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In this study, we investigated changes in functional connectivity (FC) of the brain networks

in patients with benign epilepsy with centrotemporal spikes (BECTS) compared to healthy

controls using high-density EEG data collected under eyes-closed resting state condition.

EEG source reconstruction was performed with exact Low Resolution Electromagnetic

Tomography (eLORETA). We investigated FC between 84 Brodmann areas using lagged

phase synchronization (LPS) in four frequency bands (δ, θ, α, and β). We further computed

the network degree, clustering coefficient and efficiency. Compared to controls, patients

displayed higher θ and α and lower β LPS values. In these frequency bands, patients

were also characterized by less well ordered brain networks exhibiting higher global

degrees and efficiencies and lower clustering coefficients. In the β band, patients

exhibited reduced functional segregation and integration due to loss of both local and

long-distance functional connections. These findings suggest that benign epileptic brain

networks might be functionally disrupted due to their altered functional organization

especially in the α and β frequency bands.

Keywords: children epilepsy, centrotemporal spikes, resting sate, functional connectivity, phase synchronization,

graph theory

INTRODUCTION

Benign epilepsy with centrotemporal spikes (BECTS) is the most common idiopathic epileptic
syndrome with a prevalence of 8–20% of pediatric patients with epilepsy (Holmes, 1993;
Wirrell, 1998; Panayiotopoulos, 1999). In BECTS, although interictal spikes arise primarily within
centrotemporal regions, there is growing evidence that abnormal functional networks in BECTS
patients, like other types of focal epilepsy, are not restricted to the epileptogenic region as revealed
by the functional connectivity (FC) analysis of the brain networks (Kramer and Cash, 2012;
Laufs, 2012; Adebimpe et al., 2015b). Moreover, our previous studies have shown that functional
organization of the brain networks in BECTS patients largely differs from normal brain in presence
or absence of interictal epileptic discharges (IES) (Adebimpe et al., 2015b, 2016).

Over the past decade, graph-theoretical analysis of resting state FC in EEG and MEG data have
gained attention in healthy subjects (Deco and Kringelbach, 2014), and in patients suffering from
various diseases (Prinz, 2008; Stam et al., 2009; Zhang et al., 2014). In our previous study using
graph metrics we found that the brain networks in BECTS patients show functionally disrupted
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connectivity patterns (Adebimpe et al., 2015b). However, the
main shortcoming of that study was that the FC analysis and
graph metrics were estimated in the sensor space that might
not provide information on the overall functional organization
of the cortical regions mainly because scalp EEG electrodes
detect spatially averaged overlapping EEG signals from several
brain sources. Moreover, our previous study focused on global
clustering coefficient and path length.

In the present study, we investigated changes in brain FC
including local and regional graph metrics in BECTS patients
compared to healthy controls in various frequency bands under
the eyes-closed resting condition. Abnormal patterns of resting-
state EEG source FC in patients were determined by using lagged
phase synchronization (LPS), a non-linear connectivity measure
implemented in the eLORETA software (http://www.uzh.ch/
keyinst/eLORETA/). Graph theory was also used to characterize
FC by estimating network centrality, functional segregation
and integration. We further investigated whether functional
brain networks in BECTS patients displayed altered network
efficiency and disrupted local neural processing (segregation and
integration) in comparison to healthy controls.

MATERIALS AND METHODS

Subjects
This study was performed on 11 young patients (9.65 ± 2.36
years) with benign childhood epilepsy with right centrotemporal
spikes (see Table 1 and Adebimpe et al., 2015a, for more
information). None of the patients presented any other
neurological disorders at the time of the study, which was
conducted at Amiens University Hospital (Amiens, France) and
approved by the hospital’s ethics committee (CPP Nord-Ouest
2, approval No. 2011-A00782-39). We also recruited 12 healthy
subjects in the same age range (9.27 ± 1.70 years) as controls.
Written consent approved by the ethics committee was obtained
from parents/caregivers.

EEG Recording and Pre-Processing
EEG data were recorded with a high density recording system
(ANT, Netherlands) based on the international 10–10 system
at a sampling rate of 256 Hz under the eyes-closed resting
condition. EEG data were first digitally re-referenced to an
average reference, z-scored, and band-pass filtered between 0.5
and 40 Hz to exclude high-frequency noise including muscle
activities. EEG portions with occular and movement artifacts
were identified automatically using a thresholding method
(threshold was set to the mean of the z-score distribution for each
channel) as implemented in Fieldtrip software (Oostenveld et al.,
2010; tutorial:visual_artifact_rejection – FieldTrip1) and rejected
by visual inspection. No ECG artifacts were visually observed in
any of the EEG recordings. The artifact-free portions of the EEG
data were partitioned into 2-s quasi-stationary segments required
for spectral analysis with a frequency resolution of 0.5 Hz. Five
EEG segments of 2 s were randomly selected for each patient

1tutorial:visual_artifact_rejection – FieldTrip Available at: http://www.

fieldtriptoolbox.org/tutorial/visual_artifact_rejection [Accessed May 15, 2015].

(PAT) and healthy control (CON). The EEG segments selected
for patients included no centrotemporal spikes.

EEG Source Connectivity Analysis
We first used the exact Low Resolution Electromagnetic
Tomography (eLORETA) method (Pascual-Marqui, 2007a) to
identify the average location of interictal spike sources in patients.
EEG source connectivity analysis was then performed using
eLORETA by restricting the source space within the gray matter
including 6239 voxels with a 5-mm spatial resolution. The
Montreal Neurologic Institute average MRI brain (MNI152)
(Fonov et al., 2011) with anatomical labels corresponding to
Brodmann areas was used as the realistic head model to compute
the lead field. The 84 commonly used Brodmann areas were
chosen as regions of interests (ROIs) for connectivity analysis
between the centroids of the ROIs.

To analyze the FC we computed LPS (Pascual-Marqui, 2007b)
between ROIs. This measure has been shown to be less sensitive
than other techniques to non-physiological signals including
artifacts and the volume conduction effect (Pascual-Marqui et al.,
2011). For each subject, four FC matrices were computed in four
frequency bands, δ (0.5–3.5 Hz), θ (4–8 Hz), α (8.5–13 Hz), and β

(14–30Hz). For each subject and each frequency band, an average
FC matrix was obtained over the five EEG segments selected for
the subject and was used to compute graph metrics.

Graph Theoretical Analysis
From each FC matrix, we extracted three graph measures to
investigate functional integration and segregation between brain
networks in patients compared to controls (for mathematical
definitions see (Rubinov and Sporns, 2010): network degree
(K), a measure of node centrality, global efficiency (E) and
clustering coefficient (C), measures of functional integration and
segregation in large-scale brain networks, respectively.

The graph measures were calculated using the brain
connectivity toolbox (Rubinov and Sporns, 2010). To make
connectivity matrices comparable across subjects, an individual
optimal threshold was needed to convert each FC matrix to
a binary adjacency matrix. This step was necessary to ensure
that all graphs had equal connection densities within the small
world network range (Bassett et al., 2006). Moreover, the optimal
thresholds have been shown to reduce the number of false-
positive edges and minimize the noise (Drakesmith et al., 2015).
To obtain an optimal threshold for each subject and frequency
band, we first set the threshold to one standard deviation above
the median connectivity value. The threshold was iteratively
adjusted to satisfy two conditions: (i) the mean network degree
had to be less than 2log(N), where N was the total number of
nodes, and (ii) at least 95% of nodes must be connected to one
or more nodes (Bassett et al., 2006; Erdős and Rényi, 2013).
Using the optimal thresholds, the FC matrices were thresholded
and binarized to calculate the network degree (K), clustering
coefficient (C), and global efficiency (E). The global value for
each graph metric was calculated by the average over the whole
nodes for a wide range of thresholds from 0.2 to 0.7 with 0.05
increments to investigate differences between the two groups.
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TABLE 1 | Characteristics of the control and patient groups.

Control group Patient group

Subject Age EEG duration Patient Age EEG duration Neuropsychological Description Medication

(years) (min) (years) (min) assessment of ictal EEG

1 6.73 16 1 12.63 50 Normal Partial seizure Sodium valproate

2 11.28 19 2 12.64 17 Normal Partial seizure Sodium valproate

3 10.48 19 3 9.25 44 Attention deficit Generalized tonic-clonic seizure Oxcarbezepine

4 10.66 17 4 6.03 43 – Brachiofacial nocturnal seizure Oxcarbezepine

5 7.39 13 5 10.47 50 Attention deficit Partial seizure Sodium valproate

6 7.31 20 6 7.16 14 – Brachiofacial nocturnal seizure Sodium valproate

7 11.92 30 7 8.51 30 Attention deficit Nocturnal seizure –

8 8.44 75 8 13.16 20 Normal Generalized tonic-clonic seizure Sodium valproate

9 9.36 28 9 9.67 15 Language deficit Generalized tonic-clonic seizure Lamotrigine

10 9.48 45 10 7.79 23 Normal Generalized tonic-clonic seizure Micropakine

11 10.32 18 11 8.91 16 Normal Generalized tonic-clonic seizure Trileptal

12 7.98 20 − – - – –

Mean ± SD 9.3 ± 1.7 27 ± 17 9.6 ± 2.4 29.7 ± 14

Statistical Analysis
Group differences in FC and global network metrics were
statistically evaluated. Statistical comparisons between patients
and controls were performed using non-parametric permutation
t-tests with p < 0.05 (Bonferroni corrected for multiple
comparisons). We further used Post-hoc t-tests to explore the
directionality of effects over conditions with p < 0.05. A total of
1000 permutations were used to determine the significance level
for each test (Maris and Oostenveld, 2007). The results were then
projected onto a 3D surface using BrainNet (Xia et al., 2013).

RESULTS

EEG Source Functional Connectivity
Figure 1 shows the average localization of interictal spikes in
patients. As shown, all the patients exhibited an epileptic focus
at the right hemisphere with a spatial extent restricted to the
right central areas. Results of lagged connectivity differences
between patients and healthy controls in all frequency bands are
summarized in Figure 2. The major differences between the two
groups were observed in the α and β bands. Compared to healthy
controls, patients showed significantly increased α LPS over most
cortical regions. There was also significantly reduced α LPS in the
temporal and right centrotemporal areas. In contrast with the α

band, significantly lower LPS values were observed in the β band
in almost all brain regions of patients. In patients compared to
controls, δ LPS values were significantly higher between the right
anterior and posterior areas along the midline and lower between
the temporal and posterocentral areas. In the θ band, patients
displayed higher LPS values between temporal and central areas,
mostly over the left hemisphere.

Global Network Measures
Figure 3 shows the global metric values over thresholds between
0.2 and 0.7. Patients presented higher global network degree and
efficiency and lower clustering coefficients in the θ and α bands.

FIGURE 1 | Average eLORETA source localization of interictal spikes in

patients. The squared magnitude of the current density is color coded from

dark blue (zero) to dark red (one).

At higher frequencies (β), patients were characterized by lower
values for all three measures over thresholds up to 0.4. At very
low frequency (δ), no significant differences were observed over
all of the threshold range between patients and healthy controls.
Table 2 presents the optimal thresholds used to compute the
global network degree (K), global clustering coefficient (C), and
global efficiency (E) for both groups.

Nodal Network Degree and Clustering
Coefficient
Figure 4 illustrates the regions presenting statistically significant
differences between patients and healthy controls for nodal
network degree (K) and clustering coefficient (C) computed
using optimal thresholds.

Network Degree (K)
In the δ band, patients, compared to controls displayed higher
network degree values at the right somatosensory cortex, left
motor cortex and right occipital lobe and decreased K at the
right anterior frontal cortex and opercula frontal regions. In the
θ band, patients showed significantly higher K values at the right
inferior temporal and left primary auditory cortex. In the α band,
patients displayed a higher K at the right posterior cingulate
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FIGURE 2 | Results of the functional resting-state source connectivity analysis with the seeds located at the Brodmann area centroids. The upper and

lower rows indicate significantly higher (red lines) and lower (blue lines) connectivity values in patients (PAT) compared to controls (CON), respectively.

FIGURE 3 | Global network degree (K), clustering coefficient (C) and efficiency (L) as a function of threshold values for each frequency band. The error

bars represent the standard error of the mean with 95% confidence intervals and * indicate significant differences between PAT and CON.

cortex, right temporal and left isthmus of the cingulate cortex.
In both the α and β bands, patients displayed lower K values at
the left frontal cortex. In the β band, patients displayed higher K
values at the right superior parietal and left prefrontal cortex.

Clustering Coefficient (C)
In the δ band, patients displayed higher clustering coefficient
(C) at the right primary motor and visual cortex, right cingulate

gyrus, and lower C values at the left primary auditory cortex.
In the θ band, patients displayed higher C values at the right
postcentral, right angular gyrus and left dorsal cingulate gyrus
and lower C in the left intermediate frontal region. In the α band,
patients displayed higher C values at the right primary motor and
right posterior cingulate cortices, and, in the β band, displayed a
decreased C at the right orbital frontal with higher C values in the
frontal regions.
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DISCUSSION

In this study, we investigated abnormal patterns of resting-
state EEG FC in BECTS patients using graph metrics in various
frequency bands. Our results suggest that the functionality of
brain networks in BECTS patients is altered, particularly in
the α and β bands. Compared to healthy subjects, BECTS
patients were characterized by widespread higher and lower
phase synchronization values in the α and β bands, respectively.

In the θ and α bands, significantly lower global clustering
coefficient and higher network degree and efficiency were
observed in patients. In contrast, compared to controls, patients
displayed significant lower global metrics in the β band. In the
δ band, no significant differences in global graph metrics were
observed between patients and controls.

TABLE 2 | Mean values (with range at 95% confidence interval) of

threshold (T), degree (K), clustering coefficient (C), and global efficiency

(E) computed for each group and frequency band.

Frequency

band

T K C E

Controls

(CON)

δ 0.54 ± 0.05 0.16 ± 0.05 0.42 ± 0.03 0.48 ± 0.04

θ 0.70 ± 0.05 0.14 ± 0.05 0.44 ± 0.04 0.47 ± 0.05

α 0.71 ± 0.05 0.15 ± 0.05 0.45 ± 0.03 0.46 ± 0.04

β 0.38 ± 0.02 0.18 ± 0.01 0.46 ± 0.00 0.53 ± 0.01

Patients

(PAT)

δ 0.54 ± 0.02 0.17 ± 0.00 0.43 ±0.01 0.51 ± 0.01

θ 0.72 ± 0.03 0.16 ± 0.01 0.43 ± 0.01 0.50 ± 0.01

α 0.73 ± 0.02 0.15 ± 0.01 0.41 ± 0.02 0.49 ± 0.00

β 0.32 ± 0.03 0.17 ± 0.00 0.42 ± 0.02 0.44 ± 0.01

Global Functional Integration and
Segregation
The human brain is very complex, comprising inhibitory and
excitatory circuits that interact by integrating information at local
and global levels. The functional segregation and integration of
brain networks is expected to be balanced in healthy subjects.
It has been shown that the normal brain has a small world
functional topology, which can efficiently combine functionally
specialized (segregated) modules with intermodular (integrating)
links (Bassett and Bullmore, 2006). This type of organization
reflects an optimal balance between functional integration and
integration (Bassett and Bullmore, 2006; Ponten et al., 2007).

In BECTS patients, however, we found that the functional
organization of brain networks was altered in a frequency
dependent manner. Our results indicate that the interictal state in
BECTS patients is less well ordered, displaying lower segregation
(lower global clustering coefficient) and higher integration
(higher global efficiency and network degree) in the θ and α

bands. This finding is in line with the results reported in our
previous study (Adebimpe et al., 2015b) and other related studies
(Clemens, 2004; Boor et al., 2007; Quraan et al., 2013). As a
characteristic feature of BECTS, the alteration in brain functional
organization might be explained by the abnormal significant
increase in the power of θ oscillations (Clemens, 2004; Clemens
et al., 2010; Douw et al., 2010; Adebimpe et al., 2014, 2015a).

In the α band, the lower clustering coefficient and the higher
network degree might be due to the loss of local connectivity
between neighbor nodes in comparison to increased long
distance connections in BECTS patients, as shown in Figure 2.
The less ordered network configuration in patients with BECTS
has also been reported in previous studies on epilepsy (Ponten

FIGURE 4 | Nodal network degree (K) and clustering coefficient (C). Brown and blue dots indicate higher and lower K and C in patients compared to controls,

respectively.
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et al., 2007; Quraan et al., 2013; Adebimpe et al., 2015b) and
other neurological diseases (Liu et al., 2008; Stam et al., 2009;
Wang et al., 2009; Zhang et al., 2011) compared to healthy
controls. Our findings are consistent with a recent fMRI study
(Song et al., 2015) reporting low local efficiency (an alternative
to the clustering coefficient) and high global efficiency in BECTS
patients. Our findings are also in agreement with those of Quraan
et al. (2013), who reported low C and short L (high E) in patients
with temporal lobe epilepsy (TLE) in the α band. In patients
with focal epilepsy, however, higher clustering coefficients and
longer path lengths have been reported in comparison to healthy
subjects (Bernasconi et al., 2003; van Diessen et al., 2014; Taylor
et al., 2015). Both TLE and focal epilepsy are known to be
associated with abnormal structural brain alterations. In BECTS,
there is no evidence of alterations in the brain structure.

In the β band, we observed a significant pruning of long-
and short-distance functional connections in BECTS patients,
who exhibited reduced clustering coefficient (representing
functional segregation) and lower global efficiency and network
degree (representing functional integration) compared to healthy
controls. The frequency-dependent alterations in the brain
functional organization in BECTS patients may constitute
specific biomarkers of the benign epilepsy.

In healthy subjects, studies of large-scale brain FC have
also shown that interactions between spatially distinct brain
regions are frequency dependent. Delta, theta and alpha FC
have been shown to be related to attention, learning, memory,
and emotion processing (Knyazev, 2007; Bekkedal et al., 2011;
Calmels et al., 2012). Alpha FC is also shown to be associated
to motor performance in adults (Sauseng et al., 2005; Klimesch
et al., 2007; Palva and Palva, 2007). Based on these findings,
we postulate that in BECTS patients alterations in brain FC in
different frequency bands may cause cognitive, mental, memory
and attention impairment (Baglietto et al., 2001; Datta et al., 2013;
Kim et al., 2014; Verrotti et al., 2014).

Local Changes in Functional Connectivity
Our FC analysis at Brodmann areas revealed higher network
degree and clustering coefficient in epileptogenic areas, including
centrotemporal, premotor, and somatosensory regions in the θ

and α bands in BECTS patients. We also found higher degree
in the posterior cingulate cortex in patients in the θ and α

bands. This finding is consistent with the results of previous
studies (Boor et al., 2007; Besseling et al., 2013; Tang et al.,
2014) indicating higher activity in the supplementary motor
region in epileptic patients. Our results also confirmed the
higher phase synchronization values in the regions with increased
local segregation neural processing (high clustering coefficient),
especially in the primary motor, postcentral and posterior
cingulate regions. Significantly, higher phase synchronization
values were also observed in the central regions, including
somatosensory cortex and motor cortex (Avanzini et al., 2012).
However, a decreased network degree was observed in the right
frontal cortex in the α and β bands, and a low clustering
coefficient was also observed in the intermediate frontal region in
the θ band. The frontal lobe is known to play a major role in the
processing and execution of higher cognitive skills and behaviors

(Stuss, 2011) and children with benign epilepsy have been found
to present cognitive deficits and impaired mental activity (Ay
et al., 2009; Datta et al., 2013; Verrotti et al., 2014). Furthermore,
the right auditory network, including right temporal, parietal and
left auditory cortex (in θ band), also showed altered (higher)
functional integration (network degree) in patients, which could
affect auditory processing in both hemispheres, resulting in
language processing deficits in BECTS patients (Naganuma et al.,
1994; Tomé et al., 2014; Filippini et al., 2015).

Several fMRI studies have reported impairments in different
brain networks in BECTS patients (Kim et al., 2014; Yang et al.,
2015; Xiao et al., 2015a,b). We also found differences in brain
functional organization between BECTS patients and healthy
controls. Although some studies reported associations between
EEG rhythms and fMRI maps but there are some inconsistencies
(Laufs et al., 2003; Mantini et al., 2007; Bridwell et al., 2013)
due to underlying differences between these modalities as EEG
measures direct neuronal activity while fMRI records indirectly
brain activity.

In our previous work (Adebimpe et al., 2015b), we compared
patients and controls using three graph metrics, degree,
clustering coefficient and path length computed using sensor-
level EEG data. In that study, we used the Phase Locking Value
(PLV) as a measure of FC between electrodes to explore the
global topology and dynamics of functional interactions between
large-scale brain regions during the resting state over a range of
frequencies. The results obtained using the sensor- and source-
level connectivity analyses were consistent. In the present study,
we also found higher clustering coefficients and shorter path
lengths in the theta and alpha bands in BECTS patients compared
to controls. However, the FC analysis in the sensor space is
more sensitive to artifacts of volume conduction especially using
zero-lag connectivity measures like PLV. Moreover, statistical
comparisons at the group level are less reliable at the sensor
space because of variability in EEG electrode positions across
subjects. Instead, FC estimated at the source level reflects actual
interactions between brain areas.

Methodological Consideration and
Limitations
In this study, we used eLORETA, an improved version of
LORETA, for source imaging. It has been reported that
this technique has no localization bias even in the presence
of structured noise (Pascual-Marqui, 2007a). However, this
technique like other EEG localization method is vulnerable
to artifacts of volume conduction, head-modeling errors and
EEG noise (Grech et al., 2008). Moreover, since the results of
LORETA are model dependent, it may not accurately represent
the neuronal origins of the brain activity (Hata et al., 2016).

Another major challenge is the choice of source FC
analysis. The majority of zero-lag connectivity measures such as
correlation, coherence, and PLV are developed based on scalp
sensors and thus sensitive to volume conduction effect (Gross
et al., 2001). In a MEG study, Ghuman et al. (2011) have shown
that artifacts of volume conduction can result in increased false-
positive PLVs. To reduce the effect of volume conduction on
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the results of the source connectivity analysis, we used the LPS
to investigate FC in the source space (Pascual-Marqui, 2007b).
This method has been successfully used to explore EEG source
FC in epilepsy studies (Canuet et al., 2011; Vecchio et al., 2015;
Hata et al., 2016). This connectivity measure is resistant to
artifacts of volume conduction by excluding the instantaneous
zero-lag contribution (Canuet et al., 2011; Vinck et al., 2011).
However, like phase lag index, LPS’s sensitivity to uncorrelated
perturbation, which can turn phase lags into leads, has to be
investigated especially when EEG noise is strong (Nolte et al.,
2004; Stam et al., 2007; Vinck et al., 2011).

We further used a ROI-based approach, which is a common
practice in neuroimaging studies to reduce variability in brain
size and shape between individuals which might affect estimation
of source FC (Schoffelen andGross, 2009). This approach is based
on the BA regions cytoarchitectonically defined in the Talairach
atlas. The ROI for each of 84 BA regions was defined as a single
centroid voxel (the closest to the center of each region). The
ROI-approach is more efficient in reducing volume conduction
artifacts than the voxel-by-voxel connectivity analysis as it has
been shown that the spatial correlation between sources decays
with increasing distance between them (Mehrkanoon et al.,
2014).

Our results should be interpreted with caution because of the
low sample size, limited number of EEG segments, and short EEG
data lengths. Apart from technical limitations, collecting long
EEG recordings from children under age 16 is difficult because

they cannot adequately follow instructions. We further had to
exclude artifactual EEG portions and segments with interictal
spikes from our analysis. Therefore, for each subject only five
segments were randomly selected for FC analysis. Further studies
with larger samples and longer EEG recordings are required to
confirm our findings.

CONCLUSION

In this study, we investigated functional alterations in BECTS
patients with BECTS. Compared to controls, patients
were characterized by higher θ and α and lower β phase
synchronization values. Our observations support previously
reported evidence that alteration in BECTS brain networks
is frequency-dependent, as patients showed lower clustering
coefficients in the three frequency bands. Our findings suggest
that benign focal epilepsy is associated with altered resting state
FC that probably arises from disrupted topological organization
of resting-state functional brain networks.
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Erdős, P., and Rényi, A. (2013). On the strength of connectedness of a random

graph. Acta Math. Acad. Sci. Hung. 12, 261–267. doi: 10.1007/BF02066689

Filippini, M., Boni, A., Giannotta, M., Pini, A., Russo, A., Musti, M. A., et al. (2015).

Comparing cortical auditory processing in children with typical and atypical

benign epilepsy with centrotemporal spikes: electrophysiologic evidence of the

role of non–rapid eye movement sleep abnormalities. Epilepsia 56, 726–734.

doi: 10.1111/epi.12959

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., and Collins,

D. L. (2011). Unbiased average age-appropriate atlases for pediatric studies.

Neuroimage 54, 313–327. doi: 10.1016/j.neuroimage.2010.07.033

Ghuman, A. S., McDaniel, J. R., and Martin, A. (2011). A wavelet-based method

for measuring the oscillatory dynamics of resting-state functional connectivity

in MEG. Neuroimage 56, 69–77. doi: 10.1016/j.neuroimage.2011.01.046

Grech, R., Cassar, T., Muscat, J., Camilleri, K. P., Fabri, S. G., Zervakis, M., et al.

(2008). Review on solving the inverse problem in EEG source analysis. J.

Neuroengineering Rehabil. 5:25. doi: 10.1186/1743-0003-5-25

Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., and

Salmelin, R. (2001). Dynamic imaging of coherent sources: studying neural

interactions in the human brain. Proc. Natl. Acad. Sci. U.S.A. 98, 694–699. doi:

10.1073/pnas.98.2.694

Hata, M., Kazui, H., Tanaka, T., Ishii, R., Canuet, L., Pascual-Marqui, R. D.,

et al. (2016). Functional connectivity assessed by resting state EEG correlates

with cognitive decline of Alzheimer’s disease – an eLORETA study. Clin.

Neurophysiol. 127, 1269–1278. doi: 10.1016/j.clinph.2015.10.030

Holmes, G. L. (1993). Benign focal epilepsies of childhood. Epilepsia 34, S49–S61.

doi: 10.1111/j.1528-1167.1993.tb06259.x

Kim, E.-H., Yum, M.-S., Kim, H.-W., and Ko, T.-S. (2014). Attention-

deficit/hyperactivity disorder and attention impairment in children with benign

childhood epilepsy with centrotemporal spikes. Epilepsy Behav. 37, 54–58. doi:

10.1016/j.yebeh.2014.05.030

Klimesch, W., Sauseng, P., and Hanslmayr, S. (2007). EEG alpha oscillations:

the inhibition-timing hypothesis. Brain Res. Rev. 53, 63–88. doi:

10.1016/j.brainresrev.2006.06.003

Knyazev, G. G. (2007). Motivation, emotion, and their inhibitory control mirrored

in brain oscillations. Neurosci. Biobehav. Rev. 31, 377–395. doi: 10.1016/j.

neubiorev.2006.10.004

Kramer, M. A., and Cash, S. S. (2012). Epilepsy as a disorder of cortical network

organization. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry 18,

360–372. doi: 10.1177/1073858411422754

Laufs, H. (2012). Functional imaging of seizures and epilepsy: evolution

from zones to networks. Curr. Opin. Neurol. 25, 194–200. doi:

10.1097/WCO.0b013e3283515db9

Laufs, H., Kleinschmidt, A., Beyerle, A., Eger, E., Salek-Haddadi, A., Preibisch, C.,

et al. (2003). EEG-correlated fMRI of human alpha activity. Neuroimage 19,

1463–1476. doi: 10.1016/S1053-8119(03)00286-6

Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., Song, M., et al. (2008).

Disrupted small-world networks in schizophrenia. Brain 131, 945–961. doi:

10.1093/brain/awn018

Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., and Corbetta, M.

(2007). Electrophysiological signatures of resting state networks in the human

brain. Proc. Natl. Acad. Sci. U.S.A. 104, 13170–13175. doi: 10.1073/pnas.0700

668104

Maris, E., and Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and

MEG-data. J. Neurosci. Methods 164, 177–190. doi: 10.1016/j.jneumeth.2007.

03.024

Mehrkanoon, S., Breakspear, M., Britz, J., and Boonstra, T. W. (2014).

Intrinsic coupling modes in source-reconstructed electroencephalography.

Brain Connect. 4, 812–825. doi: 10.1089/brain.2014.0280

Naganuma, Y., Konishi, T., Hongou, K., Murakami, M., Yamatani, M., Yagi,

S., et al. (1994). Auditory event-related potentials in benign childhood

epilepsy with centrotemporal spike: the effects of carbamazepine. Clin. EEG

Electroencephalogr. 25, 8–12. doi: 10.1177/155005949402500105

Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., and Hallett, M.

(2004). Identifying true brain interaction from EEG data using the

imaginary part of coherency. Clin. Neurophysiol. 115, 2292–2307. doi:

10.1016/j.clinph.2004.04.029

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2010). FieldTrip:

open source software for advanced analysis of MEG, EEG, and invasive

electrophysiological data. Comput. Intell. Neurosci. 2011:e156869. doi:

10.1155/2011/156869

Palva, S., and Palva, J. M. (2007). New vistas for alpha-frequency band oscillations.

Trends Neurosci. 30, 150–158. doi: 10.1016/j.tins.2007.02.001

Panayiotopoulos, C. P. (1999). Benign Childhood Partial Seizures and Related

Epileptic Syndromes. Lodon: John Libbey Eurotext.

Pascual-Marqui, R. D. (2007a). Discrete, 3D distributed, linear imagingmethods of

electric neuronal activity. Part 1: exact, zero error localization. ArXiv07103341

Math Phys. Q-Bio. Available online at: http://arxiv.org/abs/0710.3341 [Accessed

January 21, 2015].

Pascual-Marqui, R. D. (2007b). Instantaneous and lagged measurements of

linear and nonlinear dependence between groups of multivariate time

series: frequency decomposition. ArXiv07111455 Stat. Available online at:

http://arxiv.org/abs/0711.1455 [Accessed October 29, 2015].

Pascual-Marqui, R. D., Lehmann, D., Koukkou, M., Kochi, K., Anderer, P., Saletu,

B., et al. (2011). Assessing interactions in the brain with exact low-resolution

electromagnetic tomography. Philos. Transact. A Math. Phys. Eng. Sci. 369,

3768–3784. doi: 10.1098/rsta.2011.0081

Ponten, S. C., Bartolomei, F., and Stam, C. J. (2007). Small-world networks

and epilepsy: graph theoretical analysis of intracerebrally recorded

mesial temporal lobe seizures. Clin. Neurophysiol. 118, 918–927. doi:

10.1016/j.clinph.2006.12.002

Prinz, A. A. (2008). Understanding epilepsy through networkmodeling. Proc. Natl.

Acad. Sci. U.S.A. 105, 5953–5954. doi: 10.1073/pnas.0802299105

Quraan, M. A., McCormick, C., Cohn, M., Valiante, T. A., and McAndrews, M. P.

(2013). Altered resting state brain dynamics in temporal lobe epilepsy can be

observed in spectral power, functional connectivity and graph theory metrics.

PLoS ONE 8:e68609. doi: 10.1371/journal.pone.0068609

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain

connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi:

10.1016/j.neuroimage.2009.10.003

Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr,

S., et al. (2005). A shift of visual spatial attention is selectively associated with

human EEG alpha activity. Eur. J. Neurosci. 22, 2917–2926. doi: 10.1111/j.1460-

9568.2005.04482.x

Schoffelen, J.-M., and Gross, J. (2009). Source connectivity analysis with MEG and

EEG. Hum. Brain Mapp. 30, 1857–1865. doi: 10.1002/hbm.20745

Song, J., Nair, V. A., Gaggl, W., and Prabhakaran, V. (2015). Disrupted

brain functional organization in epilepsy revealed by graph

theory analysis. Brain Connect. 5, 276–283. doi: 10.1089/brain.

2014.0308

Stam, C. J., de Haan, W., Daffertshofer, A., Jones, B. F., Manshanden, I., van

Cappellen van Walsum, A. M., et al. (2009). Graph theoretical analysis of

magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain

132, 213–224. doi: 10.1093/brain/awn262

Frontiers in Neuroscience | www.frontiersin.org 8 March 2016 | Volume 10 | Article 143

http://arxiv.org/abs/0710.3341
http://arxiv.org/abs/0711.1455
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Adebimpe et al. Functional Connectivity in Children with Benign Epilepsy

Stam, C. J., Nolte, G., and Daffertshofer, A. (2007). Phase lag index: assessment of

functional connectivity from multi channel EEG and MEG with diminished

bias from common sources. Hum. Brain Mapp. 28, 1178–1193. doi:

10.1002/hbm.20346

Stuss, D. T. (2011). Functions of the frontal lobes: relation to executive functions.

J. Int. Neuropsychol. Soc. 17, 759–765. doi: 10.1017/S1355617711000695

Tang, Y.-L., Ji, G.-J., Yu, Y., Wang, J., Wang, Z.-J., Zang, Y.-F., et al. (2014). Altered

regional homogeneity in rolandic epilepsy: a resting-state fMRI study. Biomed.

Res. Int. 2014:e960395. doi: 10.1155/2014/960395

Taylor, P. N., Han, C. E., Schoene-Bake, J.-C., Weber, B., and Kaiser, M. (2015).

Structural connectivity changes in temporal lobe epilepsy: spatial features

contribute more than topological measures. Neuroimage Clin. 8, 322–328. doi:

10.1016/j.nicl.2015.02.004

Tomé, D., Sampaio, M., Mendes-Ribeiro, J., Barbosa, F., and Marques-

Teixeira, J. (2014). Auditory event-related potentials in children with benign

epilepsy with centro-temporal spikes. Epilepsy Res. 108, 1945–1949. doi:

10.1016/j.eplepsyres.2014.09.021

van Diessen, E., Zweiphenning, W. J. E. M., Jansen, F. E., Stam, C. J., Braun, K.

P. J., and Otte, W. M. (2014). Brain network organization in focal epilepsy:

a systematic review and meta-analysis. PLoS ONE 9:e114606. doi: 10.1371/

journal.pone.0114606

Vecchio, F., Miraglia, F., Curcio, G., Della Marca, G., Vollono, C., Mazzucchi,

E., et al. (2015). Cortical connectivity in fronto-temporal focal epilepsy from

EEG analysis: a study via graph theory. Clin. Neurophysiol. 126, 1108–1116. doi:

10.1016/j.clinph.2014.09.019

Verrotti, A., Filippini, M., Matricardi, S., Agostinelli, M. F., and Gobbi, G. (2014).

Memory impairment and Benign Epilepsy with centrotemporal spike (BECTS):

a growing suspicion. Brain Cogn. 84, 123–131. doi: 10.1016/j.bandc.2013.11.014

Vinck, M., Oostenveld, R., vanWingerden, M., Battaglia, F., and Pennartz, C. M. A.

(2011). An improved index of phase-synchronization for electrophysiological

data in the presence of volume-conduction, noise and sample-size bias.

Neuroimage 55, 1548–1565. doi: 10.1016/j.neuroimage.2011.01.055

Wang, L., Zhu, C., He, Y., Zang, Y., Cao, Q., Zhang, H., et al. (2009).

Altered small-world brain functional networks in children with attention-

deficit/hyperactivity disorder. Hum. Brain Mapp. 30, 638–649. doi:

10.1002/hbm.20530

Wirrell, E. C. (1998). Benign epilepsy of childhood with centrotemporal spikes.

Epilepsia 39, S32–S41. doi: 10.1111/j.1528-1157.1998.tb05123.x

Xia, M., Wang, J., and He, Y. (2013). BrainNet viewer: a network

visualization tool for human brain connectomics. PLoS ONE 8:e68910.

doi: 10.1371/journal.pone.0068910

Xiao, F., Lei, D., An, D., Li, L., Chen, S., Chen, F., et al. (2015a).

Functional brain connectome and sensorimotor networks in rolandic

epilepsy. Epilepsy Res. 113, 113–125. doi: 10.1016/j.eplepsyres.2015.

03.015

Xiao, F., Li, L., An, D., Lei, D., Tang, Y., Yang, T., et al. (2015b). Altered

attention networks in benign childhood epilepsy with centrotemporal spikes

(BECTS): a resting-state fMRI study. Epilepsy Behav. 45, 234–241. doi:

10.1016/j.yebeh.2015.01.016

Yang, B.,Wang, X., Shen, L., Ye, X., Yang, G.-E., Fan, J., et al. (2015). The attentional

networks in benign epilepsy with centrotemporal spikes. Epilepsy Behav. EB 53,

78–82. doi: 10.1016/j.yebeh.2015.09.034

Zhang, Z., Liao, W., Chen, H., Mantini, D., Ding, J.-R., Xu, Q., et al.

(2011). Altered functional-structural coupling of large-scale brain networks

in idiopathic generalized epilepsy. Brain J. Neurol. 134, 2912–2928. doi:

10.1093/brain/awr223

Zhang, Z., Liao, W., Wang, Z., Xu, Q., Yang, F., Mantini, D., et al. (2014).

Epileptic discharges specifically affect intrinsic connectivity networks during

absence seizures. J. Neurol. Sci. 336, 138–145. doi: 10.1016/j.jns.2013.

10.024

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Adebimpe, Aarabi, Bourel-Ponchel, Mahmoudzadeh andWallois.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) or licensor are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neuroscience | www.frontiersin.org 9 March 2016 | Volume 10 | Article 143

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	EEG Resting State Functional Connectivity Analysis in Children with Benign Epilepsy with Centrotemporal Spikes
	Introduction
	Materials and Methods
	Subjects
	EEG Recording and Pre-Processing
	EEG Source Connectivity Analysis
	Graph Theoretical Analysis
	Statistical Analysis

	Results
	EEG Source Functional Connectivity
	Global Network Measures
	Nodal Network Degree and Clustering Coefficient
	Network Degree (K)
	Clustering Coefficient (C)

	Discussion
	Global Functional Integration and Segregation
	Local Changes in Functional Connectivity
	Methodological Consideration and Limitations

	Conclusion
	Author Contributions
	References


