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We used amyotrophic lateral sclerosis (ALS) as a model of prefrontal dysfunction in

order to re-assess the potential neuronal substrates of two sub processes of working

memory, namely information storage and filtering. To date it is unclear which exact

neuronal networks sustain these two processes and the prefrontal cortex was suggested

to play a crucial role both for filtering out of irrelevant information and for the storage of

relevant information inmemory. Other research has attributed information storage tomore

posterior brain regions, including the parietal cortex and stressed the role of subcortical

areas in information filtering. We studied 14 patients suffering from ALS and the same

number of healthy controls in an fMRI-task that allowed calculating separate storage

and filtering scores. A brain volume analysis confirmed prefrontal atrophy in the patient

group. Regarding their performance in the working memory task, we observed a trend

toward slightly impaired storage capabilities whereas filtering appeared completely intact.

Despite the rather subtle behavioral deficits we observed marked changes in neuronal

activity associated with ALS: Compared to healthy controls patients showed significantly

reduced hemodynamic responses in the left occipital cortex and right prefrontal cortex

in the storage contrast. The filter contrast on the other hand revealed a relative

hyperactivation in the superior frontal gyrus of the ALS patients. This hyperactivation

might reflect a possible compensational mechanism for the prefrontal degeneration found

in ALS. The reduced hemodynamic responses in the storage contrast might reflect a

disruption of prefrontal top-down control of posterior brain regions, a process which was

especially relevant in the most difficult high loadmemory task. Taken together, the present

study demonstrates marked neurophysiological changes in ALS patients compared to

healthy controls during the filtering and storage of information in spite of largely intact

behavior. With respect to the neuronal substrates of the two working memory processes

under investigation here, the results suggest that it is rather the degree to which top-down

control is required for task completion that determines prefrontal cortex involvement than

the specific nature of the process, i.e., storage vs. filtering.
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INTRODUCTION

Working memory (WM) refers to the process of maintaining and
modulating information for a short amount of time (Baddeley,
1986). Because the information that can be actively stored is
limited (Cowan, 2001) irrelevant information has to be filtered
out first. Selective attention fulfills this role by directing the
focus on information that is relevant for the task at hand. In
the last decades a large body of research has been dedicated
to the investigation of the neural mechanisms underlying WM
and selective attention (Corbetta and Shulman, 2002; Todd
and Marois, 2005; Rottschy et al., 2012). The results of several
lesion and single cell studies pointed to the prefrontal cortex
(PFC) as an eligible candidate for the storage of information
(Funahashi et al., 1993; Chafee and Goldman-Rakic, 1998). In
addition to the PFC, regions in the parietal and temporal cortex
were found to discharge even after withdrawal of visual stimuli
(Miller and Desimone, 1994; Chafee and Goldman-Rakic, 1998).
Within these areas a functional segregation into a dorsal space-
based pathway and a ventral object-based pathway was proposed
(Goldman-Rakic, 1987). With the goal of identifying a core
network underlying WM, a meta-analysis over several studies
was conducted by Rottschy et al. (2012). The reported core
network consisted of the bilateral middle frontal gyrus (MFG),
the inferior frontal gyrus (IFG), the insulae, the lateral PFC, and
the inferior parietal cortex (IPC). Whereas the parietal cortex
is sensitive to memory load (Todd and Marois, 2005; Xu and
Chun, 2005), the PFC is not. Hence, it has been suggested that
the PFC is rather involved in top-down control than storage per se
(e.g., Corbetta and Shulman, 2002;Müller and Knight, 2006). The
latter process seems more related to the load sensitive parietal
cortex, which also determines the WM limit (e.g., Vogel and
Machizawa, 2004; Todd andMarois, 2005;McNab and Klingberg,
2007). However, whereas this hypothesis is underpinned by a
study usingmulti voxel pattern analysis (Christophel et al., 2012),
the authors of a second study using the same method did not find
evidence for the parietal cortex coding memorized information
(Riggall and Postle, 2012) and others have suggested that this
task is rather accomplished by extrastriate visual areas (e.g., Becke
et al., 2015). Therefore, findings considering the exact neural
correlates of WM storage are still equivocal.

The PFC has been postulated as a crucial brain region
for information filtering, too. But again, also the inferior and
superior parietal cortices (IPC and SPC) have been suggested to
take part in top-down attentional control of bottom-up visual
processing. The latter has been attributed to a ventral network
including the temporo-parietal junction, the insulae, inferior, and

Abbreviations: ALS, Amyotrophic lateral sclerosis; ALSFRS-R, ALS functioning

rating scale revised; BOLD, blood oxygen level-dependent; corrFLV, corrected

frontal lobe volume; ECAS, Edinburgh Cognitive and Behavioral ALS Screen;

fMRI, functional magnetic resonance imaging; HL, high load; IFG, inferior

frontal gyrus; IPC, inferior parietal cortex; LL, low load; LLDIS, low load

+ distractor; MCI, mild cognitive impairment; MFG, middle frontal gyrus; MNI,

Montreal Neurological Institute; MoCA, Montreal Cognitive Assessment; MVPA,

multivoxel pattern analysis; OCC, occipital cortex; PFC, prefrontal cortex; SMA,

supplementary motor area; SPC, superior parietal cortex; TBV, total brain volume;

WM, working memory; WST, Wortschatztest.

MFG, the IPC as well as the frontal eye fields (Corbetta and
Shulman, 2002). In sum, WM and selective attention seem to
rely on similar brain regions whereby both parietal and frontal
regions were identified as essential nodes for the two processes.
However, the exact division of labor between those regions in
supporting the named sub-processes of WM remains unclear.

Neurological diseases such as Parkinson’s and Alzheimer’s
which are characterized by the degeneration of certain brain
regions have been used previously for making inferences about
the affected brain regions’ contribution to WM and attention
(Finke et al., 2013; Blatt et al., 2014). With regard to the
PFC, ALS can be considered a potential model (Iwanaga et al.,
1997). ALS is characterized by the deterioration of mainly
motor neurons but also other frontal neurons (Abrahams
et al., 1996) as well as whiter matter fibers (Abrahams et al.,
2005; Lillo et al., 2012; Hartung et al., 2014). The disease
is characterized clinically by progressive muscle weaknesses.
Hence, until recently most research has focused on the motor
system, whereas the investigation of cognitive deficits in ALS
patients was foregrounded in the last years (Phukan et al., 2012;
Elamin et al., 2013). Following recent consensus criteria (Strong
et al., 2009) a type of ALS with additional cognitive and/or
behavioral impairments can be distinguished from ALS with
motor degeneration only. When present, cognitive deficits in
ALS patients mainly consist in executive dysfunctions (Abe et al.,
1997).

Here, in an attempt to further clarify the contribution of
PFC to WM subprocesses, we tested ALS patients’ abilities to
select and store information in WM. We designed a WM task
that allowed separating filtering and storage processes both on
a behavioral and a neuronal level. In order to guarantee that
the patients were able to solve the demanding WM task we
selected ALS patients without obvious cognitive impairment
as documented in a neuropsychological test battery. Hence,
we did not expect a marked deficit in our task but were
rather interested in compensatory neuroplasticity in response
to prefrontal pathology. In order to confirm the latter we also
assessed the frontal brain volumes—of both gray and white
matter—of our participants.

MATERIALS AND METHODS

Experimental Design
ALS patients and healthy controls performed a WM task in a 3T
MRI scanner. Before participating in the main experiment, all
subjects completed a shortened version of the WM task outside
the scanner.

Participants
Prior to the experiment all candidates underwent a
neuropsychological screening consisting of the Montreal
Cognitive Assessment (Costas et al., 2014) and a German
translated version of the Edinburgh Cognitive and Behavioral
ALS Screen (ECAS; Lulé et al., 2015). To estimate the general
intelligence, a vocabulary test (Wortschatztest, (WST), Schmidt
and Metzler, 1992) was applied. Additionally, all subjects
completed a shortened version of the WM task outside the
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scanner and only those who performed above 50% in this
practice session took part in the later fMRI experiment.

These eligibility criteria allowed us to include 14 (6 female)
patients at the average age of 57.00 years (range 43–72
years). They were recruited from the outpatient clinics of
the Departments of Neurology at the Medical School of the
Otto-von-Guericke University Magdeburg and at the Medical
School, Hannover. Following the revised El-Escorial-Criteria
(Brooks et al., 2000) one patient was diagnosed with definitive
clinical ALS, five patients with probable clinical ALS and eight
patients with possible clinical ALS. The revised ALS Functional
Rating Scale (ALSFRS-R; Cedarbaum et al., 1999) was used to
assess the severity of the disease. The patients had an average
ALSFRS-R score of 40.29 (range 32–47). The disease duration
was 12.42 (± 4.13 SEM) months on average. Fourteen control
participants (8 female) at the age of 58.36 years (range 45–
77 years) without a prior history of neurological or psychiatric
illness were recruited as controls and were matched for age
and education years (Table 1). They received the same cognitive
screening procedure and had to fulfill the same inclusion criteria
as the patients. All participants gave written informed consent
before participation. The study was approved by the local ethics
committee.

Working Memory Task
The fMRI experiment (Figure 1) included three conditions
with the following demands: high memory storage (high load,
HL), low memory storage (low load, LL) and low memory
but high filtering (low load + distractors, LLDIS). Participants
were instructed to memorize the vertical rectangles only. The
HL condition consisted of a memory array with four vertical
rectangles, whereas the LL condition consisted of two vertical
rectangles only. In the LLDIS condition two vertical rectangles
were presented alongside two horizontal rectangles which served

as distractors. All stimuli had the same color (red) and were
presented within 14 placeholder squares that were arranged
in a circle. The memory array was followed by a delay and
then by a probe stimulus (gray dot) to which subjects had to
decide by button press with the index or middle finger of their
right hand whether the probe location had been occupied by a
target stimulus in the preceding memory array or not. When
the probe stimulus was not in the position of a target, it was
either on a position adjacent to the target that was formerly
an empty placeholder square or, in case distractors had been
presented, with equal probability on a distractor position. The
required responses (yes or no) were distributed evenly across
all trials. Subjects completed six runs à 60 trials (360 trials in
total) with one run lasting 8min. Conditions were presented in
a randomized order.

Stimuli were presented against a gray background (luminance
41.2 cd/m2). During the whole experiment a fixation cross was
presented in the center of the screen (16.4◦ from side, 18.8◦ from

TABLE 1 | Demographical and neuropsychological data among ALS

patients and controls.

Controls (SEM) Patients (SEM) Significance

(t-test)

Age (years) 58.36 (9.70) 57.00 (9.10) 0.731

Education (years) 14.07 (2.30) 15.14 (2.74) 0.273

MoCA 27.64 (1.08) 26.21 (2.81) 0.094

ECAS non ALS specific 29.09 (0.90) 29.57 (1.10) 0.748

ECAS ALS specific 78.09 (1.92) 79.07 (2.72) 0.771

ECAS Total score 107.18 (2.24) 108.71 (3.49) 0.715

WST 31.79 (2.42) 32.71 (3.95) 0.462

ALS, Amyotrophic lateral sclerosis; ECAS, Edinburgh Cognitive and Behavioral ALS

Screen; MoCA, Montreal Cognitive Assessment; WST, Wortschatztest.

FIGURE 1 | Schematic illustration of the experimental design.
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top). Memory (size 0.8◦ × 0.3◦, luminance 31 cd/m2) and probe
stimuli (size 0.3◦ × 0.3◦) appeared within 14 placeholder squares
(size 0.9◦ × 0.9◦) arranged in a circle (diameter 7.3◦, minimum
difference squares 1.5◦ center to center). The memory array was
presented for 0.2 s and was followed by a delay of 1.8 or 3.8 s. All
trials ended with a probe stimulus that appeared for 1.4 s and was
followed by a delay of 0.6, 2.6, or 4.6 s.

Behavioral Data Analysis
For analysis of the behavioral data we first calculated scores for
filtering and storage, respectively. This was done by subtracting
the percentage correct of the HL condition from percentage
correct in the LL condition (storage score) and accuracymeasures
of the LLDIS condition from the LL condition (filter score; Blatt
et al., 2014). The advantage of the scores over raw data (hit rates)
is that a potential overall deficit is canceled out by this subtraction
method.

fMRI Data Acquisition
A 3T MR scanner (Siemens Magnetom Verio syngo MR B19,
Erlangen, Germany) equipped with a 32-channel head coil was
used to measure blood oxygenation level-dependent (BOLD)
brain activity. Stimuli were back-projected by an LCD projector
onto a screen positioned behind the coil. The screen was
viewed by the subjects via a mirror attached to the head coil.
Functional images were acquired with a T2∗-weighted echo
planar imaging (EPI) gradient echo sequence (FoV 224×224mm,
voxel size = 3.5 × 3.5 × 3.5mm, TR = 2000ms, TE = 38ms,
flip angle = 80◦) in an odd-even interleaved sequence. Thirty-
two 3.5mm thick axial slices (64 × 64mm in plane, no gap)
parallel to the AC-PC line were acquired for 255 volumes in
each run. Whole-head T1-weighted images were collected with
anMP-RAGE sequence (96 sagittal slices, thickness= 2mm, FoV
256× 256mm, no gap, spatial resolution= 1× 1× 2mm, TR=

1660ms, TE= 5.05ms, TI= 1100ms).

MRI Data Analysis
Whole-head T1-weighted images were analyzed using the
SPM8 software package (Welcome Department of Cognitive
Neurology, University College London, UK) and MATLAB
R2009b (The Mathwork Inc.), which included segmenting of
images in gray matter, white matter, and cerebrospinal fluid. A
mask image of the frontal lobe was generated using the WFU
PickAtlas (Maldjian et al., 2003, 2004) and coregistered on the
T1-images. Volumes were read out for each participant and
frontal lobe volumes were separated into gray matter and white
matter volumes. These values were corrected for the total brain
volume (TBV) by dividing the individual frontal lobe volumes by
the individual TBV (corrFLV). Differences in corrFLV between
groups were assessed by carrying out a univariate ANOVA with
the between-subject factor group.

fMRI Data Analysis
Data were processed with the SPM8 software package (Welcome
Department of Cognitive Neurology, University College London,
UK) andMATLABR2009b (TheMathwork Inc.), which included

slice time correction, realignment to the first volume, co-
registration to the individual anatomical images, normalization
to the Montreal Neurological Institute (MNI) template (Friston
et al., 1995) and resampling into a voxel size of 3 × 3 × 3mm3.
Spatial normalized images were smoothed with an isotropic
6mm FWHM Gaussian kernel and high pass filtered (cut-off
128 s). Global scaling was applied across an individual session to
remove global signal drifts before GLM analysis. No subjects had
to be excluded due to excessive head motion (more than 5mm).

BOLD responses were modeled by delta functions at the time
of stimulus onsets. For each individual, the time courses of
the hemodynamic BOLD responses in the different conditions
(HL, LL, LLDIS) were analyzed at the voxel level using a linear
regression model that yielded separate time courses for the
encoding and response phase of each condition. The movement
parameters derived from the realignment process were included
as covariates into the model as well as all trials in which the
subjects made a wrong response leading to 11 regressors in total
for each run (3 × encoding phase: HL, LL, LLDIS; 1 × response
phase: merged (HL, LL, LLDIS); 1 × errors; 6 × movement).
To identify regions showing filter and memory related BOLD
response differences we calculated different contrasts for each
subject and each session individually for each condition in the
encoding phase in a first-level analysis. To assess memory storage
related activity, BOLD responses in the HL condition were
contrasted with BOLD responses from the LL condition. This
contrast is referred to as “storage contrast.” Similarly the contrast
between LLDIS and LL is referred to as “filter contrast.” Then,
to look at filter and storage contrasts for each group separately
a one sample t-test was conducted first on a second-level with
the individual contrast images including whole head gray and
white matter volumes as covariates. Second, the contrast images
of every participant from the first level were subjected to a
second-level two sample t-test to see differences in filter and
storage contrast between groups. In a next step, we calculated
ROI analyses for the clusters obtained in the calculated contrasts
between groups by using ROIs from the group difference maps.
The minimal distance between cluster peaks was set at 18mm.
The ROIs were identified from the group activation maps and
were defined at a threshold level of p (uncorr.) 0.001 like in
previous studies (Groussard et al., 2010; van de Sand et al.,
2015). A small/cluster volume correction was not applied. Beta-
values of the fMRI effect-of-interest contrasts were compared
between groups by means of a multivariate ANOVA with the
between-subject factor group.

Statistical Analysis
Statistical analyses were carried out using the Statistical Package
for the Social Sciences v21.0 (SPSS). Behavioral data were
analyzed using repeated measures ANOVAS with the between
subject factor group (patient, controls) and the within subject
factor score (filter score, memory score). In case of significant
interaction or main effects, post hoc t-tests were carried out.
Differences in corrFLV between groups were assessed by carrying
out a univariate ANOVA with the between-subject factor
group.
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RESULTS

Behavioral Results
Storage and filter scores were calculated from accuracy measures.
Differences between performance in the LL and HL condition
were referred to as storage score with large values indicating
impairment with increasing memory load, i.e., a storage deficit.
The filter score was assessed by calculating the difference between
the LL and the LLDIS condition. In the case of distractors being
unnecessarily stored (filtering deficit), performance in the LLDIS
condition should be low leading to a higher filter score. An
rANOVA with the within factor score (storage, filter score) and
the between factor group (patient, controls) revealed a significant
main effect of score [F(1, 26) = 17.363, p < 0.001] and a
trend toward a group × score interaction (F(1, 26) = 2.942,
p = 0.098). In general, storage scores were higher than filter
scores (p < 0.001). Means and standard errors of the mean for
memory and filter scores of both groups can be depicted from
Table 2; Figure 2.

MRI Results
To assess the frontal pathology in ALS patients, corrFLV of gray
and white matter were compared between patients and controls
by means of a univariate ANOVA (Figure 3). A significant higher
corrFLV in white matter was found in controls compared to ALS
patients [F(1, 27) = 24.528, p < 0.001] whereas no significant
difference was found in gray matter volume between groups
[F(1, 27) = 0.347, p = 0.561].

fMRI Results
In order to address BOLD differences between ALS patients and
healthy controls we compared fMRI data of the filter and storage
contrasts across both groups. In control subjects several brain
regions emerged during the storage contrast on a threshold level
of 0.001 uncorr. including bilateral superior (SPC) and inferior
(IPC) parietal cortex, postcentral gyrus, right inferior frontal
gyrus (IFG), left occipital cortex (OCC), right insula, right MFG,
and supplementary motor area (SMA). In ALS patients a reduced
net of activation during the storage contrast was found on the
same threshold level including bilateral SPC, right IFG, left MFG,
left insula, and left IPC (Figure 4). Similarly, in the filter contrast
more brain regions were found to be activated in controls than
in ALS patients. Whereas ALS patients recruited the right SPC,
the right cerebellum, the right OCC, and right insula only during
filtering, controls recruited bilateral IFG, precuneus, SMA, right
MFG, left SPC, and right basal ganglia (caudate nuclei). Peaks of
all clusters are reported in Table 3 and are displayed in Figures 4,
5A,B).

In a second step filter and storage contrasts were compared
between groups. Compared to ALS patients controls recruited left
OCC [F(1, 26) = 25.834, p < 0.000] and right PFC [F(1, 26) =

23.994, p < 0.000] more during the storage of information. ALS
patients showed no stronger signal in storage contrast compared
to controls at a threshold of p = 0.001 (uncorrected).

During filtering no BOLD responses above threshold were
found in controls compared to ALS patients. However, ALS
patients showed a stronger activation in left superior frontal

TABLE 2 | Means and standard error of the mean (SEM) for storage and

filter scores in the working memory task.

Storage score Filter score

Controls Mean (SEM) 10.60 (2.20) 6.43 (1.71)

ALS Mean (SEM) 15.95 (2.27) 5.95 (2.24)

ALS, Amyotrophic lateral sclerosis.

FIGURE 2 | Mean difference in accuracy (1p correct) reflecting storage

and filter score. Error bars indicate the standard error of the mean.

FIGURE 3 | Difference in corrected frontal lobe volume between ALS

patients and healthy controls.

gyrus (SFG, Cluster 1: [F(1, 26) = 26.648, p < 0.000], Cluster 2:
[F(1, 26) = 8.167, p = 0.008] during filtering compared to
controls. Peaks of all clusters are reported in Table 4.

DISCUSSION

The present study aimed at investigating the neuronal basis of
selective filtering and information storage within WM. These
processes were investigated in ALS patients because of their
known prefrontal deficit. The PFC has been suggested to
play a major role both in filtering and storage (Chafee and
Goldman-Rakic, 1998; Corbetta and Shulman, 2002). Patients
and healthy controls had to perform a task in which storage
and filter demands were manipulated. In the baseline condition
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FIGURE 4 | Task-related changes in BOLD signal during encoding: The color bar indicates the T-value; (A) Control group activation map for the storage

contrast (HL > LL); (B) ALS group activation map for the storage contrast (HL > LL); (C) Group activation map for the difference in storage contrast between ALS and

control group (red/yellow: Controls > ALS, blue/green: ALS > Controls).

participants had to memorize two items only. The ability to
effectively store information was assessed by increasing memory
load to four items; the ability to filter out irrelevant information
was measured by adding two distractors to the memory display.
From the pairwise comparisons of the two demanding conditions
with the baseline condition, storage and filter scores (behavioral
data) and contrasts (fMRI data) were derived. Whereas the
behavioral filter score was the same in both groups under
investigation, a trend toward a relative storage deficit was seen
in ALS patients compared to controls. Besides these rather small
behavioral group differences we found marked changes in the
fMRI data. In the storage contrast of the controls the inferior
and MFG, the SMA, the postcentral cortex, the superior and
IPC, and the occipital OCC emerged (Figure 4A). ALS patients
recruited frontal (IFG and MFG) and parietal (IPC) cortices and
the left insula only (Figure 4B). A direct comparison between
the storage contrasts of both groups (Figure 4C) confirmed
a significant reduction of the hemodynamic response in ALS

patients in prefrontal and OCC. The most likely source of this
reduced network activity is the proposed ALS-related prefrontal
pathology (Agosta et al., 2013) which was confirmed in our
sample by means of a brain volume analysis revealing decreased
white matter in frontal brain volumes in the patients compared
to healthy controls (Figure 3). An ALS-related white matter
pathology was reported in other studies as well (Abrahams
et al., 2005; Lillo et al., 2012; Hartung et al., 2014) and
can likely contribute to cortical activity differences (Lockhart
et al., 2015). The frontal alterations in white matter might
then have led to an impairment of feedforward and feedback
connections between the PFC and posterior areas like the
extrastriate visual cortices (Miller and D’Esposito, 2005; Clément
and Belleville, 2010). Hence, the reduced network activity in
ALS may reflect a disruption of prefrontal top-down control
of these posterior brain regions resulting from reduced white
matter connectivity. Top-down control was especially required
in the high load storage condition which was the most difficult
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TABLE 3 | Peak activations for the storage and filter contrasts of controls

and ALS patients.

Anatomical Hemisphere MNI coordinates Max. Cluster

structure (x, y, z) T-value size

Controls: HL > LL

SPC/OCC R 30 −67 31 8.83 95

R 18 −61 58 7.01 42

R 54 −70 1 5.10 10

L −21 −70 40 6.94 27

L −21 −61 58 5.14 13

L −39 −70 −11 7.41 69

L −27 −76 25 4.99 13

IPC R 36 −40 46 5.83 46

L −39 −40 49 6.02 40

IFG R 48 11 25 5.94 55

Insula R 33 20 1 5.72 21

SMA R 3 17 52 5.68 36

MFG R 36 35 31 5.49 25

Postcentral

gyrus

R 54 −19 28 5.31 12

L −63 −22 28 5.15 14

ALS: HL > LL

SPC R 24 −64 46 7.11 123

30 −73 31 4.82

L −33 −79 31 9.45 130

−21 −76 52 6.61

−24 −55 55 4.95 12

IPC L −36 −46 49 5.85 62

IFG R 45 5 28 6.89 45

Insula L −39 17 1 4.80 10

MFG L −39 35 25 5.55 20

CONTROLS: LLDIS > LL

SPC L −27 −64 49 6.27 31

Precuneus 0 −64 46 6.70 24

IFG R 30 23 −5 5.59 13

L −39 2 34 5.40 31

SMA R 3 14 49 6.30 38

MFG R 48 23 28 5.18 34

Basal Ganglia

(Caudate ncl.)

R 9 8 −2 6.13 15

ALS: LLDIS > LL

SPC R 27 −67 46 7.88 44

OCC R 45 −70 −14 5.16 19

Insula R 36 20 1 6.55 23

Cerebellum R 36 −46 −29 5.59 11

L, left; R, right; ALS, Amyotrophic lateral sclerosis; HL, high load; IFG, inferior frontal gyrus;

IPC, inferior parietal cortex; LL, low load; LLDIS, low load+ distractor; MFG, middle frontal

gyrus; OCC, occipital cortex; SMA, supplementary motor area; SPC, superior parietal

cortex.

in the present study. Consequently, only in this condition a
subtle behavioral deficit was to be observed in the patients.
Information filtering was found to be behaviorally intact in
the ALS patients. Nevertheless, the fMRI contrast between the
distractor and the baseline condition revealed marked activity

TABLE 4 | Peak activations for the difference in storage and filtercontrasts

between groups.

Anatomical Hemisphere MNI coordinates Max. Cluster

structure (x, y, z) T-Value size

HL > LL: Controls > ALS

OCC L −12 −79 −8 5.03 16

PFC R 15 50 −5 4.66 34

HL > LL: ALS > Controls

− − − − − − −

LLDIS > LL: Controls > ALS

− − − − − − −

LLDIS > LL: ALS > Controls

SFG L -33 35 22 4.46 16

L -27 29 49 4.30 11

L, left; R, right; ALS, Amyotrophic lateral sclerosis; HL, high load; LL, low load; LLDIS,

low load + distractor; OCC, occipital cortex; PFC, prefrontal cortex; SFG, superior frontal

gyrus.

differences between the groups. In healthy controls the inferior
and MFG, the SMA, the SPC, the precuneus and the basal
ganglia were found to be associated with filtering (Figure 5A).
In contrast, the ALS patients showed activations in the SPC,
cerebellum, OCC and the insulae (Figure 5B). The direct group
comparison (Figure 5C) then revealed a stronger hemodynamic
response in ALS patients in the SFG, whereas relative reductions
in hemodynamics were not seen anywhere in the patients’
brains. Although counterintuitive at first sight, the finding of
frontal hyperactivation in our view is also best explained by the
frontal atrophy observed in our ALS patients. Only instead of a
breakdown of prefrontal control as seen in the high memory load
condition, in the case of filtering the prefrontal structural atrophy
was obviously compensated for by hyperactivating the SFG. Such
compensational hyperactivation during memory tasks in patients
suffering from early-phase neurodegenerative diseases has been
described before, for example in the hippocampus of patients
with mild cognitive impairment (MCI; Clément and Belleville,
2010) and also in ALS patients (Agosta et al., 2013; Zaehle et al.,
2013).

To summarize, the frontal pathology in the group of ALS
patients might have led to a reduction of hemodynamic
responses in prefrontal, OCC and fusiform gyrus during memory
storage and to a hyperactivation of superior frontal brain
areas during filtering. The first probably signals an impending
breakdown of the storage process, whereas the latter constitutes
a compensational mechanism that guaranteed completely intact
filtering behavior. Behavioral data also indicated that the high
load storage task was more difficult than the filtering task, a
confounder that usually cannot be avoided in the type of tasks
used here and, therefore, has routinely emerged in prior studies
as well (e.g., McNab and Klingberg, 2007; Blatt et al., 2014).
Hence, the differences in hemodynamic responses between the
filter and the storage contrast may not solely reflect the specific
challenges of the two processes but may have been driven by task
difficulty, too. That is, the more difficult high storage load task
probably required more prefrontal control than the somewhat
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FIGURE 5 | Task-related changes in BOLD signal during encoding: The color bar indicates the T-value; (A) Control group activation map for the filter

contrast (LLDIS > LL); (B) ALS group activation map for the filter contrast (LLDIS > LL); (C) Group activation map for the difference in filter contrast between ALS and

control group (red/yellow: Controls > ALS, blue/green: ALS > Controls).

easier filtering task. From this it follows that the ALS patients
could fully compensate for the easier filter task by hyperactivating
the PFC but not for the more difficult high storage load task
where prefrontal top-down control of posterior brain regions
began to decline. More severely affected patients may show such a
breakdown of prefrontal control in easier tasks as well. This rises
another critical issue, namely that of a positive selection bias.

In the present study only patients without behavioral deficits
in a neuropsychological screening procedure and with above
chance performance levels in a training version of the WM
task were included. Hence, with this selection bias the results
cannot be considered representative for all ALS patients as these
constitute a rather heterogeneous sample. Indeed, Elamin et al.
(2013) have shown in a longitudinal study of 186 ALS patients
that patients differ tremendously in their cognitive abilities in

the course of the disease. Patients with pronounced cognitive
deficits at their initial visit show a fast cognitive decline during
follow- up. Patients without cognitive deficits at baseline on the
other hand tend to largely maintain their cognitive abilities. This
heterogeneity might also explain the rather ambiguous picture in
the literature on WM in ALS where no, mild as well as strong
impairments have been reported (Ringholz et al., 2005; Volpato
et al., 2010; Hammer et al., 2011; Phukan et al., 2012).

Even though the present results may not be considered
representative, they clearly show that even at stages with an
almost intact behavior, patients suffering from neurodegenerative
disorders like ALS demonstrate marked changes on a
neurophysiological level. Enhanced hemodynamic responses
seem to reflect mechanisms to functionally compensate for the
typical ALS pathology in frontal brain structures during less
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demanding filtering tasks. Reduced neuronal activity occurs
when information storage becomes too demanding for the
pathologic structural changes to be fully compensated for.
Moreover, our results indicate that the PFC is involved in both
memory storage and filter processes; and it seems to be the
degree to which these processes are challenged that modulates
PFC activity rather than the specific nature of the underlying
process. In sum, the present data show how dynamic the brain
can react when faced with neuronal cell loss.
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