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Developments in genome scale metabolic modeling techniques and omics technologies

have enabled the reconstruction of context-specific metabolic models. In this study,

glioblastoma multiforme (GBM), one of the most common and aggressive malignant

brain tumors, is investigated by mapping GBM gene expression data on the

growth-implemented brain specific genome-scale metabolic network, and GBM-specific

models are generated. The models are used to calculate metabolic flux distributions in

the tumor cells. Metabolic phenotypes predicted by the GBM-specific metabolic models

reconstructed in this work reflect the general metabolic reprogramming of GBM, reported

both in in-vitro and in-vivo experiments. The computed flux profiles quantitatively predict

that major sources of the acetyl-CoA and oxaloacetic acid pool used in TCA cycle

are pyruvate dehydrogenase from glycolysis and anaplerotic flux from glutaminolysis,

respectively. Also, our results, in accordance with recent studies, predict a contribution

of oxidative phosphorylation to ATP pool via a slightly active TCA cycle in addition

to the major contributor aerobic glycolysis. We verified our results by using different

computational methods that incorporate transcriptome data with genome-scale models

and by using different transcriptome datasets. Correct predictions of flux distributions

in glycolysis, glutaminolysis, TCA cycle and lipid precursor metabolism validate the

reconstructed models for further use in future to simulate more specific metabolic

patterns for GBM.

Keywords: aerobic glycolysis, glutaminolysis, constraint-based models, omics data, tumor subtypes,

GBM-specific metabolic model

INTRODUCTION

Among malignant brain tumors, the most common one is glioblastoma (glioblastoma multiforme,
GBM). It is also one of themost lethal cancer types, with a 5-year survival rate of only 3%, compared
to an average of 30% for other types of brain tumors (Ostrom et al., 2013). This demands for a well-
characterization of molecular mechanisms of glioblastoma cells to develop treatment strategies.
Therefore, it is crucial to build computer models which can mimic major characteristics of the
cancerous cells (Folger et al., 2011; Hadi and Marashi, 2014; Ghaffari et al., 2015; Yizhak et al.,
2015). In glioblastoma, the most significant reprogramming occurs in the metabolic machinery of
the cells. Major alterations associated with cancer metabolism such asWarburg effect (Shlomi et al.,
2011) are also observed in glioblastoma (DeBerardinis et al., 2007; Wolf et al., 2010). Major ATP
source is via aerobic glycolysis, although TCA cycle is still slightly active according to recent reports
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(DeBerardinis et al., 2007; Wolf et al., 2010; Ru et al.,
2013). Another characteristics of metabolic remodeling of
glioblastoma is the uptake of glutamine, which contributes to the
replenishment of TCA cycle intermediates (DeBerardinis et al.,
2007). Several other metabolic alterations occur in the metabolic
flux patterns in glioblastoma, mostly due to increased flux toward
lipid and nucleotide synthesis to sustain growth.

The systems approach to biology and medicine led to a
number of computational approaches to study network-based
alterations in cells in response to perturbations. The study of
cancer metabolism via computational approaches has therefore
shown a sharp increase in the last decade (Ghaffari et al., 2015;
Yizhak et al., 2015). Genome-scale metabolic modeling is one
of the highly preferred computational methods since it allows
the investigation of the cellular flux state in genome-scale by
only incorporating few constraints (Kim et al., 2012; Mardinoglu
et al., 2013; Bordbar et al., 2014). A generic genome-scale
metabolic model includes all potential biochemical reactions to
be used by the associated organism. There are computational
methods which process generic metabolic models by integrating
with omics data such that condition specific metabolic models
are reconstructed (Blazier and Papin, 2012; Saha et al., 2014).
Such methods can be divided into two groups in terms of
their algorithmic approach. The first group uses context-specific
omics data directly to improve the prediction of metabolic
flux distributions, such as E-Flux (Colijn et al., 2009), PROM
(Chandrasekaran and Price, 2010), MADE (Jensen and Papin,
2011), tFBA (van Berlo et al., 2011), TEAM (Collins et al.,
2012), and RELATCH (Kim and Reed, 2012). The second group
processes the data to create context-specific models from generic
metabolic models, such as GIMME (Becker and Palsson, 2008),
iMAT (Shlomi et al., 2008), INIT (Agren et al., 2012), AdaM
(Töpfer et al., 2012), mCADRE (Wang et al., 2012), and EXAMO
(Rossell et al., 2013), which can later be used for flux calculation.
It was shown that the two approaches have no clear superiority
over each other (Machado and Herrgård, 2014).

There are studies which integrate omics data with the
metabolic models in order to reconstruct context-specific cancer
metabolic models. Human metabolic reconstruction Recon1
(Duarte et al., 2007) was used to reconstruct the first generic
genome-scale model of cancer, aiming to capture main metabolic
functions of many cancer types using cancer gene expression data
(Folger et al., 2011). Agren et al. reconstructed a generic genome-
scale human metabolic model, to create genome-scale active
metabolic networks for 69 different cell types including 16 cancer
types using tissue specific proteome data (Agren et al., 2012).
Recently published reviews (Ghaffari et al., 2015; Yizhak et al.,
2015) survey the studies of cancer metabolism by reconstructed
metabolic model approaches and discusses the challenges such
approaches face.

In this study, metabolic alteration of glioblastoma was
investigated using in-silico metabolic model reconstruction
approach. The genome-scale brain metabolic model (Sertbas
et al., 2014) reconstructed recently by our group was first
modified by adding biomass growth reaction to reflect the tumor
proliferation. Afterwards, the glioblastoma gene expression
data from Gene Omnibus Database (Edgar et al., 2002)

were integrated with the growth-implemented brain specific
metabolic model to obtain GBM-specific metabolic models.
The models predict major flux-level metabolic alterations and
reprogramming associated with GBM, giving consistent results
with both in-vitro and in-vivo studies.

MATERIALS AND METHODS

Genome-Scale Brain Metabolic Network
for Brain Tumors
The genome-scale brain metabolic model iMS570 (Sertbas et al.,
2014; Cakir, in press) reconstructed previously by our group
possesses 630 metabolic reactions in and between astrocyte
and neurons, which are controlled by 570 genes. iMS570
includes the fundamental pathways such as central carbon
metabolism (glycolysis, pentose phosphate pathway, TCA cycle),
lipidmetabolism, nucleotidemetabolism, amino acidmetabolism
(synthesis and catabolism), the well-known glutamate-glutamine
cycle, other coupling reactions between astrocytes and neurons,
and neurotransmitter metabolism. In total, 42 pathways are
covered by the model. iMS570 does not have a growth reaction
to simulate the proliferation of brain tumors since mammalian
brain cells do not grow in non-tumor states. Therefore, an
extended literature survey was performed to define a growth
reaction for tumor proliferation in brain (See Supplementary
File 1). The modified model which can grow in-silico thanks to
the included biomass growth reaction is called iMS570g . The
biomass composition was defined based on brain white matter
since GBM is mostly observed in this tract as the parent tissue
(Bohman et al., 2010; Omuro and DeAngelis, 2013; Cuddapah
et al., 2014). Brain white matter has a high composition of lipid
(54.9%) and protein (39.5%) (Brady et al., 2012). The percentages
of glial and neuronal cells in the white matter were reported to be
94 and 6% respectively in a recent study by using a novel method
based on tagging the DNA inside the nuclei with fluorescent
proteins (Azevedo et al., 2009). These values were used to define
the relative contributions of astrocyte and neuron cells to the
biomass reaction in the model. Free amino acid composition for
human brain reported by (Banay-Schwartz et al., 1992, 1993a,b)
was used as the amino acid composition of the protein pool
in the biomass reaction. (See Supplementary File 1 for details
on biomass composition and contribution of cell types). One
characteristic of GBM cells is the altered glutamine metabolism
which manifests itself as decreased glutamine production, high
glutamine uptake rate and glutaminolysis (Portais et al., 1993;
DeBerardinis et al., 2007). Four extra reactions denoting the
glutamine uptake and glutaminolysis metabolism were also
included in iMS570g in order to cover the tumor-caused
alterations in glutamine metabolism (See Supplementary File 1).

GBM Transcriptome Datasets
Lee et al. used several published GBM transcriptome datasets
in addition to their own study to investigate survival
differences between GBM subtypes (Lee et al., 2008). The
whole transcriptome dataset is stored in the public transcriptome
database, GEO (Edgar et al., 2002), under GSE13041. The dataset
covers gene expression data from different microarray platforms.
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We focused on a subset of the data from two different platforms
(GPL96, Affymetrix Human Genome U133A Array and GPL570,
Affymetrix Human Genome U133 Plus 2.0 Array) and analyzed
them separately to document the effect of platform type on
the results. A previous study defined three distinct subtypes of
GBM tumors based on clustering analysis of transcriptome data
(Phillips et al., 2006): Mesenchymal (Mes), ProNeural (PN),
Proliferative (Pro). Here, PN type has a better prognosis, and
has a more similar gene expression profile to normal brain and
neurogenesis. The other two types have poor prognosis, and
show resemblance to proliferative or mesenchymal-origin cells
in terms of gene expression (Phillips et al., 2006). The data from
GPL96 platform was analyzed by considering this classification,
which was already implemented by the authors (Lee et al., 2008).
Another dataset by Mangiola et al. (2013) was also used in
this study. They investigated the relation between peritumoral
tissue (brain adjacent to tumor) and GBM using gene expression
profiles. Normal white matter was used as a control group. The
transcriptome dataset is based on GPL96 platform, and it is
stored in GEO database under GSE13276. The reason behind
using another dataset was to test the effect of different datasets
on the bioinformatic algorithms used in this study.

In total, five different GBM transcriptome datasets were
formed for the purpose of this study: Three datasets of GBM
subtypes for GPL96 platform of GSE13041, a dataset of GPL570
platform for GSE13041, and a dataset from GSE13276. All GBM
samples used in our study were collected from tumor biopsies of
GBM patients.

Obtaining GBM-Specific Metabolic Models
iMS570g , the growth-implemented brain specific genome-scale
metabolic network, was integrated with the GBMgene expression
data mentioned in the previous section to generate context-
specific GBMmetabolic models and metabolic flux distributions.
Two alternative methods, GIMME (Becker and Palsson, 2008)
and MADE (Jensen and Papin, 2011), were applied to generate
GBMmetabolic models and test the effect of different algorithms
on the results (Figure 1). Friedmann-Morvinski et al. (2012)
showed that GBM can originate not only from astrocytes but
also from neurons. Therefore, GBM transcriptome data were
mapped to both astrocytic and neuronal reactions in iMS570g

in order to generate GBM metabolic models via GIMME
and MADE. While the output of MADE is a context-specific
flux distribution, the output of GIMME is a context-specific
model which needs to be further processed to obtain a flux
distribution.

GIMME
GIMME (Gene Inactivity Moderated by Metabolism and
Expression) algorithm uses binarized gene expression data and
a genome scale metabolic network to generate a context-
specific reconstruction such that the highest consistency with
the available data is ensured (Becker and Palsson, 2008). All
five transcriptome datasets were used as experimental soft-
constraints to obtain corresponding GBM-specific metabolic
models using GIMME algorithm. Transcriptome data were
first binarized based on a specified threshold to obtain highly

and lowly expressed genes. GIMME algorithm removes the
reactions which correspond to gene expression levels below
the specified threshold, and the algorithm adds a removed
reaction back if the metabolic model cannot achieve the desired
functionality. The desired functionality was used as biomass
growth reaction in iMS570g . The threshold criteria for GIMME
in this study was that the threshold must not be higher than
the levels of some genes known to be upregulated in GBM.
These genes are HK2, PKM2, GLS, ACLY, ACC, and FASN,
which take roles in glucose, glutamine or lipid metabolisms
(Wolf et al., 2010; Ru et al., 2013). Considering this criteria,
we chose 1/2, 1/1, and 1/3 of “the mean of transcriptome
data of related GBM dataset” as the thresholds in GIMME
algorithm for GSE13041 (GPL96), GSE13041 (GPL570), and
GSE13276 respectively. Five percent sensitivity analysis was
applied for the chosen thresholds, and no significant change
was observed in the calculated flux distributions (data not
shown). The genes whose expression levels are higher than the
threshold were assumed highly expressed and set to “1,” and
the genes whose expression levels are lower than the threshold
were assumed lowly expressed and set to “0,” to be used as an
input to GIMME. GIMME functionality of COBRA (COnstraint-
Based Reconstruction and Analysis; Schellenberger et al., 2011)
Toolbox was used under MATLAB (MathworksInc., Natick, MA,
USA) environment to run the algorithm. The number of the
removed reactions by GIMME from iMS570g was 57, 55, and
54 for Mes, PN and Pro subtypes. For GPL570 based data
48 reactions were removed whereas the number was 34 for
GSE13276 dataset. Finally, five different GBM-specific metabolic
models were reconstructed by GIMME. Then, flux balance
analysis (FBA) (Orth et al., 2010) for maximizing biomass growth
rate as primary objective function with subsequent minimization
of Euclidean norm of internal fluxes was applied to five different
GBMmodels obtained by GIMME algorithm. This dual objective
function framework was shown to give better results (Cakir
et al., 2007; Tarlak et al., 2014) since it ensures minimal use
of enzyme resources to achieve the primary objective. GBM
models corresponding to the five transcriptome datasets and
the growth-implemented model are available in SBML format in
Supplementary File 2.

MADE
In addition to GIMME, we used MADE algorithm to see
if there is any difference between the methods that maps
transcriptome data on metabolic models to obtain condition-
specific models. MADE (Metabolic Adjustment by Differential
Expression) algorithm uses the expression levels of significantly
changed genes or proteins to generate a functional metabolic
model that most accurately recapitulates the expression dynamics
(Jensen and Papin, 2011). MADE eliminates the probable
problems of arbitrary user-specified threshold, as employed
by GIMME, by using statistically significant changes in gene
expression measurements between two conditions to determine
highly and lowly expressed genes (Blazier and Papin, 2012).
Since MADE requires a control group for the analysis, only
transcriptome data GSE13276 was used in the MADE-based
analysis. MADE algorithm requires three inputs to generate
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FIGURE 1 | Recontruction of the GBM metabolic models. GBM gene expression data were integrated with the growth-implemented brain specific genome-scale
metabolic model (iMS570g) by GIMME and MADE algorithms to create GBM metabolic models. The algorithms are shown in paranthesis for related GBM metabolic
models. (Mes, Mesenchymal subtype of GBM; PN, ProNeural subtype of GBM; Pro, Proliferative subtype of GBM). GIMME and MADE sketches were obtained from
Figure 1 of Blazier and Papin (2012).

a context-specific flux distribution, which are a genome-scale
metabolic model, fold changes and p-values of gene expression
levels between the compared conditions (Jensen and Papin,
2011). Fold changes and p-values calculated by student’s t-test
were based on the white matter data as a control group. The
objective function used by MADE algorithm for the iMS570g was
biomass growth reaction, as used in GIMME. MADE algorithm
was used via TIGER (Toolbox for Integrating Genome-scale
Metabolism, Expression, and Regulation; Jensen et al., 2011)
toolbox under MATLAB environment. MADE uses its own flux
calculation algorithm which is based on mixed integer linear
programming. Both GIMME and MADE were run in default
settings, and GUROBI optimizer (http://www.gurobi.com) was
used as a solver in both tools.

Constraints Reflecting Physiology of
Glioblastoma Multiforme (GBM)
GIMME was run with the constraints which reflect basic
characteristics of GBM. The reactions defining glutamine
exchange from astrocyte to neuron (r95) and glutamine release
(r580) were constrained as zero due to the fact that glutamine
exchange between astrocytes and neurons in healthy brain is
perturbed within GBM (Marin-Valencia et al., 2012). Glycogen

uptake (r575) and ketone body metabolism (r608, r609), which
are used as alternative pathways in case of low activity of the
glucose metabolism (Cakir et al., 2007), were also constrained to
zero in our study. NH3 exchange reaction (r607), which is defined
only as uptake reaction in iMS570, were changed to a reversible
exchange reaction to allow NH3 release as observed in the GBM
(DeBerardinis et al., 2007). Also a ratio, not an absolute value, of
94/6 was defined as a constraint for relative glucose, glutamine,
and oxygen uptake rates of astrocytes and neurons considering
the relative amounts of the two cell types in brain white
matter (see below). GIMME generated GBM specific metabolic
networks based on these constraints. Afterwards, corresponding
flux distributions were calculated by employing more specific
additional constraints as follows: Glucose, glutamine and oxygen
uptake rates were fixed to the experimental flux values indicated
in the study of DeBerardinis et al. (2007), which are 0.852
mmol/gDW/h, 0.080 mmol/gDW/h, and 0.272 mmol/gDW/h
respectively. These uptake rates were distributed among astrocyte
and neuron as 94 and 6% respectively, according to the relative
amount of the cell types in white matter (Azevedo et al.,
2009). Furthermore, the upper bound of the uptake rates of
the amino acids other than glutamine were constrained to
one tenth of the glutamine uptake rate because Yang et al.
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(2009) observed that GBM cells consume glutamine at a rate
at least 10-fold higher than any other amino acids. Complete
list of the constraints used in the models are also given in
Supplementary File 1. All the above mentioned constraints
were directly used as input to MADE algorithm since, in
contrast to GIMME, it calculates flux distribution as a direct
output. Although the contribution of neuronal reaction rates
is usually considerably lower, this contribution was accounted
by summing up astrocytic fluxes with neuronal counterparts
to evaluate the phenotype of GBM metabolic models in the
results part.

RESULTS

The GBM metabolic models used in this study were
reconstructed by integrating GBM gene expression data
with the generic genome-scale brain metabolic model, iMS570g

(See Materials and Methods). Five GBM metabolic models
were created by GIMME, three for the comparison of Mes,
PN, and Pro subtypes of GBM, one to compare the effect of
different microarray platforms (The GBM metabolic model
obtained using a different microarray platform but from the
same dataset as GBM subtypes), one to compare the effect of
different datasets (The GBMmetabolic model obtained using the
same microarray platform as GBM subtypes but from a different
dataset). In-silico GBM phenotypes obtained via metabolic
modeling were compared with the literature based experimental
results. Metabolic fluxes calculated for healthy brain in resting
state (Sertbas et al., 2014) were also used for comparison.

GBM Subtypes
The GBM subtypes, Mesenchymal (Mes), ProNeural (PN), and
Proliferative (Pro) GBM, are classified based on the clustering of
gene expression profiling (Phillips et al., 2006; Lee et al., 2008;
Verhaak et al., 2010; Huse et al., 2013). In-silico GBM subtype
metabolic models for Mes, PN and Pro types were reconstructed
by GIMME algorithm (Becker and Palsson, 2008; see Materials
and Methods) and used in the calculation of metabolic fluxes.
Key fluxes and flux ratios are presented in Table 1. The results
in Table 1 show high qualitative and quantitative agreements
between the flux predictions and the literature results. Results
reveal subtle differences between the GBM subtypes in terms of
simulated metabolic flux phenotypes. However, all GBM subtype
metabolic models exhibit the same behavior in terms of active
flux routes. This flux routing, as shared by the three subtypes,
are summarized in Figure 2. The simulation results depicted in
the figure are in agreement with the major properties of GBM
metabolic phenotypes reported in literature. The results confirm
the study which reports similar metabolic characteristics for
different GBM types derived from independent human tumors
with different driver mutations (Marin-Valencia et al., 2012).
Detailed metabolic remodeling observed in the GBM subtype
metabolic models is discussed below.

Aerobic Glycolysis and Pyruvate Branch Point
One of the most known metabolic alterations observed in
cancer metabolism is related to aerobic glycolysis, which is
also called Warburg effect. This phenomenon is characterized
by a high rate of glucose consumption, which is mostly

TABLE 1 | GIMME-derived key fluxes and flux ratios for GBM subtype metabolic models, Mes, PN, and Pro.

Fluxes and flux ratios by GBM subtype

metabolic models

Mes PN Pro Experimental results for GBM Healthy Brain (iMS570)

(Sertbas et al., 2014)

Lactate production rate (r11 + r56) 1.678 1.691 1.676 1.336 (DeBerardinis et al., 2007) 0.011

Pyruvate carboxylase flux/glucose uptake rate
(r12)/(r596 + r597)

0 0 0 0–0.227 (Portais et al., 1993) 0.223

Oxidative PPP rate/glucose uptake rate (r17 +
r61)/(r596 + r597)

0.052 0.067 0.060 0.060 (DeBerardinis et al., 2007) 0.055

Non-oxidative PPP rate (nucleotide precursor)
(r21 + r65)

0.015 0.019 0.017 Increase compared to healthy brain (Wolf et al.,
2010)

0.001

Oxidative metabolism (TCA) flux (r25 + r69) 0.059 0.064 0.063 Decrease compared to healthy brain (Wolf
et al., 2010; Ru et al., 2013)

0.117

Acetyl-CoA flux as a lipid precursor (r28 + r72) 0.054 0.061 0.059 Increase compared to healthy brain (Wolf et al.,
2010; Boroughs and DeBerardinis, 2015)

0.003

Anaplerotic reaction through glutaminolysis
(r89 + r90 + r92 + r93)

0.072 0.071 0.072 0.039–0.078 (Portais et al., 1993) –

Anaplerotic flux relative to citrate synthase
(CS) activity. (r89+ r90+ r92+ r93)/(r25 + r69)

1.232 1.111 1.143 0.940–1.800 (Maher et al., 2012) –

Acetyl-CoA carboxylase rate as the reaction
initiating fatty acid synthesis (r289)

0.037 0.031 0.037 Increase compared to healthy brain (Wolf et al.,
2010)

0.007

NH3 release flux (r607) 0.149 0.145 0.149 0.023 (DeBerardinis et al., 2007) –

Growth rate (e46) 0.0069 0.0057 0.0069 0.0006–0.0095 (Perego et al., 1994;
Pennington et al., 2006; Wang et al., 2009;
Stensjoen et al., 2015)

–

Rate units of metabolic reaction fluxes and growth rates are in mmol/gDW/h and 1/h respectively. In-silico flux values and ratios are compared. Corresponding reactions for reaction IDs

can be found in Supplementary File 1.
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FIGURE 2 | GBM metabolic remodeling reported in literature. In TCA cycle, low-flux reactions were represented by a thinner gray arrow. Our computational
results obtained by all GBM metabolic models support this remodeling topology. All reaction IDs, shown also in the figure, and corresponding reactions can be found
in Supplementary File 1. The figure was drawn in PathVisio 3 toolbox (Kutmon et al., 2015).

metabolized in glycolysis rather than in mitochondrial oxidative
phosphorylation even in aerobic conditions, resulting in a high
rate of lactate production (Warburg, 1956; Wolf et al., 2010). All
in-silico GBM subtype metabolic phenotypes computed in this
study exhibited the Warburg effect with a high rate of lactate
production and comparatively low tricarboxylic acid (TCA) cycle
activity. Flux values of the lactate production (r11+ r56) by GBM
metabolic models were around 1.68 mmol/gDW/h for all GBM
subtypes (Table 1).

Unlike initial cancer studies which reports that the glycolytic
phenotype in cancer is due to a permanent impairment of
mitochondrial oxidative phosphorylation (Zheng, 2012), both
recent in-vitro and in-vivo studies demonstrate that oxidative
metabolism in GBM is more active than thought (Maher
et al., 2012; Marin-Valencia et al., 2012). 13C-labeled nutrient
experiments show that glucose is metabolized through pyruvate
dehydrogenase rather than pyruvate carboxylase in GBM cells.
Acetyl-CoA produced from pyruvate dehydrogenase reaction
then enters the TCA cycle (Maher et al., 2012; Marin-Valencia
et al., 2012). Our results, in agreement with the literature, show an
active flux for pyruvate dehydrogenase reaction (r13+ r57), with
flux values 0.073, 0.055, and 0.073mmol/gDW/h forMes, PN and
Pro respectively. GBM subtype metabolic models also exhibit a
much lower flux in pyruvate carboxylase reaction (r12) (Table 1)
with respect to the pyruvate dehydrogenase reaction flux, which
confirms the fact that glucose metabolism does not significantly

contribute to anaplerosis in GBM cells (DeBerardinis et al.,
2007). Acetyl-CoA produced from pyruvate dehydrogenase and
oxaloacetic acid (OAA) generate citrate via citrate synthase
reaction, which is the first reaction of the TCA cycle (Figure 2).
In all GBM subtype models, citrate synthase reaction (r25+
r69) is active but possesses a very low flux value compared
to the healthy brain metabolic model (Table 1). Furthermore,
following reactions of TCA cycle, which are conversion of citrate
to isocitrate (r26−27+ r70−71) and then alpha-ketoglutarate (α-
KG) (r30−32+ r73−75), carried much lower flux than the citrate
synthase reaction (see Supplementary File 1 for complete flux
distributions of the GBM models). One of the most known
features in malignant gliomas including GBM is the mutation
in isocitrate dehydrogenase (IDH) gene. While wild type IDH1
and IDH2 convert isocitrate to α-KG resulting in NADPH
production, mutant IDH2 and especially IDH1 convert isocitrate
to 2-hydroxyglutarate known as an oncometabolite, without
producing NADPH (Dunn et al., 2012). Although the GBM
metabolic models do not include mutant IDH genes and the
related reaction, low flux values for conversion of isocitrate to α-
KG (r31−32+ r74−75) can be explained by insufficiency in the wild
type isocitrate dehydrogenase genes.

Glutaminolysis
Glutaminolysis is one of the key pathways in GBM since it
provides glutamine as an alternative carbon source for TCA cycle
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(Wolf et al., 2010; Ru et al., 2013). Several experimental studies
were performed to reveal the role of glutaminolysis in brain
tumors (Wise et al., 2008; Yang et al., 2009; Chinnaiyan et al.,
2012). Glutamine is not only the nitrogen source for nucleotide
synthesis or maintenance of non-essential amino acid pools,
but also the carbon and energy source which can replenish the
TCA cycle intermediates in GBM cells (DeBerardinis et al., 2007;
Maher et al., 2012; Ru et al., 2013). Glutamine is converted to
glutamate by glutaminase reaction (r96+ r97) and then to α-KG
by the anaplerotic glutamate dehydrogenase reaction (r89+ r90+
r92+ r93) in order to replenish the TCA cycle intermediates (see
Table 1 for flux values).

Glutamate derived α-KG is also produced by transamination
reactions (DeBerardinis et al., 2007; Yang et al., 2009) while non-
essential amino acids such as aspartate and alanine are produced
(see Supplementary File 1 for flux values of aspartate and alanine
metabolisms). After replenishing α-KG by glutaminolysis,
turnover of the TCA cycle is completed by converting α-KG
to succinate, fumarate, malate and OAA respectively. All GBM
subtype metabolic models exhibit active and similar flux values
for the conversion of α-KG to malate (r33−36 and r76−79, see
Supplementary File 1 for detailed flux values). Malate is both
converted to OAA (r37+ r38+ r80) to complete turnover of
the TCA cycle, and converted to pyruvate by malic enzyme
reaction (r39+ r82), resulting in NADPH production. All GBM
subtype metabolic models exhibit similar flux value (around
0.066 mmol/gDW/h) for malic enzyme reaction. In agreement
with this finding, labeled glutamine experiments showed that
labeled carbon was observed in lactate derived from glutamine
through malic enzyme reaction (DeBerardinis et al., 2007).
Ratio of the contribution of glutaminolysis and glycolysis to
pyruvate pool, (r39 + r82)/(r10 + r55), was around 1/25 for
GBM subtypes. Flux values for the conversion of the malate
to OAA by malate dehydrogenase reaction (r37 + r38 + r80)
were around 0.012 for GBM subtypes. As a result, major
sources of the acetyl-CoA and OAA pool used in TCA cycle
were respectively the pyruvate dehydrogenase from glycolysis
and anaplerotic flux from glutaminolysis, which was found
to be consistent with both in-vitro and in-vivo experiments
(DeBerardinis et al., 2007; Yang et al., 2009; Maher et al.,
2012; Marin-Valencia et al., 2012). The other source for OAA
pool, pyruvate carboxylase, was found to have very low flux
in our results, in accordance with the literature. Although,
the turnover of the TCA cycle can be completed in GBM
subtypemetabolic models, ATP production fluxes from glycolysis
were considerably higher than ATP production fluxes from
oxidative phosphorylation pathway. ATP production fluxes from
glycolysis (r7 + r10 + r52 + r55) and oxidative phosphorylation
(r45 + r88) were around 2.7 and 0.4 mmol/gDW/h respectively,
which shows the phenomena that although the turnover of
TCA cycle can be completed, major energy source is aerobic
glycolysis in GBM cells. The flux value of ATP production from
oxidative phosphorylation for GBM subtypes were calculated
to be 3-fold lower than the value calculated by the healthy
brain metabolic model (1.236 mmol/gDW/h; Sertbas et al.,
2014).

Precursors for Tumor Proliferation
In addition to energy metabolism, increased aerobic glycolysis
and glutaminolysis also provide macromolecule precursors
required for cell proliferation in tumors (Wolf et al., 2010;
Chinnaiyan et al., 2012). Ribose-5-phosphate (R5P), produced
through pentose phosphate pathway (PPP), is used as a
nucleotide precursor. R5P is also used in cancer diagnosis as
a tumor biomarker for its excess molecular level (Iqbal and
Bamezai, 2012). Flux values of the R5P isomerase reaction (r21 +
r65) producing R5P were higher for all GBM subtype metabolic
models than healthy brain metabolic model (Table 1). Fatty acid
synthesis relies on citrate exported from the mitochondria to
cytoplasm (DeBerardinis et al., 2007; Wolf et al., 2010). The
exported citrate from TCA cycle is converted to acetyl-CoA by
ATP citrate lyase reaction (r28 + r72), which is the precursor for
fatty acid, thereby lipid synthesis (Table 1). All GBM subtype
models had a higher flux value than healthy brain metabolic
model for the acetyl-CoA carboxylase reaction (r289), which is
the first committed step for the fatty acid synthesis (Table 1). In
addition to fatty acid precursors, lipid synthesis in proliferative
GBM cells requires a large amount of NADPH since it is the
electron donor for fatty acid synthesis (Wolf et al., 2010; Ru
et al., 2013). The sources of the NADPH in the GBM models
are oxidative arm of the PPP (r17 + r61), anaplerotic reaction
through glutaminolysis (r89 + r92) and malic enzyme reaction
(r39 + r82), which are all active for GBM subtype metabolic
models (see Supplementary File 1 for flux values). A high enough
NADPH supply by malic enzyme flux was reported for fatty
acid synthesis, together with a glutaminolytic flux higher than
PPP flux for NADPH generation (DeBerardinis et al., 2007). Our
results report about 50% contribution by the glutaminolysis and
25% contribution by malic enzyme and PPP, in agreement with
literature.

We found around 20% less growth rate in PN compared to
the other subtypes (Table 1), which is in perfect agreement with
the clinical observation that patients with PN subtype GBMs
have longer survival (Lee et al., 2008; Verhaak et al., 2010).
Experimental growth rates derived from doubling time (td) using
the formula ln2/td (Stensjoen et al., 2015) for GBM cells were
also used to compare with in-silico derived growth rates. Growth
rates of GBM subtype metabolic models are in the range obtained
by both in-vitro and in-vivo experimental studies (Perego et al.,
1994; Pennington et al., 2006; Wang et al., 2009; Stensjoen et al.,
2015).

Effect of Platform Difference and Dataset
Difference on Simulation Results
In order to demonstrate the robustness of the results,
transcriptome data from a different microarray platform
(GPL570) but from the same dataset (GSE13041) and from the
same platform (GPL96) but from a different dataset (GSE13276)
were additionally used to derive GBM-specific metabolic models
and calculate corresponding flux distributions (see Materials and
Methods for details). This is an important issue to be considered
to validate our results since platform or laboratory differences
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FIGURE 3 | Flux values of the in-silico GBM models by GIMME. Values indicate fluxes for “the mean of the three GBM subtypes” (top, based on
GSE13041-GPL96), “the metabolic model obtained using different microarray platform but from the same dataset as GBM subtypes” (middle, based on
GSE13041-GPL570) and “the metabolic model obtained using the same platform as GBM subtypes but from a different dataset” (down, based on
GSE13276-GPL96). Results show that constraining the model with different GBM transcriptome datasets leads to very similar flux profiles. The figure was drawn in
PathVisio 3 toolbox (Kutmon et al., 2015).

may cause serious reproducibility problems in microarray
experiments (Draghici et al., 2006). No sub-type differences
were accounted in these calculations. The calculated fluxes are
depicted in Figure 3.

When the flux ratios reported in Table 1 were calculated
for the new dataset from the same platform, a very similar
profile to PN subtype results was observed, with the same in-
silico growth rate. A classification analysis of the transcriptome
data of this dataset with the PN dataset via Fisher discriminant
analysis method revealed that the data of the new dataset had an
acceptable degree of similarity to the PN data at transcriptome
level. Based on these results, it is shown that different GBM
datasets give consistent results in terms of the calculated flux
phenotypes (Figure 3).

On the other hand, the use of data from the different
microarray platform resulted in slightly different quantitative
results, albeit not deviating from the flux rerouting behavior
depicted in Figure 2. The differences include a higher growth
rate (0.00118 1/h) and a higher flux to lipid metabolism
through Acetyl-CoA. The lactate production rate was lower
(1.51 mmol/gDW/h) then the GBM subtypes, whereas pyruvate
dehydrogenase reaction and citrate synthase reaction fluxes
were higher than the GBM subtypes, which were 0.152 and
0.070 mmol/gDW/h respectively (Figure 3). Furthermore, the
conversion rates of citrate to α-KG (r26−27 + r70−71 and r30−32 +

r73−75) and ATP production flux via oxidative phosphorylation
(r45 + r88) were higher than GBM subtypes (see Supplementary
File 1 for complete flux distributions of the GBM models). This
shows that the metabolic model obtained using the expression
data from the different platform gives TCA cycle flux more active
than other in-silicomodels (Figure 3).

Effect of Transcriptome-Based
Model-Generation Algorithms on
Simulation Results
The data of GSE13276 includes also data for a reference state,
which is required for MADE simulations. Therefore, this dataset
was also used byMADE algorithm and compared with the results
obtained by GIMME from the same dataset to enable a validation
of GIMME-based flux results (see Materials and Methods). The
comparison of resulting flux distributions allowed to check if
there is any difference between the algorithms mapping gene
expression data to the brainmetabolic network, iMS570g . Growth
rate, the objective function, was calculated to be the same (0.057
1/h) by both GIMME and MADE. Although there are some
significantly different flux values for same reactions generated by
GIMME and MADE, MADE-based metabolic model obeys the
GBM metabolic remodeling depicted in Figure 2. For instance,
citrate synthase reaction, the first reaction of the TCA cycle, is less
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active in MADE-based metabolic model. Citrate lyase reaction
(r28 + r72) producing acetyl-CoA as the precursor for fatty acid
is active for all GIMME-based metabolic models; whereas flux
value of this reaction is zero for MADE. TCA cycle behavior
differs quantitatively for GIMME and MADE-based models.
After maximizing biomass growth rate as objective function, the
minimization of Euclidean norm of internal fluxes was applied
in GIMME to narrow flux ranges of reactions due to alternate
optima (Cakir et al., 2007; Tarlak et al., 2014), which shows
more realistic results. MADE algorithm automatically generates
context-specific flux distribution andwe could not apply a second
optimization step to minimize the Euclidean norm of internal
fluxes. This can be the reason of the significantly different flux
values for same reactions generated by GIMME and MADE (for
detailed flux distributions see Supplementary File 1).

DISCUSSION

This study provides GBM-specific genome scale metabolic
models, derived from a brain-specific metabolic network. A
growth reaction for tumor proliferation is implemented based
on the lipid and protein content of white matter, where the
GBM arises. By incorporating appropriate constraints from
the literature, different GBM datasets were shown to predict
similar metabolic flux reroutings, both validating our results
and providing a proof of data consistency over transcriptome
datasets. Moreover, the effect of different computational methods
to incorporate transcriptome data with genome-scale models
was investigated, and the two different methods, GIMME and
MADE, which differ considerably in terms of dealing with the
gene expression data, give similar qualitative results. Although
there are several studies to apply genome-scale constraint-based
modeling to cancer metabolism, an analysis of brain tumors
with this approach is scarce. Only a recent study analyzed
GBM with the FBA approach, by using a metabolic model
with 147 genes and 12 pathways, without the incorporation
of gene expression data (Bhowmick et al., 2015). Our work
provides a much more comprehensive coverage of brain
tumor metabolism. Correct predictions of flux distributions
in glycolysis, glutaminolysis, TCA cycle and lipid metabolism
discussed in the paper validate the reconstructed GBM specific
models for further use of these models in future to simulate
more specific metabolic patterns for GBM, or to predict drug
targets.

When the constraints are directly applied to İMS570g

without any incorporation of transcriptome data constraint,
the calculated fluxes show some basic characteristics of GBM
such as high glycolysis rate and increased lactate production

and reduced TCA cycle activity, but missed to capture other
basic GBM remodeling patterns such as the contribution of
glutaminolysis to TCA cycle and a lower activity of oxidative
phosphorylation. This meant higher contribution of glutamate
and glutamine to growth for the purely constrained model,
leading to an almost doubled growth rate compared to GBM
subtype metabolic models. Therefore, some GBM patterns are
observed solely because of the change in experimental constraints

to GBM-specific values and change in the objective function
(increased flux toward biomass precursors), but it is the use of
measurement and gene expression constraints together that leads
to a better prediction of GBM flux remodeling. This also shows
the importance of incorporating gene expression data for flux
calculations.

Another commonly used method for constraint-based
genome-scale metabolic modeling is the sampling of solution
space. The solution space is randomly uniformly sampled for
a high number of flux vectors rather than searching the space
for an optimum flux vector (Thiele et al., 2005; Megchelenbrink
et al., 2014). The approach is especially preferred for the
analysis of mammalian metabolism. Here, we re-analyzed all
GIMME-derived GBM-specific metabolic models with the
sampling approach by constraining the growth rate between
the optimum value and 80% of the optimum. Resulting flux
values and flux reroutings were similar to the values reported
in Table 1, Figure 2 (results not shown). Interestingly, the flux
values obtained for the effect of a different microarray platform
(GPL570) were more similar to the values obtained for the GBM
subtypes (Figure 3). For example, a lower flux pentose phosphate
pathway was obtained for this platform with sampling approach.
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