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Tracing white matter fiber bundles is an integral part of analyzing brain connectivity.

An accurate estimate of the underlying tissue parameters is also paramount in several

neuroscience applications. In this work, we propose to use a joint fiber model estimation

and tractography algorithm that uses the NODDI (neurite orientation dispersion diffusion

imaging) model to estimate fiber orientation dispersion consistently and smoothly along

the fiber tracts along with estimating the intracellular and extracellular volume fractions

from the diffusion signal. While the NODDI model has been used in earlier works to

estimate the microstructural parameters at each voxel independently, for the first time,

we propose to integrate it into a tractography framework. We extend this framework

to estimate the NODDI parameters for two crossing fibers, which is imperative to trace

fiber bundles through crossings as well as to estimate the microstructural parameters for

each fiber bundle separately. We propose to use the unscented information filter (UIF)

to accurately estimate the model parameters and perform tractography. The proposed

approach has significant computational performance improvements as well as numerical

robustness over the unscented Kalman filter (UKF). Our method not only estimates the

confidence in the estimated parameters via the covariance matrix, but also provides

the Fisher-information matrix of the state variables (model parameters), which can be

quite useful to measure model complexity. Results from in-vivo human brain data sets

demonstrate the ability of our algorithm to trace through crossing fiber regions, while

estimating orientation dispersion and other biophysical model parameters in a consistent

manner along the tracts.

Keywords: diffusion-weighted MRI, tractography, filtering, NODDI, Neurite Orientation dispersion, Information

Filter

1. INTRODUCTION

Diffusion MRI (dMRI) is a non-invasive technique to study the microstructure of brain tissue.
However, we need a mathematical model to interpret the diffusion weighted signal to study the
microstructure of white matter fibers. Broadly, such models fall into two categories: parametric
and nonparametric. The simplest parametric model is the diffusion tensor model, which describes
a Gaussian estimate of the strength and diffusion orientation at each voxel (Basser et al., 1994;
Alexander et al., 2002). While robust, this model can be inadequate in cases of mixed fiber
presence or more complex orientations (Frank, 2002). To handle more complex diffusion patterns,
parametric models have been introduced including mixtures of tensors and directional functions
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(Alexander et al., 2001; Anderson, 2005; Kreher et al., 2005;
Parker and Alexander, 2005; Peled et al., 2006; Kaden et al.,
2007; Zhang et al., 2007; Rathi et al., 2008). Several techniques
attempt to reconstruct pathways based on these models. In this
case, tractography is done by following the principal diffusion
direction(s).

With multifiber models, care must be taken in fitting the
model parameters to the recorded signal consistently, such that,
the correlation in diffusion along the tract is accounted for
while estimating the parameters (Malcolm et al., 2009a). As
demonstrated in this paper, estimation based on information
from previous estimates aids in this process.

Nonparametric techniques, unlike estimating a fixed number
of fibers in parametric models, estimate an oriented distribution
function (ODF) describing an arbitrary configuration of fibers.
For this estimation, Tuch (2004) introduced Q-ball imaging to
numerically compute the ODF via the Funk-Radon transform,
and later, spherical harmonics were used to simplify the
computation with an analytic form (Anderson, 2005; Hess et al.,
2006; Ozarslan et al., 2006; Descoteaux et al., 2007). Another
method to estimate the fiber ODF is to assume a model for the
signal response of a single-fiber and use spherical deconvolution
(Jansons and Alexander, 2003; Tournier et al., 2004; Jian and
Vemuri, 2007; Kaden et al., 2007) to obtain a much sharper
orientation profile. A good review of both parametric and
nonparametricmodels and diffusionMRI in general can be found
in Assemlal et al. (2011).

Recently, a model of diffusion was proposed by Zhang et al.
(2012) called Neurite Orientation Dispersion Diffusion Imaging
or NODDI, which accounted for the dispersion in orientation
of the axonal fibers. In this work, the authors proposed an
algorithm to estimate the parameters of the NODDI model
assuming the existence of a single fiber pathway at each voxel.
However, it is well known that most of the white matter tissue
in the brain has crossing fibers (Tuch et al., 2002), which must
be taken into account for proper analysis of the estimated
microstructural parameters. Further, the correlation in diffusion
(and consequently the estimated NODDI parameters) is not
taken into account in the work of Zhang et al. (2012). Thus,
estimating the orientation dispersion in the presence of multiple
fiber crossing would be quite useful in analyzing the geometrical
structure of white matter in healthy as well as diseased subjects.

1.1. Our Contributions
In this work, we propose to use the unscented information filter
(UIF) based framework to perform joint NODDI parameter
estimation and tractography. Earlier works have used the
unscented Kalman filter (UKF) with a parametric multi-tensor
model or a non-parametric spherical harmonic representation to
do simultaneous model estimation and tractography (Malcolm
et al., 2010; Baumgartner et al., 2012). The UIF has several
advantages over the UKF as has been noted in Lee (2008),
namely, it propagates the Fisher-information matrix as opposed
to the state-covariance matrix leading to a significant reduction
in computational load, while providing a more robust estimation
of the estimated parameters. Further, the Fisher-information is

calculated for each of the model parameters along the tract,
providing the variance in the estimation of themodel parameters.

Existing methods either use a region-of-interest (ROI) or
an atlas within which the NODDI parameters are estimated
and analyzed or follow the principal orientation to perform
tractography. Thus, the fit is performed independently at each
voxel disregarding the correlation of diffusion along the fiber
path. In the UIF framework, we perform model estimation
and tractography simultaneously to trace fiber tracts. The
methodology assumes a “time varying" Gaussian distribution
of the model parameters as the algorithm moves from one
location to the next. This allows for consistent estimation of
the NODDI parameters, while allowing for smooth estimation
of the fiber tracts. In the current work, we demonstrate the
performance of our method in the case of single fiber and 2-
fiber NODDI model. To the best of our knowledge, this is a first
extension of the NODDI model to the multi-fiber case within
a tractography framework. Thus, the ability to trace multiple
crossing fibers while robustly estimating the NODDI model
parameters is one of the major contributions of this work. We
demonstrate our technique on in-vivo human data set from the
human connectome project (HCP) data set. We expect, that
the proposed method will be quite useful to study the tissue
microstructure in several disorders.

2. APPROACH

The main idea of our approach is to trace the local fiber
orientations employing the three compartment NODDI model
(intra-cellular, extra-cellular, and isotropic free-water) and using
the estimation at previous positions to guide estimation at the
current position. In a recursive fashion, the information filter
estimates the model at the current position, moves a step in
the most consistent direction, and then begins estimation again.
In this case, the model parameters, which form the state of
the filter, are assumed to have a Gaussian distribution, whose
mean and covariance change at each step. Thus, the space of
possible solutions (among the infinitely many possibilities) is
greatly reduced leading to better accuracy in resolving individual
orientations and yielding inherently smooth tracts despite the
presence of noise and uncertainty. This is in complete contrast
to existing methods, where the model parameters at each voxel
are estimated from an arbitrary initialization or a large number of
random initializations to finally obtain a solution that best fits the
data. This could potentially lead to vastly different solution even
in neighboring voxels since the space of possible solutions is large.
In the proposed method, since each iteration begins with a near-
optimal solution provided by the previous estimation, and since
the step size is kept to be very small, the UIF quickly converges
to the optimal solution and many local minima are naturally
avoided.

2.1. Modeling Local Fiber Orientations
The three compartment NODDI model consists of an
intra-cellular, an extra-cellular and an isotropic compartment
(Zhang et al., 2012; Daducci et al., 2015). The normalized signal
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E can be written as:

E = (1− V iso)(V icE ic + (1− V ic)E ec)+ V isoE iso, (1)

where Eic and Vic are the normalized signal and volume fractions
of the intra-cellular compartment; Eec is the normalized signal
corresponding to the extra-cellular compartment; and Eiso and
Viso are the normalized signal and volume fractions of the
isotropic compartment. The space bounded by the membrane of
neurites is called the intra-cellular compartment. In this paper, we
adopt a model where neurites are modeled as a set of cylinders of
zero radius capturing the unrestricted nature of diffusion along
the neurites and restricted diffusion perpendicular to them, i.e.,

Eic(u) =

∫

S2
f (n)e−bd‖(u·n)

2

dn,

where b is the b-value, u is the gradient direction; f (n)
is the orientation dispersion function around vector n; and
d‖ is intrinsic diffusivity along the cylinder. As in Zhang
et al. (2012), the watson distribution is used to model the
orientation dispersion function f : S

2 → R, f (n) =

M(1/2, 3/3, κ)−1eκ(m·n)2 , where m is the mean orientation
about which the dispersion is symmetric and κ is the
concentration parameter, which determines the extent of
orientation dispersion along the mean orientation; and M is the
confluent hypergeometric function. The orientation dispersion
index is given by OD = 2

π
arctan 1

κ
.

The space around the neurites is called the extra-cellular
compartment. In this compartment, water diffusion is assumed
to be hindered and is modeled as a Gaussian anisotropic tensor,
with

logEec(u) = −buT
(∫

S2
f (n)D(n)dn

)

u,

where D(n) is a cylindrically symmetric diffusion tensor with
principal orientation n, and d‖ and d⊥ are the coefficients
of diffusion parallel and perpendicular to n. Both these
parameters can expressed in terms of the intra-cellular fraction
Vic and the concentration parameter κ (see Zhang et al.,
2012 for more details). The isotropic compartment is modeled
with an isotropic Gaussian diffusion with diffusivity set
to diso.

2.2. Estimating the NODDI Parameters
As described in Zhang et al. (2012), we fix the following
parameters within the NODDI model: d‖ = 1.7 × 10−3mm2s−1

and diso = 3 × 10−3mm2s−1. Consequently, for a single fiber
NODDI model, the free parameters are: Vic, κ,m and Viso. For
the two-fiber NODDI model, we used the following formulation:

E = (1− Viso)(0.5{Vic1Eic1 + (1− Vic1)Eec1}

+0.5{Vic2Eic2 + (1− Vic2)Eec2})+ VisoEiso, (2)

In this case, the free parameters to be estimated are:
Vic1, κ1,m1,Vic2, κ2,m2, and Viso. Given the measured signal
at a particular voxel, we want to estimate the above model

parameters that best explain the signal. We propose to achieve
this using the unscented information filter (UIF), which is a
recursive non-linear least squares estimator, giving themaximum
likelihood estimate of the model parameters. Further, the Fisher
information computed by the UIF provides a lower bound on
the precision with which the model parameters can be estimated
given the data. This statistic can be summarized into a single
number as the estimated uncertainity at each point, by computing
the matrix norm of the estimated covariance matrix. This
uncertainity measure can be quite useful in removing unlikely
fibers (with high uncertainity) from the tractography obtained.
Note that, such information is typically not available using other
model estimation methods.

As in streamline tractography, we treat the fiber as the
trajectory of a particle which we trace out. At each step,
we examine the measured signal at that position, use that
measurement to update our model parameters within the filter,
and propagate forward in the most consistent direction. To use
a state-space formulation for estimating the model parameters,
we need the following application-specific definition of four filter
components:

1. The system state (x): which are the model parameters in our
case,

2. The state transition function (s): how the model changes as we
trace the fiber,

3. The observation function (h): how the signal appears given a
particular model state,

4. The measurement (y): the actual signal obtained from the
scanner.

For our state (x), we directly use the parameters of the NODDI
model (in the case of 2-fibers):

x = [Vic1 κ1 m1 Vic2 κ2 m2 Viso]. (3)

For the state transition function s, we assume identity dynamics
since the local fiber configuration does not undergo drastic
change as it moves from one location to the next, when the step
size is kept very small. The predicted signal is computed using:
y = h[x] given by Equations (1) or (2) depending on the model
used (1 fiber or 2-fiber NODDI) and our actual measurement is
the actual signal interpolated directly on the diffusion weighted
images at the current position.

It is important to note that we chose the unscented
Information filter for its low computational complexity
compared to the UKF. In the UKF formulation, one not only
estimates the state, but also the state covariance matrix P,
whose dimension is k × k, where k is the number of diffusion
weighted gradients. At each step, the covariance matrix P is
updated, which involves inversion of a large matrix that depends
on k. This makes the filter computationally very expensive,
especially in cases like the human connectome data, which has
about 270 measurements. In contrast, in the UIF filter, only the
Fisher-Information matrix is computed and propagated, which
involves inversion of a matrix whose maximal dimension is
substantially small, i.e., the length of the state vector. Thus, in the
case of the two-fiber NODDI model, one only needs to invert the
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FIGURE 1 | Visualization of intracelluar volume fraction, fiber dispersion, isotropic volume fraction, data fitting error and uncertainity in parameter

estimation using 1-fiber noddi model in the arcuate fasciculus. The background slice is the single tensor FA map.

information matrix of size 11 × 11. This significantly increases
the computational speed of the algorithm.

We use the unscented information filter with constraints,
where the final solution is projected onto the physiological range
of the parameters using a quadratic programming problem. For
example, Viso, Vic are constrained to lie between [0, 1], while κ

is always set to be positive. For a more thorough treatment of
the UKF and UIF filters with constraints (see Lee, 2008; Malcolm
et al., 2009b, 2010). In Appendix, we describe the mathematical

equations for the prediction andmeasurement update steps of the
UIF filter.

2.3. The tractography Algorithm
The UIF filter provides the maximum a-posteriori estimate of the
model parameters, given the signal at each location. We embed
this into a tractography framework, as described in detail in
Malcolm et al. (2010). Briefly, we begin by initializing the UIF
filter at each seed point by using the coarse-grid search method
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FIGURE 2 | Corticospinal tract showing orientation dispersion from two different views. In the sagittal view, the background is FA, while in the coronal view

the 1-fiber NODDI dispersion map (Daducci et al., 2015) is shown in the background.

FIGURE 3 | Corticospinal tract (CST) and SLF-II traced using the 2-fiber NODDI model. Intersecting fibers are seen in the centrum-semiovale region.

as described in Zhang et al. (2012). Subsequently, we run the
UIF filter at each seed point, which provides an estimate of the
model parameters, including the principal orientation(s) of the
fiber bundle. A small step (using a fixed pre-determined step
size) is taken along the direction of the principal fiber orientation
that is most consistent as compared to the previous estimate. At
sub-voxel locations, the signal is interpolated using an isotropic
Gaussian kernel with its width (variance) given by the smallest
voxel length in any direction. This interpolated signal is then
used as the acquired measurement (y), within the UIF filter to
estimate the model parameters as well as the Fisher information
and the covariance matrix. In a loop, the fiber is then traced until
a termination criteria is reached. In the present case, we used
generalized fraction anisotropy (GFA) threshold of 0.08 and κ of
0.06 as the stopping criteria.

3. EXPERIMENTS

We tested the proposed algorithm by tracing several fiber bundles
from the in-vivo human data set obtained from HCP (Van Essen
et al., 2013). All b-values of {1000, 2000, 3000}s/mm2 were used
to perform whole brain tractography using single fiber and two-
fiber NODDI models.

On a 2.4 GHz processor with 16 cores, the UKF filter (with 2-
fiber NODDI model) required about 72 hours of computational
time for a single subject whole-brain tractography with 1 seed
per voxel on the HCP data set with 270 gradient directions.
With the same set of parameters, the UIF-based whole brain
tractography required about 30 hours, an improvement by more
than a factor of 2.

Whole brain tractography was performed using with the
following parameter settings: expected rate of change of
orientation qm = 0.002, rate of change of κ (dispersion), qκ =
0.015 and expected rate of change of intracellular and isotropic
volume fraction was set to qic = qiso = 0.0007. The parameter rs
is akin to a regularization parameter that should be set based on
the expected noise level in the data. In the case of HCP data, we
set it to 0.02, based on the noise level in the data. Thus, for higher
noise in the data, rs should be increased, which implicitly implies
that the algorithm will trust the model more than the data. On
the other hand, for high SNR data, rs should be reduced to allow
the tractographymethod to trust the data more than the expected
model. For all the experiments, we set the step length parameter
to 0.5 mm.

The following figures show the traced fiber bundles extracted
using the white matter query language (WMQL) (Wassermann
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FIGURE 4 | Corticospinal tract traced using the 2-fiber NODDI model. In the background is a slice of orientation dispersion obtained from 1-fiber NODDI model

of Daducci et al. (2015). Several NODDI specific measures are shown along the tracts along with the data fitting error, which is below 3% in most cases.

et al., 2013). In particular, Figure 1 shows the arcuate fasciculus
traced using the 1-fiber NODDI model. Estimates of several
diffusion measures of interest, such as, intracellular volume
fraction, orientation dispersion, isotropic volume fraction,
normalized mean squared error (NMSE) in fitting the data and
uncertainity in the estimated parameters are shown along the
tract with the standard single diffusion tensor based FA map
shown in the background.

In Figure 2, the corticospinal tract is shown as traced using the
1-fiber NODDI model. In the coronal view, the background is a
slice of fiber orientation obtained using the method in Daducci
et al. (2015). Note the similarity in the obtained measurements
using both the methods, i.e., high dispersion in the CSF and gray
matter areas and low in the deep white matter regions.

Figure 3 shows results for the 2-fiber NODDI model obtained
using the UIF filter. The cortico-spinal tract (shown in color)
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FIGURE 5 | Estimated uncertainty in the model parameters in the CST (left) and IOFF (right) fiber bundles. Fibers with high uncertainty (likely false positives),

as marked by white arrows, can be easily removed by thresholding the estimated uncertainty.

FIGURE 6 | Comparision of results between 1-fiber NODDI model

tractography(red) and 2-fiber NODDI model tractography(green) for

the IOFF fibers.

and the superior-longitudinal fasiculus II (SLF-II) intersect in
the centrum-semiovale region. As can be seen, the proposed
algorithm is able to trace fibers through crossing regions, which
is not possible using the 1-fiber NODDI model. Also, the lateral
fibers of the corticospinal tract (CST) that go to the hand and face
area are missing in the 1-fiber NODDI model, but can be nicely
traced using the 2-fiber NODDI model.

Results shown in Figure 4 demonstrate how the proposed
method can be used to trace the CST to the hand and face motor
areas. The estimated model parameters, such as intracellular
volume fraction (for both the fibers of the 2-fiber NODDImodel),
orientation dispersion and the isotropic volume fraction are also
shown. Note once again, that we show the orientation dispersion
and intracellular volume fraction for the second fiber as well,
although the tracts were obtained by following the primary fibers.
The results demonstrate the smooth and robust estimation of

FIGURE 7 | Arcuate Fasciculus traced using 1-fiber NODDI model.

Background is the b = 0 image, where very bright regions indicate CSF areas.

As seen, higher error in data fitting occurs only in the CSF areas, which is

extremely noisy with free isotropic diffusion.

all the model parameters, including the ones for the second
fiber.

The UIF filter can also estimate the uncertainty in the
estimation of the model parameters. This information can be
used to removed unlikely fibers or false positives from the
tractography, which offers a powerful way to automatically
detect such fibers and remove them. One such example is
shown in Figure 5 as pointed by the white arrows. Note that,
to the best of our knowledge, only the UIF (and UKF) based
tractography methods allow an inherent way to detect unlikely
fibers.

Figure 6 shows a comparison of the traced inferior occipito-
frontal fibers (IOFF) as traced by the 1-fiber (red) and 2-fiber
(green) NODDImodel. The 2-fiber NODDImanages to trace and
connect a different part of gray matter region that is missed by
the 1-fiber NODDI model. In fact the 1-fiber tracts only trace the
medial portion of the lateral occipital cortex, whereas the 2-fiber
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NODDI tracts cover most of the lateral-occipital cortex as labeled
by Freesurfer. Thus, the 2-fiber NODDI potentially provides a
better estimate of fiber connectivity.

4. DISCUSSION AND LIMITATIONS

In this work, we applied a new computationally efficient and
numerically robust unscented information filtering framework
for joint estimation of NODDI parameters and tractography.
The proposed UIF filter provides a 2-fold improvement in
processing speed, while computing the uncertainty in the
estimated parameters, which is generally lacking in most existing
methods. The method allows for tracing crossing fibers while
accounting for the correlation in diffusion along the tracts. To
the best of our knowledge, this is the first time, multi-fiber
NODDI model has been used to estimate fiber dispersion index
and intracellular-extracellular volume fractions for each of the
crossing fibers separately, within a tractography framework. This
can be quite useful in understanding the geometric properties
of the white matter as it is traced along the tracts. The
proposed algorithm is an open-source software and can be
downloaded from https://github.com/pnlbwh/ukftractography,
with the option of using the NODDI model as one of the possible
choices.

We should however note that, the fiber dispersion dispersion
(OD) index computed using the NODDI model is different than
the one obtained using the methods in Savadjiev et al. (2010,
2012). In particular, the latter are computed from the fiber
tracts or tensor fields at a macroscopic level, whereas the fiber
dispersion obtained from NODDI is inherently microscopic.
While there could be regions where they agree (some regions
of white matter), yet in the gray matter the OD measures from
NODDI is very different than the fiber dispersion computed
using the method in Savadjiev et al. (2012).

Nevertheless, the proposed method has a few limitations.
First, we assume equal volume fraction for each of the crossing
fibers in our 2-fiber NODDI model, which may not be accurate.
Second, the model fit to the data in the CSF areas is poor due

to high noise in the data itself, as seen in Figure 7. However,
the error in most white and gray matter areas is quite low, i.e.,
less than 2%. Another limitation of the current implementation
of the proposed method is its inability to trace more than 2
fiber crossings. While an extension to trace 3 fiber model is
straightforward, it can be done in areas which are a-priori known
to have 3 fiber crossings. However, we believe that using a 3-
fiber model for tracing all fibers would result in over-fitting of
the data. Yet, we should note that the a majority of the white
matter voxels have two crossings, and a very small region has
more than 2 fiber crossings. Thus, the proposed method can be
applied in most parts of the brain to trace fibers and estimate the
dispersion index of each fiber separately, which is a significant
improvement over the existing single-fiber based model of Zhang
et al. (2012).

Another limitation, as is the case with most tractography
algorithms, is the directional nature of the estimated tracts. For
example, the tracts seeded in region A and reaching B, may

not be obtained if seeding was done in region B. However, a
typical way this particular problem is addressed is by seeding the
whole brain and extracting tracts of interest from the whole brain
tractography as has been done here and in most works using
deterministic tractography.

Nevertheless, we believe that the present method allows to
estimate parameters of the NODDI model along fiber tracts and
allows to trace fibers through crossing regions. This could be
useful in neuroscience studies to detect changes in white matter
structure due to disease.
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APPENDIX

The Unscented Information Filter (UIF)
The state xi of the UIF is given the unknown parameters of the
single or multi-fiber NODDI model described in Equation (3).
The initial state x0 is obtained using a coarse grid search for the
unknown parameters as described in Zhang et al. (2012). The
initial covariance matrix P0 ∈ R

n×n is assumed to be diagonal
with all entries initially set to 0.01. Here n is the dimension of
the state. There are a total of 2n + 1 sigma points, with weights

w0 = k
(n+k)

, wi = 1
2(n+k)

, and ζ = n + k. k is an adjustable

scaling parameter set to 0.01 in all our experiments (Wan and
Van Der Merwe, 2000).

1. Form weighted sigma points Xt = {wi, xi}
2n
i=0 around current

mean xt and covariance Pt with scaling factor ζ

X0 = xt Xi = xt + [
√

ζPt]i Xi+n = xt − [
√

ζPt]i
(A1)

2. Prediction Equations

Xx
t+1|t = s[Xt] (A2)

x̄t+1|t =
∑

i

wi X
x
i,t+1|t (A3)

Predicted State covariance matrix

Pt+1|t =
∑

i

wi(X
x
i,t+1|t − x̄t+1|t)(X

x
i,t+1|t − x̄t+1|t)

T (A4)

Information prediction equations

Yt+1|t = (Pt+1|t)
−1 (A5)

ȳt+1|t = Yt+1|t x̄t+1|t (A6)

3. Predict new sigma points for update, e.g.,

X0,t+1|t = x̄t+1|t Xi,t+1|t = x̄t+1|t + [
√

ζPt+1|t]i

Xi+n,t+1|t = x̄t+1|t − [
√

ζPt+1|t]i (A7)

4. Measurement update equations for yt are

Zt+1|t = h[Xt+1|t] (A8)

z̄t+1|t =
∑

i

wi Xi,t+1|t (A9)

Pxz =
∑

i

wi(Xi,t+1|t − x̄t+1|t)(Zi,t+1|t − z̄t+1|t)
T (A10)

Ht+1 = Yt+1|tPxz (A11)

it+1 = HT
t+1R

−1
t+1Ht+1 (A12)

It+1 = HT
t+1R

−1
t+1(z − zt+1|t + (Pxz)

T ȳt+1|t) (A13)

Pt+1 = (Yt+1|t + It+1)
−1

Xt+1 = Pt+1(it+1 + ȳt+1|t) (A14)

Note that, the matrix It above, is the Fisher Information
matrix and can be potentially used to determine the amount
of information that the observed measurement z carries about
each of the model parameters. In the above formulation, we have
ignored the constraints on our model. This could result in non-
realistic estimates, i.e., the volume fractions may not lie between
0 and 1. To enforce appropriate constraints, one can directly
project any unconstrained state x onto the constrained subspace
as shown in Simon and Simon (2006). In other words, we wish
to find the state x̂ closest to the unconstrained state x which still
obeys the constraints, Cx̂ ≤ d. For example, for the single-fiber
NODDI model, the state is x = [Vic κ m Viso] ∈ R

6×1. In this
case, one can define the matrix C and d by:

C =













1 0 0 0
−1 0 0 0
0 −1 0 0
0 0 0 1
0 0 0 −1













, d =













1
0
0
1
0













. (A15)

Using Pt as a weighting matrix, this becomes a quadratic
programming problem:

min
x̂

(x− x̂)TP−1
t (x− x̂) subject to Cx̂ ≤ d. (A16)

This projection procedure is applied within the UIF algorithm
to correct at every place where we move in the state-space: after
spreading the sigma points Xt , after transforming the sigma
points Xt+1|t , and after the final estimate xt+1.
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