connectivity based on the proposed partial correlation
method using different levels of sparsity control. Specifically, we
compared partial correlation estimates obtained with λ∗

platu
where

minimum sparsity control was applied vs. partial correlation
estimates obtained with λ∗

0.45 where some sparsity regularization
were applied such that the partial correlation matrix reached
about 45% of the maximum density level.

The estimated partial correlation matrices based on λ∗
platu

and λ∗
0.45 are presented in Figure 12. As expected, the partial

correlation matrix based on λ∗
0.45 was sparser than that based on

λ∗
platu

. Furthermore, in the between-module regions the majority

of negative (blue) connections under λ∗
platu

disappeared using

λ∗
0.45, while in the within-module regions the positive (red)

connections under λ∗
platu

were retained using λ∗
0.45. Marginally,

the partial correlations ranged between -0.03 to 0.18 based on
λ∗
platu

and −0.02 to 0.22 based on λ∗
0.45. Therefore, the limit of

the estimated correlations shrank slightly in the negative edges
but increased in the positive edges.

To further explore this shrinkage effect, we examined the
edges with an absolute effect size larger than 0.3. As shown in
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FIGURE 12 | Averaged edgewise λ*platu- and λ*0.45-based Partial

Correlation matrices. The symmetric 232× 232 partial correlation matrices

based on λ*platu (top) and λ*0.45 (bottom). Red indicates the positive edges

and blue indicates the negative edges.

Figure 13, the majority of the negative edges with medium (0.3–
0.5) to large (>0.5) effect sizes disappeared under a stronger
sparsity control, whereas the percentage of the negative edges
with medium effect sizes decreased from 22.4 to 2.9%, and
the percentage of the negative edges with large effect sizes was
decreased to 0.04%. However, the positive edges with medium to
large effect sizes were mostly retained under a stronger sparsity
control. These results suggest that for positive edges, the edges
with medium and large effect size remained fairly robust under
shrinkage. However, the negative edges were more likely to
disappear under the stronger sparsity control, so the shrinkage
effects were much stronger for negative edges than for positive
edges. This result suggests that the when applying more sparsity
regularization in our proposed procedure, we will still maintain
the ability to detect the significant positive edges while the
negative edges would experience more shrinkage in the estimates.

FIGURE 13 | The percentage difference based on size effect between

λ*platu- and λ*0.45-based partial correlation matrix. Edges are classified

into 4 categories based on size effect: significant positive : >0.5, significant

negative: < −0.5, moderate positive: (0.3,0.5) and moderate negative (−0.5,

−0.3).

Again this may be mainly due to the fact that a lot of the negative
connections observed in rs-fMRI data were not due to direct
connection or neurophysiological effect but rather due to artifacts
from imaging processing or biological reasons (Chen et al., 2011;
Goelman et al., 2014).

DISCUSSION

In this paper, we propose a more efficient and reliable statistical
method for estimating partial correlation in brain network
modeling, which provides a useful tool to investigate direct brain
functional connectivity. Compared to existing methods used in
the neuroimaging community, the proposed method is shown to
be more reliable and computationally efficient. Another major
advantage of this technique is that it is scalable to large-scale
brain networks with a large number of nodes, for which the
existing methods often fail to generate reliable network estimates.
Thus, the proposed method can provide a powerful tool for
investigating whole brain connectivity in both task-related as well
as resting state fMRI studies.

When estimating the partial correlation matrix under the
regularization framework, a major challenge is how to select
an appropriate tuning parameter to control the sparsity level.
Existing selection approaches are often made based on subjective
choices or by considering only a few candidates. We propose
a new Dens-based selection method which considers a series
of values across the range of the tuning parameter, and we
evaluate the proposed Dens criterion for the estimated precision
matrix at each value. Hence, we can have a more comprehensive
picture of the whole profile of the criterion function across
the range of the tuning parameter. Based on the Dens profile,
users can now have better understanding on the implications
on the sparse level of the estimated networks based on different
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tuning parameters. Thus, they can make more informed choices
of the tuning parameter based on the desired Dens level they
would like to achieve in the estimated partial correlation matrix.
Our proposed Dens-based selection method is also {} much
faster than the existing selection methods. This will allow
users to perform the selection process across many or even
all subjects to evaluate the consistency in the selection of the
tuning parameter across subjects and to select a common tuning
parameter that has good performance across different subjects.
In comparison, some of the existing selection methods, such
as the cross-validation based method, are very time consuming
and hence it is very difficult to conduct such consistency checks
across a large number of subjects. Our results from the PNC
data showed that the proposed selection procedure leads to a
fairly consistent choice of the tuning parameter across different
subjects. Therefore, we can apply the same regularization across
all subjects, which facilitates performing group analysis of the
partial correlations.

When comparing the partial correlation-based and full
correlation-based connectivity matrices, we note that the
partial correlation removed considerable marginal correlations
found in the full correlation matrix that may be due
to non-neurophysiological confounding factors. For example,
in the partial correlation matrix, many of the significant
marginal connections in between-module pairs were not present
suggesting these connections between different brain modules
were likely caused by global effects or common connection to
a third party (Smith et al., 2011; Smith, 2012). Furthermore,
the full-correlation-based connectivity matrix demonstrated
considerable amount of negative functional connectivity in
between-module pairs. Neuroimaging literature has shown
that many negative connection findings in rs-fMRI may be
caused by non-neurophysiological reasons such as artifacts from
global signal removal or inhomogeneous cerebral circulation
across the brain (Chen et al., 2011; Goelman et al., 2014).
There are considerable controversies in terms of origin and

interpretations for these negative connections (Giove et al., 2009;
Murphy et al., 2009; Weissenbacher et al., 2009). Hence, many
network analyses simply ignore all negative connection (Buckner
et al., 2009; Meunier et al., 2009; Satterthwaite et al., 2015).
When applying the partial correlation to investigate the direct
functional connectivity, we observed that many of the negative
connections disappear and those that remain tend to be well-
established negative connections such as those between default
mode network and other networks. Moreover, based on our
Dens-basedmethod, we demonstrated that themoderate negative
connections were less robust than the positive connections and
the strong negative connections, further indicating that a lot of
the moderate negative functional connectivity may be caused by
non-neurophysiological reasons. By using the proposed partial
correlation method with appropriate sparsity control, we can
potentially perform meaningful network analysis for negative
connections as well in brain network modeling.

An R package “DensParcorr” for implementing the proposed
statistical methods can be downloaded from CRAN and the
website of Center for Biomedical Imaging Statistics (CBIS) of
Emory University.
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