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One common research goal in systems neurosciences is to understand how the

functional relationship between a pair of regions of interest (ROIs) evolves over time.

Examining neural connectivity in this way is well-suited for the study of developmental

processes, learning, and even in recovery or treatment designs in response to injury.

For most fMRI based studies, the strength of the functional relationship between two

ROIs is defined as the correlation between the average signal representing each region.

The drawback to this approach is that much information is lost due to averaging

heterogeneous voxels, and therefore, the functional relationship between a ROI-pair

that evolve at a spatial scale much finer than the ROIs remain undetected. To address

this shortcoming, we introduce a novel evolutionary computation (EC) based voxel-level

procedure to examine functional plasticity between an investigator defined ROI-pair

by simultaneously using subject-specific BOLD-fMRI data collected from two sessions

seperated by finite duration of time. This data-driven procedure detects a sub-region

composed of spatially connected voxels from each ROI (a so-called sub-regional-pair)

such that the pair shows a significant gain/loss of functional relationship strength across

the two time points. The procedure is recursive and iteratively finds all statistically

significant sub-regional-pairs within the ROIs. Using this approach, we examine functional

plasticity between the default mode network (DMN) and the executive control network

(ECN) during recovery from traumatic brain injury (TBI); the study includes 14 TBI

and 12 healthy control subjects. We demonstrate that the EC based procedure is

able to detect functional plasticity where a traditional averaging based approach fails.

The subject-specific plasticity estimates obtained using the EC-procedure are highly

consistent across multiple runs. Group-level analyses using these plasticity estimates

showed an increase in the strength of functional relationship between DMN and ECN

for TBI subjects, which is consistent with prior findings in the TBI-literature. The

EC-approach also allowed us to separate sub-regional-pairs contributing to positive and

negative plasticity; the detected sub-regional-pairs significantly overlap across runs thus

highlighting the reliability of the EC-approach. These sub-regional-pairs may be useful in

performing nuanced analyses of brain-behavior relationships during recovery from TBI.
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INTRODUCTION

The human brain is an ever-changing network of complex
interactions between billions of neurons operating at multiple
spatio-temporal scales (Hebb, 1947; Diamond et al., 1981;
Greenough and Chang, 1988). Recent applications of blood
oxygen level dependent (BOLD) functional magnetic resonance
imaging (fMRI) have focused on examining the functional
relationship between spatially discrete regions at a macroscopic
level (Biswal et al., 1995; Raichle et al., 2001; Fox et al.,
2005; Greicius et al., 2009). In fMRI literature, the functional
relationship between a pair of regions of interest (ROIs) in the
brain has been traditionally defined as the degree of temporal
synchronization between the regions (Friston et al., 1993). A
common research goal in the systems neuroscience is to examine
changes in brain connectivity over time. For example, in a
study examining the influence of exercise in cognitive aging,
investigators examined the connectivity changes between two
predefined temporal regions, bilateral parahippocampus, and
bilateral middle temporal gyrus (Voss et al., 2013). Alternatively,
in the context of learning, changes in the functional relationship
between areas associated with motor and sensory cortices,
such as A1 and the insula and M1 and thalamus, have been
examined following musical training (Luo et al., 2012). The
clinical neurosciences have a burgeoning literature examining the
consequences of neurological insult and normal and abnormal
aging on large-scale brain networks (for review of the literatures
see Sheline and Raichle, 2013; Tijms et al., 2013; Hillary et al.,
2015). For example, in traumatic brain injury (TBI), there
has been increasing interest in documenting the change in
pairwise functional relationships among the regions central to
large scale networks, such as the default mode network (DMN),
salience network, and the executive control network (ECN;
Hillary et al., 2011a, 2014; Sharp et al., 2011; Bonnelle et al.,
2012; Arenivas et al., 2014; Venkatesan et al., 2014). It is the
primary aim in these literatures to understand how the functional
relationship between predefined regions in the brain evolves over
time.

Common approaches to examine functional brain
connectivity include seed-based or anatomical-atlas (van den
Heuvel and Hulshoff Pol, 2010) based analysis. In the former,
the relationship of a targeted brain-region (a seed) is correlated
with all other brain regions in a pairwise manner. Alternatively,
examiners may use an atlas-based approach and ROIs are
defined using standardized anatomical atlases (e.g., Automated
Anatomical Labeling; Tzourio-Mazoyer et al., 2002) and the
functional relationship between any pair of ROIs is defined as
the correlation between the average signal representing each ROI
(Luo et al., 2012; Hillary et al., 2014; Rajtmajer et al., 2015). In an
ideal scenario, a ROI would be composed of voxels that represent
homogeneous activity. However, the reliance upon structural (as
opposed to functional) information (e.g., atlas-based approach)
results in ROIs with significant signal heterogeneity. Within ROI
heterogeneity may cause the functional relationship between
two ROIs to change across time at finer spatial scales than the
ROIs themselves, and these changes may not be easily detected
using an averaging based approach. To minimize within ROI

heterogeneity, a number of data-driven voxel-level methods
have been developed to aid in ROI definition (Heller et al., 2006;
Yan et al., 2011; Zalesky et al., 2012; Thirion et al., 2014; Yeo
et al., 2014; Rajtmajer et al., 2015; Wang et al., 2015). However,
traditional ROI parcellation approaches are not designed to
detect functional connectivity changes between two ROIs that
are occurring at finer spatial scales. Hence there is a need for a
data driven approach that can automatically detect the correct
spatial scales at which the functional connectivity between 2
ROIs are changing across time.

In order to better examine the fine scale functional
connectivity changes between two brain regions across time
all voxel-wise interactions between the regional-pairs must be
examined. One way to handle this is by defining the strength of
the functional relationship between a regional-pair as the number
of statistically significant voxel-wise functional connections that
exist between the two regions (where two voxels are functionally
connected if the activity at each voxel is highly synchronized).
However, by simply examining the change in the total voxel-wise
connections between two brain regions across time, subtle effects
may not be easily detectable. For example, one might imagine
a scenario where there exists significant voxel-wise connectivity
change over time between two large brain regions; however, due
to both connectivity loss and gain in voxel pairings, the net
change is close to zero. This would mislead an investigator to
believe that no change has occurred. Therefore, to accurately
characterize the change in the functional relationship over time
between a pair of ROIs, connections between sub-regional-pairs
that show significant change in their functional relationship
strength must be detected, including both connection gain and
loss. We define a sub-region as a cluster of spatially connected
voxels within a ROI, where each voxel can have 6 neighbors in
3 dimensions. A sub-regional-pair consists of a sub-region from
each of the two ROIs (see Figure 3B).

The goal of this study is to develop a novel approach
for examining functional plasticity between two ROIs across
time by detecting such significantly plastic sub-regional-pairs.
In this article, the change in the strength of the functional
relationship between two regions (either the entire ROI-pair or
a constituent sub-regional-pair) across time will be referred to
as plasticity. In particular, positive plasticity refers to situations
where the strength of the functional relationship between two
regions becomes stronger (i.e., two regions show an increase in
synchronization over time); similarly, negative plasticity refers to
cases where the strength of the functional relationship becomes
weaker.

We introduce a novel voxel-wise evolutionary computation
(EC) based procedure to document plasticity between an
investigator defined ROI-pair across two fMRI-scan sessions
that are separated by a finite duration of time; the procedure
can be run for each subject separately, and it simultaneously
utilizes the BOLD-fMRI data from both of the sessions. Of
note, we choose a commonly used anatomical atlas for ROI
selection (e.g., AAL atlas) and this space is refined over the
course of the EC procedure based upon connectivity change.
In this sense, the chosen ROI provides an initial constraint
of the search space for the algorithm but the procedure is
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agnostic to the nature of the ROI. The procedure is data-
driven, and detects sub-regional-pairs that exhibit significant
positive and negative plasticity (see Section Objective Function).
These sub-regional pairs are then used for developing a subject
specific estimate of overall positive and negative plasticity.
The challenge in detecting such plastic sub-regional-pairs is
primarily due to the fact that many combinations of the
connected subset (see Section Chromosome Encoding) of
voxels from each ROI must be probed. Hence, for large ROI-
pairs, examining different combinations of sub-regional-pairs
becomes computationally very expensive. Therefore, we chose
to use an evolutionary computation (EC) based approach. An
advantage of using EC is that it is implicitly parallelizable
(Rechenberg, 1971; Schwefel, 1974; De Jong, 2006; i.e., EC may
be broken into multiple concurrent processes; this can drastically
reduce total computation time) and has been widely used in
handling problems of similar complexity in other research
domains (Gruau andWhitley, 1993; Gruau, 1994; Kobayashi and
Ohbayashi, 1999; Roy et al., 2013).

We illustrate (1) the insights gained by considering
significantly plastic sub-regional-pairs and (2) the strength
of this EC procedure in the study of brain plasticity. To do so,
we examine the functional plasticity between four ROI-pairs in
traumatic brain injury (TBI) and healthy control (HC) subjects
with focus on large-scale networks that are now central to the
cognitive neurosciences (e.g., DMN, ECN). Specifically, in a
ROI-pair A-B, A is either DMN-frontal left or DMN-frontal
right and B is either ECN-frontal left or ECN-frontal right, for
a total of four ROI-pairs. The ROIs are defined using AAL atlas
(Tzourio-Mazoyer et al., 2002); the brain regions constituting
these ROIs are presented in Table S5. These ROIs have been
chosen because there have been well documented functional
changes in DMN and ECN post TBI (Bonnelle et al., 2011; Sharp
et al., 2011; Venkatesan et al., 2014); these results may be used to
validate the findings of the EC procedure. To examine the utility
of this EC-based approach we conduct the following analyses:

1. Analysis-1: First, we use conventional ROI-averaging based
procedure to define functional connectivity between the 4
ROI-pairs for each subject at two different time-points when
BOLD-fMRI scans were conducted (see Section Subjects).
Then we examine if the functional connectivity change can
be detected across the two time-points at a group level for
TBI and HC subjects. We hypothesize that this approach will
detect little to no plasticity.

2. Analysis-2: Next, we define the strength of functional
connectivity between a ROI-pair as the number of statistically
significant voxel-wise functional connections that exist
between the two regions. For a given voxel-pair, a significant
connection indicates that the activities recorded at the two
voxels are highly synchronized (have high correlation value).
Thus, a great change in the number of statistically significant
voxel-wise functional connections across time for a ROI-
pair corresponds to a great change in the level of their
synchronization (i.e., it represents significant plasticity). We
then examine if this way of defining functional connectivity
helps us to detect any plasticity effects in the TBI and the HC

groups across two time-points when BOLD-fMRI scans were
conducted (see Section Subjects). While we hypothesize that
this approach will be able to detect some plasticity, we also
hypothesize that a more sensitive procedure will detect greater
plasticity.

3. Analysis-3: Next, we document the drawbacks of the simple
voxel-based approach (defined in Analysis-2) to examine
plasticity, and introduce the EC-based approach which is also
built upon the basic idea of counting statistically valid voxel-
wise connections between regions. However, the EC based
approach makes use of an adaptive algorithm that probes
for sub-regional-pairs that show significant decrease/increase
in statistically valid voxel-wise connections across two time-
points when BOLD-fMRI scans were conducted (see Section
Subjects). Thus, the EC-based approach detects sub-regional-
pairs within a ROI-pair that exhibit significant plasticity
(the plasticity of each sub-regional-pair is either positive or
negative). Using these sub-regional-pairs, an overall estimate
of positive and negative plasticity will be derived for the given
ROI-pair.

The EC approach involves some stochasticity, and therefore, it
is very important to examine its performance across multiple
independent runs. Since the primary goal of this article is to use
the EC procedure to estimate the level of positive and negative
plasticity between a ROI-pair, we document its performance
by measuring the consistency of the plasticity estimates found
across multiple independent runs. As a secondary measure of
consistency, we also document the spatial overlap between the
sub-regional-pairs found across independent runs.

MATERIALS AND METHODS

Data
Subjects
The study included 26 subjects, 14 individuals with moderate and
severe TBI and 12 age and education matched healthy control
participants (HCs; see Table 1 for demographic information).
Individuals with TBI completed two separate MRI sessions ∼3
and 6months following the resolution of post-traumatic amnesia.
HCs completed two separate MRI sessions separated by ∼3–4
months to provide context for natural variation in healthy brain
networks (see Table 1). For the purposes of this article, the two
time-point fMRI-scan sessions will be referred to as session-1 and
session-2. For the TBI sample, each testing session included both
MRI data collection and cognitive testing. Moderate and severe
TBI were defined using Glasgow Coma Scale (GCS) at the time
of injury, whereby a score of 3–8 was indicative of severe injury
and a GCS of 9–12 was indicative of moderate injury (Teasdale
and Jennett, 1974). Two subjects who received a GCS of 14 and
one subject who received a 24-h GCS of 15 were included because
of either mental status change after the initial GCS scoring or the
presence of significant brain injury documented through medical
records. Subjects were excluded if they were receiving treatment
for concomitant injuries (e.g., orthopedic injuries or injury to the
spinal cord) that would make it difficult for them to remain still
and comfortable in the MRI environment. For the purposes of
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TABLE 1 | Subject demographic information.

Age Education Gender GCS Months post injury scan 1 Months post injury scan 2

TBI mean (std) 26.07 (6.56) 13.42 (2.43) 7 M; 7 F 7.92 (4.96) 3.36 (0.74) 6.64 (1.45)

HC mean (std) 36.42 (15.25) 13.42 (1.88) 7 M; 5 F N/A N/A N/A

this study where we aim to examine functional plasticity, we use
a well-documented clinical sample with known network changes
from 3–6 months post injury (Hillary et al., 2014; Rajtmajer et al.,
2015).

Research was approved by the Institutional Review Board
and the Office of Research Protections at the Pennsylvania State
University. Individuals included in the study demonstrated some
level of cognitive impairment. If an individual retained the ability
to sign medical documents and/or function independently, then
consent was accepted; if the individual was not functionally
independent, then a caregiver’s signature was required in
addition to the subject’s signature of assent.

Functional Data
Study participants were scanned using one of three MRI
machines, including a Philips Achieva 3T scanner in the
Department of Radiology at Hershey Medical Center, Hershey,
PA and two identical Siemens Magnetom Trio 3T scanners
(Social, Life, and Engineering Sciences Imaging Center at
the Pennsylvania State University in University Park, PA;
Department of Radiology at Hershey Medical Center in Hershey,
PA). Of the subjects, 7 were scanned on the Achieva 3T scanner,
5 subjects were scanned on the Magnetom Trio 3T scanner at
the Pennsylvania State University, and 14 subjects were scanned
on the Magnetom Trio 3T scanner at Hershey Medical Center.
For repeat scanning, all subjects were scanned on the same
machine across time points. Prior to scanning subjects were
made aware of the importance of minimizing motion within the
scanner which at times included pre-scanning preparation in the
mock-scanning environment.

Data Acquisition Parameters
Anatomical images with a spatial resolution of 1.0×1.0×1.0mm
were acquired using an MPRAGE sequence: 2000ms/2.03ms/9◦

(repetition time (TR)/echo time (TE)/flip angle (FA), 256 ×

256mm2 field of view (FOV), and 256 × 256 acquisition matrix
with 1mm slices. Echo planar imaging (EPI) was used to examine
the blood oxygen level dependent response for functioning
imaging. Imaging parameters for EPI were 2000ms/30ms/90◦

(TR/TE/FA), 240×240mm2 FOV, and 80×80 acquisitionmatrix
with 4mm slices.

Data Preprocessing
Resting data were collected over the course of a 5min period,
resulting in 150 volumes of data. The first five volumes were
removed from analyses to control for signal instability, resulting
in a time series of 145 volumes. For all volumes bad slices were
first repaired using the art-slice procedure, which is part of the
ArtRepair toolbox (Mazaika et al., 2009). The volumes were then
slice time corrected and realigned to the first volume using SPM8.

Even after realignment, there remain important influences of
motion. As recommended in the ArtRepair manual, this can
be handled via Volume repair at the end of the preprocessing
pipeline. Power et al. (2012) demonstrate that global signal
regression is a powerful method for reducing the effects of
motion. Given concerns published elsewhere (Murphy et al.,
2009; Saad et al., 2012) we do not use this approach. Spike
artifacts were eliminated using the despike filter available in the
ArtRepair toolbox. Each subject’s high-resolution (1×1× 1mm)
TI image was co-registered to the mean functional image using
SPM8. The co-registered T1 image was then segmented using
SPM8, which produced a normalized (MNI space) gray matter
image. The functional images were then normalized to the MNI
space. The normalized functional volumes and the gray matter
image were resliced, and the voxel dimensions were defined as
3 × 3 × 3mm. The equivalence of voxel size allowed one to
one mapping of voxels between a normalized functional and
normalized T1 volumes, and provided a mechanism to extract
gray matter signal (see the following section). To reduce the effect
of ringing artifact (Lindquist and Wager, 2008) and to improve
the signal to noise ratio, a 6mm smoothing filter was applied.
The CSF and the white matter nuisance signals were regressed
out, and a bandpass filter of 0.01 to 0.12Hz (Bassett et al., 2011;
Rajtmajer et al., 2015) was applied using the CONN toolbox
(Whitfield-Gabrieli and Nieto-Castanon, 2012). The removal
of nuisance signal due to physiology and head motion is a
developing issue receiving significant recent attention in the
resting MRI literature (Power et al., 2012, 2014). Finally, the bad
volumes (volumes with excessive motion related problems) were
repaired using ArtRepair software (Mazaika et al., 2009).

Binary Gray Matter Mask
We developed an average gray matter image using the
normalized/resliced gray matter images of the control subjects at
both time-points (12 gray matter images × 2 scan sessions = 24
gray matter images). Since the segmentation procedure assigns a
probabilistic value to each voxel of the gray matter segmented file
(i.e., the probability that the voxel belongs to the gray matter),
we used only the voxels with probability value greater than 0.6
(Zalesky et al., 2012) to define a group averaged binary gray
matter mask.

Defining ROIs
To determine the gray matter voxels that are part of DMN
(left/right) and ECN (left/right), we first co-registered Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002)
to the group averaged binary gray matter mask (See Section
Binary Gray Matter Mask). This allowed us to label each gray
matter voxel with a unique AAL identification number. Since the
binary gray matter mask and the functional images are composed
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of voxels of the same dimensions and are normalized to MNI-
space (See Section Data Preprocessing), the voxels have one to
one correspondence between these two image modalities. Hence,
the ROIs are defined using the gray matter voxels with AAL
identification numbers that represent the brain regions that are
part of DMN (left/right) and ECN (left/right). The brain regions
constituting these ROIs are presented in Table S5.

Developing Subject-Specific Connectivity
Matrices
As discussed in the introduction, both analysis-2 (simple
voxel-based approach) and analysis-3 (EC based approach) are
based on counting statistically significant voxel-wise connections
between the ROI-pairs. Thus given a ROI-pair A-B, we first create
two voxel-level connectivity matrices for each subject: one for
session-1 (M1) and one for session-2 (M2). For each session, the
connectivity matrices are developed by performing a Pearson’s
correlation between the set of signals that are recorded from the
voxels that are part of ROI-A to the set of signals that are recorded
from the voxels that are part of ROI-B. For example, if ROI-A
consists of 500 voxels and ROI-B consists of 1800 voxels, then
the connectivity matrix will have a dimension of 500 × 1800.
The correlation values that fail false discovery rate (FDR) test at
a threshold of 0.05 are discarded; these cells in the connectivity
matrices are set to 0.

For illustration purposes, for both analysis-2 and analysis-
3 (see Introduction) we only consider positively correlated
functional edges as we are interested in examining the change in
positive synchronization between the four ROI-pairs. Therefore,
we discard the cells that represent negative correlations (these
cells are set to 0 as well). However, both the simple voxel-
based approach and the EC process are not dependent on this
choice, and an investigator may choose to use both positive and
negative correlated edges. The remaining cells were set to 1.
Since we binarized the voxel-wise connections, while computing
the change in connectivity strength of a sub-regional-pair across
two fMRI-scan sessions we only need to compute the total
number of connections at session-1 and session-2 instead of
storing two separate distributions of statistically significant (FDR
corrected; See the paragraph above) voxel-wise correlation values
for each session. This makes the process computationally very
efficient (less memory required). Regardless of the memory
requirement, if the session-1 and session-2 distributions of
statistically significant voxel-wise correlation values are used for
examining plasticity between a given sub-regional-pair across
time, then additional statistical correction mechanisms may
have to be implemented as the number of data-points in the
distributions may not be the same. For example, in an extreme
case, for one or both of the sessions the distribution may contain
no data-points if there are no significant voxel-wise connections.
Of course, it remains a possibility that the connection strengths
may be used to examine plasticity, but for the sake of simplicity
we chose to binarize the connectivity matrix. Even though we
binarize and lose some information, the approach discussed in
this article provides novel insights into connectivity changes
which otherwise would be hard to detect with an averaging based
approach.

Evolutionary Computation Based
Approach to Detect Significantly Plastic
Sub-Regional Pairs
Given an investigator defined ROI-pair, ROI-A and ROI-B
(henceforth, we will refer to this ROI pair as A-B), the goal of the
evolutionary search based procedure is to find significantly (see
Section Objective Function) plastic sub-regional-pairs within A-
B by simultaneously utilizing BOLD-fMRI data collected from
two fMRI-scan sessions that are separated by a finite duration
of time; in this article for both TBIs and HCs the sessions
are separated by 3 months (See Section Subjects). Further, this
procedure is designed such that it can be run for each subject
separately.

The procedure is schematically shown in Figure 2 and can
be summarized as follows. For a given ROI-pair, A-B, we search
for significantly plastic sub-regional-pairs in a recursive manner;
at each recursion level an EC based search is conducted for a
significantly plastic sub-regional-pair. At recursion level-1, if a
significantly plastic sub-regional-pair is found then all the edges
between the detected sub-regional-pair are stored in a file, and
then discarded from the region (from both session-1 and session-
2 data) so that the EC does not converge to this solution again and
searches for another significantly plastic sub-regional-pair at the
next recursion level. At recursion level-2, the evolutionary search
procedure is applied to the remaining edges; the process repeats
(recursion level-3, recursion level-4,....) until no significantly
plastic sub-regional-pair can be found. That is, we terminate the
entire procedure at the recursion level at which the EC based
search fails to find a significantly plastic sub-regional-pair. As an
example, if the procedure is run such that session-1 and session-2
data are intentionally made identical, then the EC based search
fails to find a significantly plastic sub-regional-pair (as there
are none) at recursion level-1, and hence the entire procedure
terminates at recursion level-1. Using the set of significantly
plastic sub-regional-pairs detected by the EC based procedure,
we then develop estimates for positive and negative plasticity (see
Section Estimating Positive and Negative Plasticity) for the ROI-
pair. In the following paragraph, we discuss the EC-based search
that is conducted at each recursion level.

Evolutionary algorithms are designed to mimic biological
evolutionary processes to solve multi-modal and multi-
dimensional optimization problems (Rechenberg, 1971;
Schwefel, 1974; De Jong, 2006). In evolutionary computation
(EC), a candidate solution (which is analogous to biological
phenotype) for a given optimization task is encoded as
an array of numbers (which is analogous to biological
genotype/chromosome). If the array of numbers (the
chromosome) directly represents the candidate solution,
then it is referred to as a direct mapping, otherwise it is referred
to as an indirect mapping (Gruau and Whitley, 1993; Gruau,
1994; Kobayashi and Ohbayashi, 1999; Roy et al., 2013).

For our purposes, given an investigator defined ROI-pair,
ROI-A and ROI-B, a candidate solution represents one sub-
region from each ROI. Henceforth, we will refer to this ROI
pair as A-B. Each sub-region is composed of a connected set of
voxels. Two voxels are said to be connected (or neighbors) if
they share a common physical boundary, i.e., there is a path of
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length 1 between these two voxels. A set of voxels are said to be
connected if there is a path between every pair of voxels in the set.
The chromosome will not encode these voxels directly; instead, a
compression scheme (see section Chromosome Encoding below)
will be used to define a sub-region within each ROI. Thus we use
indirect mapping in this work.

At a given recursion level, an evolutionary search for a
significantly plastic sub-regional-pair will begin with a randomly
generated population of chromosomes, each representing a
sub-regional-pair within A-B. Each chromosome will then
produce an offspring chromosome using an asexual (single
parent) reproduction operator (Fogel, 1999, 2003; Davoian et al.,
2006) (See Section Reproduction Operator for details). The
reproduction operator ensures that an offspring shall encode
a sub-regional-pair that has some spatial similarity (many
common voxels) to the sub-regional-pair encoded by the parent
(see section Chromosome Encoding); this process ensures that
the search is not random. The fitness value (or quality of
each solution) of a chromosome (parent and offspring) will
be evaluated based on the level of plasticity (see objective
function below) that the sub-regional-pair exhibits across 2
fMRI-scan sessions. That is, if the number of voxel-wise
functional connections between the sub-regional-pair changes
significantly across two sessions (session-1 and session-2),
then the sub-regional-pair is highly plastic (see Figure 4). To
ensure that the best solutions are preserved, a population-
elitist selection (Eshelman, 1991; Eshelman and Schaffer, 1991)
procedure will be implemented in each generation to choose
the fittest chromosomes (parents and offspring combined) for
the next generation; the population size in every generation will
remain constant (see Section Evolutionary Search Parameters and
Figure 2). That is, in population-elitist selection all the offspring
and parents are pooled together and top 50% best solutions
are chosen. As a result of this, even the fitness landscape near
poor solutions gets the chance to be explored across generations.
Hence, this form of selection maintains good diversity in the
population, and therefore, provides a mechanism to prevent
the evolutionary search from premature convergence (Eshelman
and Schaffer, 1991).The reproduction-process, fitness-evaluation,
and population-elitist selection steps will be repeated until the
stopping criteria (see Section Evolutionary Search Parameters)
are met (see Figures 1, 2).

The basic idea behind this evolutionary search can be
explained as follows. Since the fittest candidate solutions
(i.e., fittest chromosomes) survive to reproduce, the space
around the sub-regional-pairs encoded by those fittest
candidates are searched thoroughly over generations as a
result of the reproduction operation, thereby increasing the
likelihood of discovering significantly plastic sub-regional-
pairs. This entire procedure is referred to as “evolutionary”
because it holds similarity to natural evolution where the
phenotypes that are suited for survival propagate along
the generations and eventually become prevalent in the
population; likewise our evolutionary search eventually
converges to sub-regional-pairs (the artificial phenotype) that
represent strong plasticity. Below, we discuss the details of this
procedure.

FIGURE 1 | The sequence of steps involved in the evolutionary

computation based procedure.

Chromosome Encoding
A chromosome indirectly encodes a sub-regional-pair within A-B
(see Figure 3B).We will explain the chromosome encoding using
a specific example shown in Figure 3A. In Figure 3A, the voxels
0–7 in region-A (the left grid) and voxels 0–7 in region-B (the
right grid) represent a ROI pair A-B; for the purpose of clarity we
have not shown the edges that exist between these regions. The
thick black boundaries represent the smallest cuboids, cuboid-
A and cuboid-B, that respectively encapsulate the regions A and
B. For the ease of explanation, in Figure 3A we have considered
a special case where the ROI pair A-B has no width in the Z-
direction (the direction pointing out of the page), and therefore,
the cuboid encapsulating them appear as a rectangle.

The objective of the evolutionary search is to find a pair
of sub-regions (i.e., a sub-region within cuboid-A and a sub-
region within cuboid-B) that qualifies as significantly (see Section
Objective Function) plastic where each sub-region is composed
of a set of connected voxels. Two voxels are said to be spatially
connected (neighbors) if they share a common boundary: a
cubic-voxel can have 6 possible neighbors. The first 3 locations
of the chromosome (X1, Y1, and Z1) encode the coordinate of a
point (shown as a small black-dot in Figure 3A) inside cuboid-
A. The voxel that is closest to this point and part of the ROI
is chosen as the root node (the black node in Region-A, i.e.,
voxel 0), and the fourth component of the chromosome (an
integer L1) determines the number of neighbors that are selected
for membership in the sub-region. The neighbors are chosen
using a breadth first search (BFS) strategy. The variables X2, Y2,
Z2, and L2 (see Figure 3A) encode a sub-region within cuboid-
B in an analogous way. We note that while we use this BFS
approach in this work, alternative approaches for choosing the
neighboring voxels exist. The motivation for choosing the BFS
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FIGURE 2 | The figure illustrates the steps involved in the evolutionary computation (EC) based procedure to examine plasticity between an

investigator defined ROI-pair (shown as the oval shaped white regions on the brain image), ROI-1 and ROI-2. (A) The procedure begins at recursion level-1

where the evolutionary search for a significantly plastic sub-regional-pair (SRP) is conducted. In this illustration, the population size (number of parental chromosomes)

is 3, and each parental chromosome (P1, P2, and P3) produces 3 offspring (C1, C2, and C3). Based on population-elitist selection the top 3 chromosomes are

chosen for the next generation, and relabeled as P1, P2, and P3 in a descending order of fitness. The color of each chromosome represents its fitness (|Z-score|); the

higher the fitness of the chromosome, greater is the change in the connectivity strength between the sub-ROIs that the chromosome encodes. At the end of recursion

level-1, a significantly plastic SRP is detected (SRP-1; shown in dark-red) and the chromosome encoding this SRP is stored in a file. SRP-1 is then added to the list of

blocked SRPs, and therefore, at the beginning of recursion level-2 the list contains one blocked SRP; EC will not converge to this solution at recursion level-2. At

recursion level-2 a new search begins, and SRP-2 (show in light-red) is detected. For recursion level-3, SRP-1 and SRP-2 are blocked. The recursive process stops at

recursion level-K when no significantly plastic SRP is found. (B) To block a SRP all the voxel-wise edges between the SRP are deleted from connectivity matrices (See

Section Developing Subject-Specific Connectivity Matrices), M1 and M2 (shown as colored rectangular patches). (C) We illustrate an example consisting of 3

significantly plastic SRPs to show how plasticity estimates are derived.

strategy in this work is because it imposes the constraint that the
sub-regional-pair must be composed of a connected set of voxels.

In some cases the BFS search may identify multiple candidate
voxels for inclusion. In these cases we arbitrarily prioritize voxels
with the smallest z-axis value, then similarly with the y-axis and

then x-axis values. For example, in Figure 3B, if L1 = 3, then
the voxels 1, 2, 3, and the root node (voxel 0) represent the sub-
region within ROI-A. While this choice influences the shapes of
candidate sub-regional-pairs, the shape of the solutions carries
little meaning in the absence of structural information. Rather,
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FIGURE 3 | (A) The figure illustrates the chromosome structure used for the evolutionary-search. The voxels 0–7 in the left grid and the voxels 0–7 in the right grid

represent a ROI pair. The chromosomal-variables X1, Y1, and Z1 encode a point (small black-dot) within the smallest cuboid (the thick rectangular boundary in left

grid) encapsulating ROI-A, and X2, Y2, and Z2 encode a point (small black-dot) within the smallest cuboid (the thick rectangular boundary in right grid) encapsulating

ROI-B. The closest gray matter voxels to these points are chosen as the root voxels (i.e., voxel 0 in both ROIs). The circles with numbers represent gray matter voxels.

The circles are sequentially numbered using BFS strategy w.r.t the root voxel; the voxels with lowest z-axis values are numbered first, followed by the voxels with

lowest y-axis values, and then lowest x-axis values. L1 and L2 define the number of voxels chosen around the root node from ROI-A and ROI-B using a BFS strategy

to form the sub-regional-pair; the sub-regional-pair also includes the root node. (B) We illustrate an example of a sub-regional-pair where L1 = 3 and L2 = 4. The

voxels within the orange boundaries represent the sub-regional-pair.

the location and general size of the significantly plastic sub-
regional-pairs is of particular interest specifically because this
information may provide structural insight.

Reproduction Operator
In the context of the current work, we require a reproduction
operator that allows the offspring chromosomes to encode sub-
regional-pairs that have some spatial similarity to the sub-
regional-pairs encoded by the parental-chromosomes. As many
operators can be developed to accommodate this requirement,
we decided to develop a simple mutation based reproduction
operator (i.e., a single parent reproduction operator, See
Figure 2) that allows an investigator to easily control the level
of similarity between a parent and an offspring chromosome;
this operator is similar to mutation based reproduction operators
used in evolutionary programming (Fogel, 1999, 2003; Davoian
et al., 2006). If offspring are made to be too similar to the
parents, then the search is less exploratory. On the other hand, if
the offspring are too different from the parents then the search
becomes quite random. An appropriate level of exploration
is often problem-specific, and it is generally determined by
adjusting the exploration level till consistent good solutions are
discovered across multiple independent runs. We have explained
the reproduction operator below.

A parental-chromosome (of size 8 as discussed above) is given
as follows:

Parent= {X1, Y1, Z1, L1, X2, Y2, Z2, L2}
An offspring will be generated by producing a random

number for each of the eight positions within a bound defined

by the offset-parameters {dx1, dy1, dx1, dl1, dx2, dy2, dz2, dl2}.
For example, the value of X1 for a child, X1c, will be determined
by the value of X1 for its parent, X1p, such that it falls in the range
[X1p−dx1, X1p+dx1].

Here, we note that even though the evolutionary search begins
with a population of randomly generated chromosomes encoding
various combinations of sub-regional-pairs, the reproduction
operation along with the population-elitist-selection procedure
causes the search trajectory to tend toward sub-regional-pairs
that are highly plastic.

Objective Function
Given a candidate solution (a sub-regional-pair encoded by
a chromosome), the change in the functional relationship
(plasticity) that occurs between 2 time points (i.e., 2 scan sessions)
is defined using the number of connections that exist between the
sub-regional-pair at session-1 (NC1), the number of connections
that exist between them at session-2 (NC2), and the total possible
connections (TC) that can exist between them. The values NC1

and NC2 can be easily derived by counting the total number of
cells that have the value 1 in the connectivitymatrices,M1 andM2

(see Section Developing Subject-Specific Connectivity Matrices),
respectively.

Since the connections are binary (they exist or they do not),
the objective function is defined as the Z-score of a binomial
test performed using the fraction of connections between the
candidate sub-regional-pairs existing at session-1 and session-2.
The objective function is defined as follows.
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P1 = NC1/TC (1)

Where P1is the fraction of connections that exist between the
sub-regional-pair at session-1.

EC2 = P∗1TC (2)

Hence,

EC2 = NC1 (3)

where EC2 is the expected number of connections at session-2
between the sub-regional-pair established using session-1 data.

The standard deviation for the binomial distribution
established using session-1 data will be defined as:

SD = Sqrt[TC∗P∗1(1− P1)] (4)

The fitness of the candidate solution will then be defined as the
absolute (signs neglected) Z-score of the session-2 connection
based on the binomial distribution established using session-1
data. That is,

Fitness = Z-score = |(NC2 − EC2)/SD| (5)

Thus a candidate solution with higher absolute Z-score will be
more fit than a candidate solution with a lower absolute Z-score.
That is, a highly fit candidate solution would represent sub-
regional-pair with high level of plasticity (i.e., such sub-regional-
pairs are significantly plastic).

Note that the fitness function disregards the sign of the Z-
score, as the purpose of the evolutionary search is to simply find
significantly plastic sub-regional-pairs while disregarding the
direction of plasticity. However, once the evolutionary process
finishes running and locates the significantly plastic sub-regional-
pairs, we run a simple post hoc analysis to determine the direction
of the change according to the sign of the Z-score. This way
we are able to detect both positively and negatively plastic sub-
regional-pairs (Figure 4).

Evolutionary Search Parameters
A. Criterion for stopping the search for any new significantly
plastic sub-regional-pair
For a given investigator defined ROI-pair, A-B, the evolutionary
search is run recursively until no new significantly plastic
sub-regional pairs can be found. That is at a given recursion
level, if an evolutionary search produces a solution with the
objective function value less than 1 (i.e., Z-score less than 1),
then the evolutionary search terminates, and no new search for
a significantly plastic sub-regional-pair is initiated. Typically the
EC based search starts by detecting plastic sub-regional-pairs
with very high Z-scores (>>1). Therefore, for all practical
purposes, when the evolutionary search starts producing
solutions with a Z-score close to 1 (or less), most highly plastic
sub-regional-pairs have already been detected. Of course,
there is a possibility that the evolutionary search at a given
recursion level may have converged to a poor solution. To
confirm that no more good solutions (significantly plastic

sub-regional-pairs) exist, either multiple runs should be executed
or the search should be run with a sufficiently large population
size. For the current work we chose the latter approach. The
population size and other evolutionary parameters are discussed
below.

B. Criteria for stopping the evolutionary search
At a given recursion level, the evolutionary search is terminated
when one of the following occurs:

1. Complete convergence (all chromosome encode the same
solution).

2. The objective function value does not improve over a span
of 100 generations. For a more rigorous search, one may
choose this value to be much higher. In context of the present
study, this value provided a good balance between runtime
and ability of the procedure to detect statistically significant
plastic sub-regional-pairs.

C. Evolutionary search parameters
Below, we summarize the evolutionary search parameters:

1. Population size is set to 400.
2. Reproduction parameters, dx1, dy1, dx1, dx2, dy2, and dz2,

were set to 6mm; the parameters dl1 and dl2, were set to 4.
This forced the mutation operator to choose a root-voxel for
an offspring not more than two voxels away from the parent
root-voxel (the voxel size of preprocessed functional image
is 3 × 3 × 3mm ˆ3). As above, these values were chosen to
provide a balance between consistent good solutions and run
time; automatic tuning of these parameters could in principle
be used to further optimize this approach.

3. Given a ROI-pair A-B, in our experiments we allowed the
chromosomal-parameters x1, y1, z1 to point to any spatial
location within the smallest cube encapsulating ROI A, and x2,
y2, z2 to point to any spatial location within the smallest cube
encapsulating ROI B. The chromosomal-parameters, L1 and
L2 were allowed to take any value at a step size of 5 between
64 (4 × 4 × 4 voxels) to the total number of voxels in ROI
A and ROI B, respectively. Both the DMN regions consisted
of ∼500 voxels, and each ECN region consisted of about 1800
voxels.

Post hoc Correction for Multiple Tests
In reference to the objective function discussed above, a
set of significantly plastic sub-regional-pairs detected using
EC represents an array of statistically significant Binomial
tests. Therefore, we perform Bonferroni correction to establish
corrected p-values for the sub-regional-pairs; only the sub-
regional-pairs with corrected p-values less than 0.05 are
considered valid. In this article we chose Bonferroni correction
because we wanted to be more conservative in our estimate of the
plasticity levels of individuals with TBI and controls to examine
robustly if there was heightened or diminished connectivity
in TBI cases as compared to controls. Depending on context,
other (e.g., data-driven) approaches may be appropriate; see for
instance Derrac et al. (2011).
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FIGURE 4 | The figure illustrates an example of a positively and negatively plastic sub-regional-pair. In this figure, session-1 and session-2 refers to two

fMRI-scan sessions that are separated by finite duration of time; chronologically, session-2 occurs after session-1. Edges indicate a voxel from ROI-A is significantly

correlated with a voxel from ROI-B. The red sub-regional-pair gains functional edges from session-1 to session-2 (hence positive plastic), while the blue

sub-regional-pair shows decline in the number of functional edges (hence negative plastic). The binomial test based objective functional detects such plastic

sub-regional-pairs.

Estimating Positive and Negative Plasticity
Using the set of significantly plastic sub-regional-pairs that
qualify post-hoc correction (see Section Post hoc Correction
for Multiple Tests), we evaluate the percentage of total voxel-
wise connections that contribute to positive and negative
plasticity. For example, as shown in Figure 2 (Box C), let us
consider an investigator defined ROI-pair, ROI-1, and ROI-
2, where ROI-1 is composed of 100 voxels and ROI-2 is
composed of 500 voxels. Therefore, at most there can be
50000 voxel-wise connections between ROI-1 and ROI-2. Let
us also consider that using the EC based procedure (including
post-hoc correction) we detected 3 significantly plastic sub-
regional-pairs: SRP-1, SRP-2, and SRP-3. SRP-1 and SRP-3
were positively plastic and gained 10000 and 1000 voxel-wise
connections from session-1 to session-2, respectively, while SRP-
2 lost 5000 connections from session-1 to session-2. Thus,
the percentage voxel-wise connections contributing to positive
plasticity is [(10000+1000)∗100]/50000%= 22% and percentage
voxel-wise connections contributing to negative plasticity is
[5000∗100]/50000%= 10%.

RESULTS

Averaging Based Approach
To examine the effectiveness of the averaging based approach to
detect plasticity, for each subject for each session we developed
an average signal for all the four ROIs: DMN-frontal left/right
and ECN-frontal left/right. Then we established the functional

connectivity strength between all the four ROI-pairs for each
subject for each session using Pearson’s correlation coefficient.
We performed a paired t-test of Fisher z-transformed correlation
values to examine if this approach can detect group level plasticity
(change in functional connectivity strength between session-
1 and session-2) for the TBIs and the HCs. As shown in
Figures 5A,B this approach failed to detect plasticity. Only the
functional relationship between DMN-frontal right and ECN-
frontal right in HCs was found to be significant. This supports
our hypothesis that the averaging based approach fails to detect
plasticity.

Simple Voxel-Level Approach
In order to demonstrate that a voxel-based approach will be able
to detect plasticity better than an averaging based approach, we
developed a simple edge count based procedure. That is, for each
subject for each session, a connectivity matrix was developed
for each ROI-pair (see Section Developing Subject-Specific
Connectivity Matrices developing subject specific connectivity
matrix). The total number of functional edges between a
pair of ROIs for each subject at each session was evaluated
by considering the connectivity matrices entry by entry and
counting the cells that have the value 1. Using the total edge count
we performed paired Wilcoxon signed-rank test for all the four
ROI-pairs for HC and TBI group (see Figure 6); we chose a non-
parametric test (Wilcoxon test) because based on Shapiro–Wilk
tests we found the data was not consistently normal across all
4 ROI-pairs and across 2 time-points. As shown in Figure 6B,
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FIGURE 5 | DFL, DFR, EFL, and EFR, stand for default mode frontal-left, default mode frontal-right, executive frontal-left, and executive frontal-right,

respectively. (A) The box plot illustrates the distribution of the connectivity strength (correlation between ROI-wise averaged signal) of the TBI-subjects at session-1

(red) and session-2 (blue) for all the four ROI-pairs. (B) The box plot illustrates the distribution of the connectivity strength (correlation between ROI-wise averaged

signal) of the control cases at session-1 (red) and session-2 (blue) for all the four ROI-pairs. Using paired t-test (after Fisher z-transforming the correlation values), the

difference between the group level means at 2 sessions was found to be insignificant for the TBIs. For the controls, except for the fourth ROI-pair, plasticity for rest all

ROI-pairs was insignificant.

FIGURE 6 | DFL, DFR, EFL, and EFR, stand for default mode frontal-left, default mode frontal-right, executive frontal-left, and executive frontal-right,

respectively. Connection strength is defined as the number of voxel-wise functional edges between the ROI-pairs. (A) The box plot illustrates the distribution of

connection strength of TBI-subjects at session-1 (red) and session-2 (blue) for all the four ROI-pairs. (B) The box plot illustrates the distribution of connection strength

of control cases at session-1 (red) and session-2 (blue) for all the four ROI-pairs. Using paired Wilcoxon signed-rank test, the difference between the group level

means at 2 sessions was found to be insignificant for TBIs and controls for all the 4 ROI-pairs. However, in contrast to averaging analysis (see Figure 5) there seem to

be some signs of plasticity for TBI at a p-value of 0.1.

no plasticity was detected for the controls. For the TBI cases,
the tests were insignificant at p = 0.05. However, at p = 0.1,
three of the four ROI-pairs showed some signs of plasticity
(see Figure 6A). This supports our hypothesis that a voxel-level
procedure will be better able to capture plasticity than averaging
based approaches. However, we anticipate that this simple voxel-
level procedure may be underestimating the level of plasticity
as it does not differentiate between positive and negative plastic
sub-regional-pairs.

Evolutionary Computation Based Approach
Examining Functional Plasticity
In Figure 7, we have shown the percentage of total voxel-
wise connections that contributed to positive and negative
plasticity for each TBI-subject and the HCs between the ROI

pair, DMN-frontal right and ECN frontal right. As illustrated
in the figure the mean positive plasticity level of the TBI was
found to be significantly higher than the HCs (p = 0.009).
A similar trend was observed for the ROI-pairs, DMN-frontal
left and ECN frontal left (p = 0.046), and DMN-frontal
right and ECN frontal left (p = 0.06); the group-level
comparison of the mean positive plasticity for each ROI-pair
was conducted using Wilcoxon rank sum test. We chose a non-
parametric test (Wilcoxon test) because based on Shapiro–Wilk
tests we found the data was not consistently normal across all 4
ROI-pairs.

This finding is consistent with previous findings that
suggested such heightened functional connectivity in large scale
networks in TBI subjects (Nakamura et al., 2009; Bonnelle et al.,
2011; Hillary et al., 2011a; Caeyenberghs et al., 2012). Figure 7
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FIGURE 7 | The percentage of total voxel-wise connections between DMN-frontal right and ECN-frontal right that contributed to statistically

significant positive (red) and negative (blue) plasticity. A similar trend was observed for the ROI-pairs, DMN-frontal left and ECN frontal left, and DMN-frontal

right and ECN frontal left. (A) The bar-graph illustrates the percentage of total voxel-wise edges that contributed to positive (red) and negative (blue) plasticity for each

TBI subject. (B) The bar-graph illustrates the percentage of total voxel-wise edges that contributed to positive (red) and negative (blue) plasticity for each HC subject.

The red and the blue horizontal lines indicate the mean positive and negative plasticity level across a group, respectively. The mean positive plasticity for the TBI was

significantly higher than the controls.

thus suggests that while there is significant amount of positive
and negative functional plasticity in the HC brain, the TBIs show
more positive plasticity across time. Knowing the positive and
negative plasticity level for HCs can be very useful for establishing
thresholds for defining a healthy brain, and hence can be used
for developing diagnostic systems for detecting neurological
illnesses/insults.

To examine the consistency of the EC procedure in
estimating plasticity across multiple independent runs, we ran
10 experiments per subject per ROI-pair. We then evaluated
the standard deviation of the plasticity estimates (% voxel-wise
connections contributing to positive and negative plasticity) for
each subject. The standard deviation of the plasticity estimate
obtained across multiple runs was very low (typically < 0.5%),
thus highlighting the consistency of this approach (see Tables
S1–S4).

The EC procedure was run on a serial mode (processor
information: Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz, 2 GB
memory), and we developed an estimate of the runtime for each
ROI-pair by averaging across 260 experiments (10 experiment ×
26 subjects); the runtime results are presented in Table S6. The
average runtime was ∼15min for four ROI-pairs. Because EC is
implicitly parallelizable, the runtime can be significantly reduced
using parallel programming. The EC procedure was performed
in the MNI space. While the EC procedure can be run in the
native space, for our purposes, normalization was required for
2 reasons. First for examining functional relationship between
regions, it required extraction of all gray matter voxels in the
brain and most segmentation algorithms perform some degree
of normalization (e.g., SPM8) and hence implicitly require re-
sampling. Second, in order to examine connectivity changes at
separate time points simultaneously, identification of equivalent
regions was necessary and this was achieved via normalization.
Since the voxel size of the functional image before (3×3× 4mm)

and after (3 × 3 × 3mm) normalization was very similar we
anticipate that the computational runtime presented in Table S6
should remain roughly the same.

In Figure 8, we have shown some significantly plastic sub-
regional-pairs that were detected between DMN-frontal right to
ECN-frontal left for TBI subject-11; for illustration purposes we
have only shown the first 5 highly plastic (out of 41) sub-regional-
pairs detected by the EC approach. The figure illustrates that sub-
regional-pairs contributing to plasticity may be much smaller
than the ROI-pair. The figure also illustrates that within a ROI-
pair there may be both positively plastic sub-regional-pairs and
negatively plastic sub-regional-pairs.

Overlap Analysis
In order to test if the evolutionary process detects the
same set of significantly plastic sub-regional pairs across
multiple independent runs, per subject per ROI-pair the
overlap analysis was conducted for 10 pair of independent
runs.

The overlap between two sub-regional-pairs (a sub-regional-
pair from run-1 and a sub-regional-pair from run-2) was defined
using the number of common voxels they share; the overlap score
was defined using the Sorenson-dice index (Sorenson, 1948). The
Sorenson-dice index ranges from 0 to 1, with 0 indicating no
overlap and 1 indicating complete overlap. For a given pair of
independent runs, run-1 and run-2, themaximum spatial overlap
score for each significantly plastic sub-regional-pair detected in
run-1 was evaluated by comparing them with the significantly
plastic sub-regional-pairs detected in run-2. In this way each sub-
regional-pair from run-1 received an overlap score. Similarly,
the maximum spatial overlap score for each sub-regional-pair
detected in run-2 was evaluated by comparing them with run-
1 sub-regional-pairs. The mean of the maximal overlap scores of
all sub-regional-pairs (run-1 and run-2 included) was used for
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FIGURE 8 | An illustration of the first 5 significantly plastic sub-regional-pairs that were detected by EC based procedure between DMN-frontal left to

ECN-frontal right for TBI subject-11; the DMN and the ECN regions have been colored purple. The plastic sub-regional-pairs are colored yellow, green, pink,

blue, and light blue (from left to right). The sub-regional-pairs are much smaller than the ROI-pair, and therefore, it may be hard to detect such subtle plasticity effects

using a conventional averaging based approach. The +/−ve signs indicate the plasticity direction.

TABLE 2A | Sub-cluster-pair overlap analysis based on Sorenson score.

ROI-Pair TBI mean(stdev) Control mean(stdev)

DMN frontal-left to ECN frontal-left 0.79 (0.02) 0.80 (0.03)

DMN frontal-right to ECN frontal-left 0.80 (0.02) 0.80 (0.02)

DMN frontal-left to ECN frontal-right 0.80 (0.02) 0.79 (0.02)

DMN frontal-right to ECN frontal-right 0.82 (0.02) 0.82 (0.01)

defining the overall overlap between the 2 runs. This procedure
was repeated for all 10 pair of runs, per subject per ROI-pair and
then the mean and standard deviation of the overlap score was
established. As shown in Table 2A the overlap score was about
0.8. Also, we found no significant difference (t-test andWilcoxon
rank sum test, p > 0.05) between the Sorenson scores of the TBI
and HC.

We also performed overlap analysis using the adjusted rand
index (ARI; Vinh et al., 2009). In this context, the ARI considers
the set of voxel-pairs between the ROI-pair and measures the
overlap between 2 different sets of labelings (produced by 2
independent EC runs), which we denote T and U. The set T
has (NT + 1) labels representing NT sub-regional-pairs and
a label for voxel-pairs that are not part of any significantly
plastic sub-regional pair. Similarly, the set U contains (NU +

1) labels. Here, each voxel-pair that exists in one of the NT

significantly plastic sub-regional-pair is assigned a corresponding
value from {1,2,. . . ,NT}; voxel-pairs that are not part of a
significantly plastic sub-regional-pair are assigned a value of 0.
This process is repeated for the NU significantly plastic sub-
regional-pairs identified in the second set of labelings. The ARI
compares these labelings in such a way as to be invariant to label
permutations. If the ARI is 1 then the overlap is perfect (i.e., the
labelings are identical), and if the ARI is 0 then any observed

TABLE 2B | Sub-cluster-pair overlap analysis based on Adjusted rand

index.

ROI-Pair TBI mean(stdev) Control mean(stdev)

DMN frontal-left to ECN frontal-left 0.43 (0.12) 0.52 (0.12)

DMN frontal-right to ECN frontal-left 0.37 (0.17) 0.43 (0.08)

DMN frontal-left to ECN frontal-right 0.49 (0.19) 0.45 (0.18)

DMN frontal-right to ECN frontal-right 0.47 (0.11) 0.50 (0.24)

overlap is due to chance. Thus the ARI metric examines how
consistently the voxel-pairs are grouped into sub-regional-pairs
across independent runs.

Per subject per ROI-pair, the ARI metric was calculated for 10
pair of independent runs. In Table 2B, we have summarized the
mean and the standard deviation of the ARI score for the TBI
and the HC group for all four ROI-pairs. The ARI score varied
between 0.37 and 0.52. Also, based on Wilcoxon rank sum test
we found no significant difference (p > 0.05) between the ARI
scores of the TBI and HC for 3 of the 4 ROI-pairs; significant
difference (p = 0.04) was only observed for the ROI-pair
DMN-frontal-right and ECN-frontal-left. However, based on t-
test no significant (p > 0.05) difference was found for all the 4
ROI-pairs.

Voxel-Pair Consistency Analysis
In this section we examine how consistently a voxel-pair is
assigned to a significantly plastic sub-regional-pair across runs.
In an ideal scenario, the EC approach will always (across
multiple runs) identify a particular voxel-pair as either (a)
existing in a significantly plastic sub-regional-pair or (b) not
existing in a significantly plastic sub-regional-pair. To estimate
the voxel-pair consistency we performed 5 independent runs per
subject per ROI-pair. The results are summarized in Table 3; we
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TABLE 3 | Link percentage consistency analysis.

ROI-Pair TBI mean(stdev) Control mean(stdev)

DMN frontal-left to ECN frontal-left 85.43% (2.86) 87.98% (2.77)

DMN frontal-right to ECN frontal-left 83.18% (3.93) 85.47% (2.37)

DMN frontal-left to ECN frontal-right 86.63% (4.54) 85.57 (4.68)

DMN frontal-right to ECN frontal-right 86.15% (3.00) 86.92% (5.57)

found the voxel-pair consistency to be around 85% across all
runs.

Correlation Analysis of Plasticity Estimates
If we add the number of connections contributing to positive
plasticity and the number of voxel-wise connections contributing
to negative plasticity, then we obtain overall plasticity; i.e., edges
gained/lost (gl1).

In Section Simple Voxel-Level Approach we conducted a
simple voxel-wise analysis by counting the number of voxel-
wise functional connections that existed between a pair of ROI
at session-1 and session-2. Thus, using the simple voxel-wise
approach of section-Simple Voxel-Level Approach, we can derive
another estimate for connections gained/lost (gl2). Even though
the plasticity estimate gl2 is quite unrefined and may include
functional connections that are not part of any statistically
significant (see section Objective Function) sub-regional-pairs, it
is reasonable to expect that the estimates gl1and gl2 should at least
indicate similar plasticity effect in the brain. In order to examine
this, for each subject for each ROI-pair we established the values:
gl1 and gl2. Then we performed a simple correlation analysis. As
we expected the correlation value was very high (between 0.97
and 1; see Figure S1). This helped us to further validate that the
results obtained using evolutionary computation approach are
reasonable.

DISCUSSION

In this paper we introduced a novel voxel-level procedure based
on evolutionary computation (EC) to examine plasticity between
an investigator-defined ROI-pair. In addition to allowing the
researcher to define the ROI-pair a priori, the procedure is to
our knowledge unique in that it automatically defines the correct
spatial scales at which the plasticity is occurring. The procedure
reliably detects statistically significant positively and negatively
plastic sub-regional-pairs by simultaneously analyzing subject-
specific BOLD-fMRI data collected from two fMRI-scan sessions
that are separated by a finite duration of time.

Compared to averaging based method of examining
functional connectivity, we found that the EC-based procedure
showed improved sensitivity to subtle changes in connectivity
occurring over time which otherwise would be hard to detect
(see Figure 7 and Tables S1–S4). The subject specific plasticity
estimates (i.e., % voxel-wise connections contributing to positive
and negative plasticity) obtained using the EC approach across
multiple independent runs were highly consistent (see section
Examining Functional Plasticity); the standard deviation of

negative and positive plasticity estimates were less than 0.5% for
almost all cases (and Tables S1–S4).

Even though the EC approach was developed to estimate
plasticity, in the future these sub-regional-pairs may serve as
functionally discrete regions for further analysis (i.e., plasticity-
specific brain parcellation for network analysis). For such
applications, it would be important that the sub-regional-pairs
overlap significantly across independent runs. We used two
measures to quantify the reliability of the EC approach in
this secondary sense. First, we documented the spatial overlap
between the sub-regional-pairs found across independent runs
using the Sorenson-dice index (a score of 0 means no overlap
and 1 means complete overlap). Second, we documented the
extent to which the mappings of voxel-pairs to sub-regional-
pairs are consistent across independent runs according to the
ARI score (a score of 0 means minimal overlap due to chance
and 1 means complete overlap). On average, the Sorenson
overlap score was 0.8 and the ARI score was between 0.37
and 0.52, which are comparable to the spatial overlap across
multiple runs obtained using other voxel-based approaches
for brain parcellation (Thirion et al., 2014; Wang et al.,
2015).

Since the overlap score is quite high (Sorenson score = 0.8),
the solutions are very similar in terms of the spatial location
they encode, and therefore, the sub-regional-pairs detected may
be reliably used for further post hoc analysis. As one more step
to document the overlap between the solutions found by EC
acrossmultiple runs, we analyzed the consistency by which voxel-
pairs are detected as a part of a significantly plastic sub-regional-
pair. We found that the voxel-pair consistency to be highly
reliable (85%). This consistency is particularly impressive given
that most voxelwise clustering approaches are designed primarily
for data parcellation (clustering of homogeneous voxels) and do
not consider pairs of clusters and do not utilize multiple fMRI-
scan session data simultaneously, which are added dimensions
of complexity in the current approach. Overall, the EC approach
showed good consistency in terms of plasticity estimates and
also spatial overlap across independent runs. It was a primary
goal of this work to validate this EC-approach, so we did
not include additional constraints on the algorithm, but we
anticipate the spatial-overlap for identification of sub-regional
pairs can be further improved by imposing physiologically
or anatomically relevant constraints during the evolutionary
search.

Using this EC procedure we can quantify plasticity on
the population level, including the typical levels of positive
and negative plasticity in the HC brain (see Figure 7). This
information will provide a reference point for examining the
positive/negative plasticity during any developmental process
(e.g., learning, aging, recovery). For example, based upon this
HC baseline variability, when examining the TBI cases, we see
that 11/14 TBI subjects show heightened positive plasticity,
and about 2/14 TBI subjects (subject-1 and subject-5) show
heightened negative plasticity between DMN-frontal right and
ECN-frontal right. These findings could be very important.
A sub-regional-pair showing significant positive functional
plasticity indicates that across time the two sub-regions have
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become more synchronized, and therefore, there is a possibility
that the amount of metabolic energy consumed by the two
regions to maintain synchronization may have increased as well
(Nugent et al., 2015). In context of the current work, the positive
plasticity could imply a heightened metabolism in the brain of
a TBI associated with elevated synchronization between DMN
and ECN. By contrast, negative plasticity after TBI has been
linked to disruption in specific white matter tracts connecting
the regions (Bonnelle et al., 2011; Fagerholm et al., 2015). The
results found using the EC based approach is quite consistent
with what has been demonstrated in the literature regarding
the plasticity between DMN and ECN during recovery from
TBI. The hyperconnectivity reported here has been observed
in this and other datasets of individuals with TBI revealing
increased synchrony in large-scale networks (Nakamura et al.,
2009; Sharp et al., 2011; Hillary et al., 2011a,b; Bonnelle et al.,
2012; Caeyenberghs et al., 2012).

There are several advantages afforded by the EC-approach
used here. First, it offers previously unavailable sensitivity to
the sub-regional response within an investigator defined ROI-
pair. That is, the current approach permits the investigator
to select theoretically relevant ROIs for hypothesis testing
while maintaining sensitivity to the change in the functional
relationship between the ROIs occurring at a much finer scale
than the ROIs selected. As a secondary characteristic of this
approach, the investigator is afforded the unique opportunity
to examine functionally discrete subdivisions within the ROI-
pair, which may be helpful to examine subtle functional
responses between brain regions. For example, as shown in
Figure 8, between DMN-frontal left and ECN-frontal right,
we found several significantly plastic sub-regional-pairs which
would have remained undetected by conventional averaging
based approach. In the context of TBI literature, this approach
may be very useful in examining the relationship of several
coarsely defined hub regions to other sub-networks in the
brain. For example, hub regions such as the PCC thought to
be central to the DMN functioning is now also recognized to
hold differential responses to goal-directed and internal-state
networks depending upon where within the PCC the investigator
is sampling data (Leech et al., 2011). Based on the results
discussed in this article, we anticipate the EC based procedure to
be well suited for such research problems where the investigator
defined ROIs are coarsely defined and may contain within ROI
heterogeneity.

Finally, a very important feature of the EC approach is that
it uses two fMRI-scan session data simultaneously, thereby,
allowing the sub-regional-pairs to be held constant across
time. Simultaneously using multiple fMRI-scan session data is
an important issue that is under-represented in the imaging
literature. For any investigation of brain plasticity, if the regions
are not held constant across time, then interpreting the results
can become very challenging. The EC based procedure thus
contributes to this important research problem.

It should be noted that, consistent with traditional pre-
processing steps, we used a 6mm smoothing kernel (2 voxels
wide). While some degree of spatial smoothing is standard for
maximizing signal-to-noise-ratio in fMRI datasets and helps to

minimize ringing artifacts (Lindquist and Wager, 2008), spatial
blurring can introduce spurious local connectivity. However,
because we use an identical kernel for all analyses (e.g., averaging
vs. EC comparison) and the physical distances between the ROIs
chosen in these analyses are greater than the smoothing kernel,
we do not anticipate a significant effect of smoothing on the
primary findings. For future applications, if the EC approach is
used to examine within-ROI plasticity (instead of between-ROI
plasticity) then a large smoothing kernel could influence the local
connectivity results. EC is a flexible paradigm and we hope to
integrate adaptive smoothing (Lindquist and Wager, 2008) to
this procedure for effective within-ROI plasticity analysis in the
future.

In summary, we present a sensitive and reliable EC approach
which has immediate importance for multiple areas of work in
the cognitive and clinical neurosciences. We demonstrate
sensitivity to the effects that would remain undetected
using conventional approaches to examining between-ROI
connectivity changes across time. The procedure will be very
useful for any longitudinal design and, given recent emphasis
on “precision medicine,” ideal for examining subtle connectivity
changes over time in an individual while maintaining superior
granularity with respect to the spatial dimensions of this
change. The approach offers sensitivity to subtle between-ROI
changes occurring during developmental, interventional, or
clinical recovery processes, which may be very important for
developing bio-markers for clinical applications. In the future,
we hope to extend this work by integrating anatomically relevant
information to constrain the evolutionary search and extend the
EC framework to examine within-ROI plasticity.

AUTHOR CONTRIBUTIONS

AR, CC, FH developed the methodology. AR, CC, FH designed
the experiments and analysis. CC provided conceptual advice
on computational aspect of this work. FH and RB provided
conceptual advice on clinical utility of this work. AR developed
the software programs and conducted the computational
experiments. FH and RB collected the Traumatic brain injury
data. AR and RB preprocessed the fMRI data. AR, CC, FH, and
RB wrote the manuscript.

FUNDING

This project was supported by the Social Sciences Research
Institute, in University Park, PA and the Penn State CTSI
Grant (UL Tr000127) from the National Center for Advancing
Translational Sciences, National Institutes of Health. The content
is solely the responsibility of the authors and does not necessarily
represent the official views of the NIH.

ACKNOWLEDGMENTS

We would like to thank Dr. Reka Albert, Department of
Physics, Pennsylvania State University, and her research
group, Dr. Debashis Ghosh, Department of Biostatistics

Frontiers in Neuroscience | www.frontiersin.org 15 April 2016 | Volume 10 | Article 146

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Roy et al. Evolutionary Computation to Examine Brain-Plasticity

and Informatics, University of Colorado, Anschutz Medical
Campus, and Dr. Peter Molenaar, Department of Human
Development and Family Studies, Pennsylvania State University,
for their valuable comments that allowed us to improve the
article.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: http://journal.frontiersin.org/article/10.3389/fnins.
2016.00146

REFERENCES

Arenivas, A., Diaz-Arrastia, R., Spence, J., Cullum, M. C., Krishnan, K., Bosworth,

C., et al. (2014). Three approaches to investigating functional compromise to

the default mode network after traumatic axonal injury. Brain Imaging Behav.

8, 407–419. doi: 10.1007/s11682-012-9191-2

Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J.

M., and Grafton, S. T. (2011). Dynamic reconfiguration of human brain

networks during learning. Proc. Natl. Acad. Sci. U.S.A. 108, 7641–7646. doi:

10.1073/pnas.1018985108

Biswal, B., Yetkin, F. Z., Haughton, V. M., and Hyde, J. S. (1995). Functional

connectivity in the motor cortex of resting human brain using echo-

planar MRI. Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.19103

40409

Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood,

R. J., et al. (2012). Salience network integrity predicts default mode network

function after traumatic brain injury. Proc. Natl. Acad. Sci. U.S.A. 109,

4690–4695. doi: 10.1073/pnas.1113455109

Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De

Boissezon, X., et al. (2011). Default mode network connectivity predicts

sustained attention deficits after traumatic brain injury. J. Neurosci. 31,

13442–13451. doi: 10.1523/jneurosci.1163-11.2011

Caeyenberghs, K., Leemans, A., Heitger, M. H., Leunissen, I., Dhollander, T.,

Sunaert, S., et al. (2012). Graph analysis of functional brain networks for

cognitive control of action in traumatic brain injury. Brain 135(Pt. 4),

1293–1307. doi: 10.1093/brain/aws048

Davoian, K., Reichel, A., and Lippe, W. M. (2006). Comparison and analysis of

mutation-based evolutionary algorithms for ANN parameters optimization.

Training 6, 13.

De Jong, K. A. (2006). Evolutionary Computation: A Unified Approach.

Optimization. Available online at: http://mitpress.mit.edu/0262041944.

Derrac, J., García, S., Molina, D., and Herrera, F. (2011). A practical tutorial

on the use of nonparametric statistical tests as a methodology for comparing

evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1, 3–18.

doi: 10.1016/j.swevo.2011.02.002

Diamond, M. C., Dowling, G. A., and Johnson, R. E. (1981). Morphologic cerebral

cortical asymmetry in male and female rats. Exp. Neurol. 71, 261–268. doi:

10.1016/0014-4886(81)90087-X

Eshelman, L. J. (1991). “The {CHC} adaptive search algorithm: how to safe search

when engaging in nontraditional genetic recombination,” in Foundations of

Genetic Algorithms, ed G. J. E. Rawlins (San Mateo, CA: Morgan Kaufmann

Publishers), 265–283.

Eshelman, L. J., and Schaffer, J. D. (1991). “Spurious correlations and premature

convergence in genetic algorithms,” in Foundations of Genetic Algorithms, ed G.

J. E. Rawlins (San Mateo, CA: Morgan Kaufmann Publishers), 102–112.

Fagerholm, E. D., Hellyer, P. J., Scott, G., Leech, R., and Sharp, D. J. (2015).

Disconnection of network hubs and cognitive impairment after traumatic brain

injury. Brain 138, 1696–1709. doi: 10.1093/brain/awv075

Fogel, D. B. (2003). “Evolving neural networks: selected medical applications and

the effects of variation operators,” in Modeling and Simulation: Theory and

Practice, eds B. A. Bekey and B. Y. Kogan (La Jolla, CA: Springer), 217–248.

Fogel, L. J. (1999). Intelligence through Simulated Evolution: Forty Years of

Evolutionary Programming. New York, NY: John Wiley.

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C.,

and Raichle, M. E. (2005). The human brain is intrinsically organized into

dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. U.S.A. 102,

9673–9678. doi: 10.1073/pnas.0504136102

Friston, K. J., Frith, C. D., Liddle, P. F., and Frackowiak, R. S. (1993). Functional

connectivity: the principal-component analysis of large (PET) data sets.

J. Cereb. Blood Flow Metab. 13, 5–14. doi: 10.1038/jcbfm.1993.4

Greenough, W. T., and Chang, F-. L. F. (1988). “Plasticity of synapse structure and

pattern in the cerebral cortex,” in Cerebral Cortex, eds A. Peters and E. G. Jones

(New York, NY: Plenum Press), 391–440. doi: 10.1007/978-1-4615-6619-9_11

Greicius, M. D., Supekar, K., Menon, V., and Dougherty, R. F. (2009). Resting-

state functional connectivity reflects structural connectivity in the default mode

network. Cereb. Cortex 19, 72–78. doi: 10.1093/cercor/bhn059

Gruau, F. (1994). Automatic definition of modular neural networks. Adapt. Behav.

3, 151–183. doi: 10.1177/105971239400300202

Gruau, F., and Whitley, D. (1993). Adding learning to the cellular development of

neural networks: evolution and the baldwin effect. Evol. Comput. 1, 213–233.

doi: 10.1162/evco.1993.1.3.213

Hebb, D. O. (1947). The effects of early experience on problem solving at maturity.

Am. Psychol. 2, 306–307.

Heller, R., Stanley, D., Yekutieli, D., Rubin, N., and Benjamini, Y. (2006).

Cluster-based analysis of FMRI data. Neuroimage 33, 599–608. doi:

10.1016/j.neuroimage.2006.04.233

Hillary, F. G., Medaglia, J. D., Gates, K., Molenaar, P. C., Slocomb, J., Peechatka,

A., et al. (2011b). Examining working memory task acquisition in a disrupted

neural network. Brain 134, 1555–1570. doi: 10.1093/brain/awr043

Hillary, F. G., Rajtmajer, S. M., Roman, C. A., Medaglia, J. D., Slocomb-

Dluzen, J. E., Calhoun, V. D., et al. (2014). The rich get richer: brain injury

elicits hyperconnectivity in core subnetworks. PLoS ONE 9:e104021. doi:

10.1371/journal.pone.0104021

Hillary, F. G., Roman, C. A., Venkatesan, U., Rajtmajer, S. M., Bajo, R., and

Castellanos, N. D. (2015). Hyperconnectivity is a fundamental response to

neurological disruption. Neuropsychology 29, 59–75. doi: 10.1037/neu0000110

Hillary, F. G., Slocomb, J., Hills, E. C., Fitzpatrick, N. M., Medaglia, J. D.,

Wang, J., et al. (2011a). Changes in resting connectivity during recovery

from severe traumatic brain injury. Int. J. Psychophysiol. 82, 115–123. doi:

10.1016/j.ijpsycho.2011.03.011

Kobayashi, K., and Ohbayashi, M. (1999). “A new indirect encoding method

with variable length gene code to optimize neural network structures,” in

IJCNN’99. International Joint Conference on Neural Networks. Proceedings (Cat.

No.99CH36339) (Washington, DC), 4409–4412.

Leech, R., Kamourieh, S., Beckmann, C. F., and Sharp, D. J. (2011). Fractionating

the default mode network: distinct contributions of the ventral and dorsal

posterior cingulate cortex to cognitive control. J. Neurosci. 31, 3217–3224. doi:

10.1523/JNEUROSCI.5626-10.2011

Lindquist, M. A., and Wager, T. D. (2008). Spatial smoothing in fMRI using

prolate spheroidal wave functions. Hum. Brain Mapp. 29, 1276–1287. doi:

10.1002/hbm.20475

Luo, C., Guo, Z. W., Lai, Y. X., Liao, W., Liu, Q., Kendrick, K. M., et al.

(2012). Musical training induces functional plasticity in perceptual and

motor networks: insights from resting-state fMRI. PLoS ONE 7:e36568. doi:

10.1371/journal.pone.0036568

Mazaika, P. K., Hoeft, F., Glover, G. H., and Reiss, A. L. (2009). Methods

and software for fMRI analysis for clinical subjects. Neuroimage 47:S58. doi:

10.1016/s1053-8119(09)70238-1

Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., and Bandettini, P. A.

(2009). The impact of global signal regression on resting state correlations:

are anti-correlated networks introduced? Neuroimage 44, 893–905. doi:

10.1016/j.neuroimage.2008.09.036

Nakamura, T., Hillary, F. G., and Biswal, B. B. (2009). Resting network plasticity

following brain injury. PLoS ONE 4:e8220. doi: 10.1371/journal.pone.00

08220

Nugent, A. C., Martinez, A., D’Alfonso, A., Zarate, C. A., and Theodore, W.

H. (2015). The relationship between glucose metabolism, resting-state fMRI

BOLD signal, and GABAA-binding potential: a preliminary study in healthy

subjects and those with temporal lobe epilepsy 7. J. Cereb. Blood FlowMetab. 35

(1559–7016 (Electronic)), 583–591. doi: 10.1038/jcbfm.2014.228

Frontiers in Neuroscience | www.frontiersin.org 16 April 2016 | Volume 10 | Article 146

http://journal.frontiersin.org/article/10.3389/fnins.2016.00146
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Roy et al. Evolutionary Computation to Examine Brain-Plasticity

Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., and Petersen, S.

E. (2012). Spurious but systematic correlations in functional connectivity

mri networks arise from subject motion. Neuroimage 59, 2142–2154. doi:

10.1016/j.neuroimage.2011.10.018

Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L.,

and Petersen, S. E. (2014). Methods to detect, characterize, and remove

motion artifact in resting state fMRI. Neuroimage 84, 320–341. doi:

10.1016/j.neuroimage.2013.08.048

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and

Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci.

U.S.A. 98, 676–682. doi: 10.1073/pnas.98.2.676

Rajtmajer, S. M., Roy, A., Albert, R., Molenaar, P. C., and Hillary, F. G. (2015). A

voxelwise approach to determine consensus regions-of-interest for the study of

brain network plasticity. Front. Neuroanat. 9:97. doi: 10.3389/fnana.2015.00097

Rechenberg, I. (1971). Optimierung Technischer Systeme nach Prinzipien der

Biologischen Evolution. Dissertation of Dr. Rechenberg.

Roy, A., David Schaffer, J., and Laramee, C. B. (2013). Evolving spike

neural network sensors to characterize the alcoholic brain using visually

evoked response potential. Procedia Comput. Sci. 20, 27–32. doi:

10.1016/j.procs.2013.09.234

Saad, Z. S., Gotts, S. J., Murphy, K., Chen, G., Jo, H. J., Martin, A., et al.

(2012). Trouble at rest: how correlation patterns and group differences

become distorted after global signal regression. Brain Connect. 2, 25–32. doi:

10.1089/brain.2012.0080

Schwefel, H. P. (1974).AdaptiveMechanismen in der biologischen Evolution und ihr

Einfluss auf die Evolutionsgeschwindigkeit. Interner Bericht der Arbeitsgruppe

Bionik und Evolutionstechnik am Institut für Mess-und Regelungstechnik Re.

Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle, V., De

Boissezon, X., et al. (2011). Default mode network functional and structural

connectivity after traumatic brain injury. Brain 134(Pt. 8), 2233–2247. doi:

10.1093/brain/awr175

Sheline, Y. I., and Raichle, M. E. (2013). Resting state functional connectivity

in preclinical Alzheimer disease. Biol. Psychiatry 74, 340–347. doi:

10.1016/j.biopsych.2012.11.028

Sorenson, T. J. (1948). A method of establishing groups of equal amplitude

in plant sociology based on similarity of species content. Kongelige Danske

Videnskabernes Selskab 5, 4–7.

Teasdale, G., and Jennett, B. (1974). Assessment of coma and impaired

consciousness. A practical scale. Lancet 2, 81–84. doi: 10.1016/S0140-

6736(74)91639-0

Thirion, B., Varoquaux, G., Dohmatob, E., and Poline, J. B. (2014). Which

fMRI clustering gives good brain parcellations?. Front. Neurosci. 8:167. doi:

10.3389/fnins.2014.00167

Tijms, B. M., Wink, A. M., de Haan, W., van der Flier, W. M., Stam, C. J.,

Scheltens, P., et al. (2013). Alzheimer Disease: connecting findings from graph

theoretical studies of brain networks. Neurobiol. Aging 34, 2023–2036. doi:

10.1016/j.neurobiolaging.2013.02.020

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,

Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM

using a macroscopic anatomical parcellation of the MNI MRI single-subject

brain. Neuroimage 15, 273–289. doi: 10.1006/nimg.2001.0978

van den Heuvel, M. P., and Hulshoff Pol, H. E. (2010). Exploring the

brain network: a review on resting-state fMRI functional connectivity. Eur.

Neuropsychopharmacol. 20, 519–534. doi: 10.1016/j.euroneuro.2010.03.008

Venkatesan, U. M., Dennis, N. A., and Hillary, F. G. (2014). Chronology and

chronicity of altered resting-state functional connectivity after traumatic brain

injury. J. Neurotrauma 32, 252–264. doi: 10.1089/neu.2013.3318

Vinh, N. X., Epps, J., and Bailey, J. (2009). “Information theoretic measures for

clusterings comparison: is a correction for chance necessary,” in Proceedings of

the 26th Annual International Conference onMachine Learning (New York, NY:

ACM), 1073–1080.

Voss, M. W., Erickson, K. I., Prakash, R. S., Chaddock, L., Kim, J. S., Alves, H.,

et al. (2013). Neurobiological markers of exercise-related brain plasticity in

older adults. Brain Behav. Immun. 28, 90–99. doi: 10.1016/j.bbi.2012.10.021

Wang, Z. I., Jones, S. E., Jaisani, Z., Najm, I. M., Prayson, R. A., Burgess, R. C.,

et al. (2015). Voxel-based morphometric magnetic resonance imaging (mri)

postprocessing in mri-negative epilepsies. Ann. Neurol. 77, 1060–1075. doi:

10.1002/ana.24407

Whitfield-Gabrieli, S., and Nieto-Castanon, A. (2012). A functional connectivity

toolbox for correlated and anticorrelated brain networks. Brain Connectivity 2,

125–141. doi: 10.1089/brain.2012.0073

Yan, X., Kelley, S., Goldberg, M., and Biswal, B. B. (2011). Detecting overlapped

functional clusters in resting state fMRI with connected iterative scan: a graph

theory based clustering algorithm. J. Neurosci. Methods 199, 108–118. doi:

10.1016/j.jneumeth.2011.05.001

Yeo, B. T., Krienen, F. M., Chee, M. W., and Buckner, R. L. (2014).

Estimates of segregation and overlap of functional connectivity

networks in the human cerebral cortex. Neuroimage 88, 212–227. doi:

10.1016/j.neuroimage.2013.10.046

Zalesky, A., Fornito, A., Egan, G. F., Pantelis, C., and Bullmore, E. T.

(2012). The relationship between regional and inter-regional functional

connectivity deficits in schizophrenia. Hum. Brain Mapp. 33, 2535–2549. doi:

10.1002/hbm.21379

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Roy, Campbell, Bernier and Hillary. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) or licensor are credited and that the original publication in this

journal is cited, in accordance with accepted academic practice. No use, distribution

or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 April 2016 | Volume 10 | Article 146

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	An Evolutionary Computation Approach to Examine Functional Brain Plasticity
	Introduction
	Materials and Methods
	Data
	Subjects
	Functional Data
	Data Acquisition Parameters
	Data Preprocessing
	Binary Gray Matter Mask
	Defining ROIs

	Developing Subject-Specific Connectivity Matrices
	Evolutionary Computation Based Approach to Detect Significantly Plastic Sub-Regional Pairs
	Chromosome Encoding
	Reproduction Operator
	Objective Function
	Evolutionary Search Parameters
	Post hoc Correction for Multiple Tests
	Estimating Positive and Negative Plasticity


	Results
	Averaging Based Approach
	Simple Voxel-Level Approach
	Evolutionary Computation Based Approach
	Examining Functional Plasticity
	Overlap Analysis
	Voxel-Pair Consistency Analysis
	Correlation Analysis of Plasticity Estimates


	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References




