
ORIGINAL RESEARCH
published: 25 April 2016

doi: 10.3389/fnins.2016.00176

Frontiers in Neuroscience | www.frontiersin.org 1 April 2016 | Volume 10 | Article 176

Edited by:

Jonathan C. Tapson,

Western Sydney University, Australia

Reviewed by:

Fabio Stefanini,

Columbia University Medical Center,

USA

Sio Hoi Ieng,

University of Pierre and Marie Curie,

France

Nabil Imam,

Cornell University, USA

*Correspondence:

Tobi Delbruck

tobi@ini.phys.ethz.ch

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 20 October 2015

Accepted: 06 April 2016

Published: 25 April 2016

Citation:

Rueckauer B and Delbruck T (2016)

Evaluation of Event-Based Algorithms

for Optical Flow with Ground-Truth

from Inertial Measurement Sensor.

Front. Neurosci. 10:176.

doi: 10.3389/fnins.2016.00176

Evaluation of Event-Based
Algorithms for Optical Flow with
Ground-Truth from Inertial
Measurement Sensor
Bodo Rueckauer and Tobi Delbruck*

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland

In this study we compare nine optical flow algorithms that locally measure the flow normal

to edges according to accuracy and computation cost. In contrast to conventional,

frame-based motion flow algorithms, our open-source implementations compute optical

flow based on address-events from a neuromorphic Dynamic Vision Sensor (DVS). For

this benchmarking we created a dataset of two synthesized and three real samples

recorded from a 240 × 180 pixel Dynamic and Active-pixel Vision Sensor (DAVIS). This

dataset contains events from the DVS as well as conventional frames to support testing

state-of-the-art frame-based methods. We introduce a new source for the ground truth:

In the special case that the perceived motion stems solely from a rotation of the vision

sensor around its three camera axes, the true optical flow can be estimated using

gyro data from the inertial measurement unit integrated with the DAVIS camera. This

provides a ground-truth to which we can compare algorithms that measure optical

flow by means of motion cues. An analysis of error sources led to the use of a

refractory period, more accurate numerical derivatives and a Savitzky-Golay filter to

achieve significant improvements in accuracy. Our pure Java implementations of two

recently published algorithms reduce computational cost by up to 29% compared to the

original implementations. Two of the algorithms introduced in this paper further speed

up processing by a factor of 10 compared with the original implementations, at equal or

better accuracy. On a desktop PC, they run in real-time on dense natural input recorded

by a DAVIS camera.

Keywords: neuromorphic, AER, vision sensor, benchmarks, optical flow, inertial measurement unit, DVS, silicon

retina

1. INTRODUCTION

Accurate and fast measurement of optical flow is a necessary requirement for using this flow in
vision tasks such as detecting moving obstacles crossing the path of a vehicle, visually guiding
aircraft or space vehicle landing, or acquiring structure from motion information about the
environment. The progress of optical flow estimation techniques is marked by two major stepping
stones: The quantitative evaluation of optical flow algorithms by Barron et al. (1994) provided
a dataset and error measures that became standard until succeeded by the more challenging

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00176
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00176&domain=pdf&date_stamp=2016-04-25
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:tobi@ini.phys.ethz.ch
http://dx.doi.org/10.3389/fnins.2016.00176
http://journal.frontiersin.org/article/10.3389/fnins.2016.00176/abstract
http://loop.frontiersin.org/people/238702/overview
http://loop.frontiersin.org/people/2614/overview

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

Middlebury benchmark (Baker et al., 2010). Both helped identify
difficult areas in flow estimation and opened the door for the
development of dozens of new algorithms. Today, state-of-the-
art techniques reach a remarkable degree of accuracy (see the
evaluation on the Middlebury dataset online1). Barron et al.
(1994) and Fleet and Weiss (2005) provide a basic introduction
to gradient-based optical flow estimation; Sun et al. (2014) give
an extensive review of current flow models. In spite of the
large number of optical flow algorithms (116 on the Middlebury
website at the time of submission), Sun et al. state that the
majority of methods strongly resemble the original formulation
of Horn and Schunck (1981). Their high accuracy requires
massive computation and diminishes their usability in real-time
applications (for instance, the highest-ranking algorithm on the
Middlebury benchmark takes 11 min for two frames; the fastest
has a runtime of 0.1 S.) However, with the development of
asynchronous event-based artificial retinas (Posch et al., 2014; Liu
et al., 2015) a promising new approach to visual signal processing
has become possible.

In contrast to conventional image sensors, the dynamic vision
sensor (DVS) camera produces not frames but asynchronous
address-events (AE) as output (Lichtsteiner et al., 2008; Delbruck
et al., 2010). They indicate positive and negative changes in log
intensity at each pixel address, generating ON and OFF events
respectively. This approach has several advantages: Encoding
light with log intensity implements a form of local gain control,
so the DVS can handle scene illuminations from a few lux to
more than 100 klux, and in particular the local gain control
enables reliable operation in scenes with high intrascene dynamic
range. Events are conveyed to a processor over a standard
USB interface at a temporal resolution of 1 µs with latency
of at most 1 ms. The temporal resolution of the DVS is thus
equivalent to that of a frame-based camera running at several
thousand fps. This high sample rate is possible because redundant
information originating from unchanged parts of the image are
not transmitted, unlike in conventional cameras. This sparse AE
output reduces memory requirements and computational cost
and makes the DVS potentially useful for high-speed and low-
power applications in robotics, avoidance of visual obstacles,
terrain classification, etc.

Optical flow algorithms operating on the DVS output can
benefit from these characteristics. They offer a solution to
one challenge frame-based techniques face, namely large inter-
frame displacements that occur in fast motion. For instance,
Benosman et al. (2014) make use of the high temporal precision
of DVS data by computing gradients on the surface consisting
of most recent events. This method is explored in more detail
in Section 2.1.3. Another problem of conventional optical flow
methods is motion discontinuities at object boundaries, where
at least two distinct motions overlap. The datasets offered in
this paper do not have motion discontinuities, because the
motions are generated by camera rotation. But in the case of
DVS cameras, contrast edges at motion discontinuities would
generate events exactly at the discontinuities, which Barranco
et al. (2014) employs to extract the location and motion of

1Middlebury Optical Flow, http://vision.middlebury.edu/flow/.

contours. Furthermore, they combine DVS events with DAVIS
intensity frames to reduce computational cost while at the same
time increasing performance and stability. Away from strong
contrast edges, in highly textured areas, event-based methods
struggle because events that are fired during a short period of
time at close-by positions are falsely assumed to stem from
the same edge. Barranco et al. (2015) developed a phase-based
method to improve estimates in textured regions. Brosch et al.
(2015) provide a comprehensive analysis of event-based visual
motion estimation. Furthermore, they suggest an event-based
flow computation method using biologically inspired filter-banks
that detect the orientation of an edge. A review of real-time
bio-inspired visual motion estimation, particularly in hardware
implementations, is given by Orchard and Etienne-Cummings
(2014). They also propose a spiking neural network architecture
which uses synaptic delay to create receptive fields sensitive to
motion. All these developments are indicative of the potential of
event-based techniques to resolve some of the major problems of
conventional, frame-based flow estimation.

This work proposes a novel source of ground truth for
optical flow evaluation, namely rate gyro data from an inertial
measurement unit on the camera. In our dataset, camera
motion is restricted to camera rotation, so all optical flow can
by computed using the rate gyro information. A database is
created and offered to compare several event-based optical flow
algorithms. We introduce a simple smoothing filter to increase
accuracy while reducing computation cost. The database as well
as all the code is made public; the dataset link is provided
together with a detailed description in Section 2.2 and each
algorithm’s open-source software implementation is provided in
a footnote link. Section 3 presents the benchmarking results,
which are discussed in Section 4 and lead us to the conclusion that
economical real-time event-driven computation of motion flow
is possible, but further development will be required for many
practical applications.

2. MATERIALS AND METHODS

2.1. Event-based Optical Flow Algorithms
We implemented and tested a direction selective filter (Delbruck,
2008), four variants of a basic Lucas-Kanade algorithm
(Benosman et al., 2012), four variants of local plane fits
(Benosman et al., 2014), and a flow estimation based on the
camera’s gyro information instead of visual motion cues. They are
implemented in the open-source jAER project 2. jAER supplies
infrastructure and algorithms for event-based sensor processing.

Except for the direction-selective (DS) method, this
evaluation mainly focuses on gradient-based motion estimation
methods that operate on the DVS AER events. Gradient-based
approaches compute a first-order derivative on some image
property to estimate motion. In frame-based methods, this
property is typically luminance. While we refer to all methods in
Sections 2.1.2 and 2.1.3 as gradient-based, note that they operate
on a different function: The four Lucas-Kanade (LK) variants

2jAER Open Source Project, http://www.jaerproject.org.

Frontiers in Neuroscience | www.frontiersin.org 2 April 2016 | Volume 10 | Article 176

http://vision.middlebury.edu/flow/
http://www.jaerproject.org
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

(Section 2.1.2) use a change in light intensity, while the four local-
plane (LP) algorithms in Section 2.1.3 compute gradients on a
surface containing the timestamps t(x,y) of the most recent DVS
events as a function of pixel location.

2.1.1. Direction Selective Filter
We refer to this method by the acronym “DS.” The DS method
was developed by T. Delbruck in 2007 as the jAER class
DirectionSelectiveFlow (https://sourceforge.net/p/jaer/code/
HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/
opticalflow/DirectionSelectiveFlow.java) source code. This
subclass of AbstractDirectionSelectiveFilter processes pure
DVS event streams. Readers are referred to the source code for
implementation details. DS was inspired by the organization of
V1 direction selective simple cells (Delbruck, 2008, 2012).

In the DS algorithm, each incoming DVS event
is preprocessed by an orientation filter called
SimpleOrientationFilter3 in jAER. SimpleOrientationFilter
first stores the current event’s DVS timestamp in a 2D memory
array indexed by pixel address. There are separate 2D arrays for
ON and OFF DVS events. Next SimpleOrientationFilter checks
the event’s timestamp against the most recent DVS timestamps
of its neighboring pixels along lines of pixels along 4 orientations
(0, 45, 90, and 135◦) to detect an orientated feature in the
image. The number of pixels (length of the line) considered is a
parameter which is typically 5 pixels. A moving edge produces
nearly synchronous events along the edge. Thus, along the edge
direction, the timestamp difference average between the current
event and the most recent past DVS events will be minimized
for the correct edge orientation. During this check, only events
with sufficiently small timestamp difference are considered; if
the past event is too old (typically more than 100 ms ago), then
it is not counted. The orientation that is chosen for the edge is
the one that produces the most synchronous activity; i.e., has the
smallest average timestamp difference. The orientation event is
labeled with the quantized orientation (at 0, 45, 90, or 135◦). The
orientation event timestamp (which is the same as the original
DVS timestamp) is stored in a 2D array indexed by event address,
again using separate arrays for each orientation and ON- and
OFF-type edges, i.e., 8 orientation event arrays.

Next, for each orientation event, DirectionSelectiveFilter uses
time of flight to compute the motion of this edge. It does this
by computing the temporal interval of these orientation events
to the most recent past orientation events along 2 lines of pixels
extending out from the current event’s pixel along the 2 directions
perpendicular to the edge, i.e., if the edge is vertical, then the two
horizontal directions left and right are checked. The distance is a
parameter typically set to 5 pixels. The reciprocal of the average
time difference between pixels is thus the speed of the edge in
pixels per second. In this computation, past orientation event
timestamps that are too old (typically more than 100 ms old)
are not counted. In one of the two directions, the timestamp
differences will likely indicate a reasonable speed; in the other
direction the timestamp differences will typically be very large
because the orientation events resulted from previous edges. The

3SimpleOrientationFilter source code.

output events are labeled with this scalar speed and a quantized
angular direction with values 0–7, 0 being upward motion,
increasing by 45◦ counter-clockwise to 7 being motion up and
to right.

2.1.2. Lucas-Kanade Variants
We refer to these methods by the acronym “LK." They
are implemented as the jAER class LukasKanedeFlow4. This
algorithm is based on the method presented by Benosman et al.
(2012). For each event, it uses a histogram of previous events
in its neighborhood during a short time window to estimate a
spatial and temporal gradient. This serves as input data to an
overdetermined system of linear equations that can be solved for
the optical flow vector with Least Squares Estimation.

The method makes use of the assumption that light intensity
I(x, y, t) is invariant during an infinitesimally short time if we
move along with the image with the correct optical flow. From
this, the gradient constraint equation

∇IT
[

vx
vy

]

= −
∂I

∂t
. (1)

can be derived using a Taylor series expansion (see e.g., Fleet
and Weiss, 2005). Equation (1) simply points out that the time
derivative is accounted for by the space derivative and flow. The
velocity vector (vx, vy)

T is the motion flowwe are looking for. But
this single equation of two variables is under-determined, so we
make a second (implicit) smoothness assumption: that the local
flow (vx, vy)

T is constant over the n×n neighborhood of the pixel
in question5. This leaves us with a system ofm = n2 equations:







∇I(x1, y1)
T

...

∇I(xm, ym)
T







[

vx
vy

]

=







−It1
...

−Itm






. (2)

The Least-Squares solution to this matrix equation Av = b

is given by v = (ATA)−1ATb. The covariance matrix ATA

is invertible if its eigenvalues satisfy λ1 ≥ λ2 > 0. Thus,
the eigenvalues serve as confidence measures, i.e., as means
of determining the correctness of the computed velocities. No
velocity is computed if both eigenvalues are smaller than a certain
confidence threshold τ , i.e., λ1 < τ . If both are greater than τ , the
matrix is considered invertible and the velocity can be computed
as shown. If λ1 ≥ τ and λ2 < τ , we compute

v = −It
∇I

‖∇I‖2
. (3)

Inserting Equation (3) back into the gradient constraint
Equation (1) asserts the validity of this formula. Note that it is

4LukasKanadeFlow source code.
5This assumption does not hold if the neighborhood covers motion boundaries,

which are admittedly the most interesting regions for determining structure from

motion. Because most information in event-based methods comes from contours,

this may well be a significant error source that our dataset does not cover well

because of its basis in the motion field caused by camera rotation. However, events

at an edge typically span a width of several pixels when accumulated over the

time window set for flow computation, so except for the outermost events the

assumption will hold.

Frontiers in Neuroscience | www.frontiersin.org 3 April 2016 | Volume 10 | Article 176

https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/DirectionSelectiveFlow.java
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/DirectionSelectiveFlow.java
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/DirectionSelectiveFlow.java
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/net/sf/jaer/eventprocessing/label/SimpleOrientationFilter.java
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/LucasKanadeFlow.java
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

not feasible to use this equation in the first place, sidestepping the
Least-Squares fit of the whole neighborhood. That would result in
very noisy flow fields, while taking the whole neighborhood into
account helps smooth local fluctuations.

The appropriate value of τ 6 depends on the dataset; we found
that values greater than 1 produce less noisy results.

2.1.2.1. Backward finite difference
In the case of DVS output, the Equation (2) have to be
reformulated in terms of address-events. To estimate the spatial
gradients without gray levels (events are ON/OFF type only),
one can count the number of events that happened in adjacent
pixels in the neighborhood during the last 1t µs. The difference
in the number of events in neighboring pixels reflects relative
changes in their brightness levels and thus provides an estimate
of the local spatial gradient (See Benosman et al., 2012 for the full
derivation). The jth row in the system of equations above then
reads:

[∑t
t−1t(e(xj, yj, t)− e(xj−1, yj, t))

∑t
t−1t(e(xj, yj, t)− e(xj, yj−1, t))

]T [
vx
vy

]

=
1

1t

t
∑

t−1t

e(xj, yj, t).

(4)
This equation relates the differential flow brightness consistency
constraint to AER events. Image intensities are then
approximated by event summations, because the dynamic
vision sensor (DVS) does not provide absolute intensities. The
results of this approach are shown in Section 3 under the label
LKBD.

2.1.2.2. Second order temporal derivative
As we will discuss in Section 4, the main problem of event-
based gradient methods is the potentially small number of events
in a neighborhood, making the derivative-estimation unstable.
Brosch et al. (2015) show that the Lucas-Kanade method of
Benosman et al. (2012) employs a mix of first and second
derivatives. In short: The sum over events is itself a first order
temporal derivative. This implies that the LHS of Equation (4)
contains a temporal and spatial derivative, and the RHS should
consequently contain a second order backward difference

[∑t
t−1t(e(xj, yj, t)− e(xj−1, yj, t))

∑t
t−1t(e(xj, yj, t)− e(xj, yj−1, t))

]T [
vx
vy

]

=

1

1t

(

t
∑

t−1t

e(xj, yj, t)−
t−1t
∑

t−21t

e(xj, yj, t)

)

.

(5)

The effect on accuracy of this consistent use of second derivatives
is discussed in Section 4. Note that one factor 1

1t cancels out in
Equation (4) because all terms contain one temporal derivative.

2.1.2.3. Central finite difference (first order)
The original method Benosman et al. (2012) presented above
utilizes a backward finite difference to estimate the gradient, i.e.,
the spatial derivative with respect to x is calculated by comparing
the number of events at the pixel in question with those at the
pixel one step to the left (one step down for the derivative with

6The parameter thr in the jAER implementation LucasKanadeFlow.

respect to y). We will show later that this asymmetric calculation
clearly manifests itself in the optical flow vectors, which are
biased toward the left and downwards. A symmetric gradient
calculation (e(xj+1, yj, t) − e(xj−1, yj, t))/2 and (e(xj, yj+1, t) −
e(xj, yj−1, t))/2 removes this bias. We evaluate the performance
of this variation LKCD1 in Section 3.

2.1.2.4. Central finite difference (second order)
Because of the crucial role the derivative approximation plays
in estimating flow vectors here, we tried the effect of applying
a finite difference with higher order of accuracy by using
more points on the accumulated event histogram. Above, the
central difference coefficients are (−1/2, 0, 1/2) at locations (j−
1, j, j+ 1). The next higher accuracy is achieved with coefficients
(1/12,−2/3, 0, 2/3,−1/12) at locations (j−2, j−1, j, j+1, j+2).
We label this variation of the Lucas-Kanade method LKCD2 and
compare it in Section 3.

2.1.2.5. Savitzky-Golay filter
The event-based Lucas-Kanade method treated here computes
derivatives of an event rate function that counts the number of
events that occurred in a certain time window in the past. This
digital event rate function usually takes on small values and is
quite susceptible to noise. One way to increase the signal-to-
noise ratio is the Savitzky-Golay filter (SG), which is introduced
here in the context of the Lucas-Kanade method as well as being
used later in the Local Planes method described in Section 2.1.3.
This digital filter convolves data by fitting a low-order polynomial
to adjacent points with linear least squares. From the first
order fit coefficients, the gradients of the fitted surface are then
immediately available. It requires the measurement to be at the
center, a symmetric weighting, a rectangular grid and inclusion of
all grid points (Thornley, 2006). The two-dimensional function is
approximated by the polynomial

f (x, y): =
n
∑

p=0

n−p
∑

q=0

apqx
pyq (6)

where n gives the degree of the polynomial in x- and y-direction
(we confine ourselves to polynomials of the same degree in both
directions). The coefficient matrix a is determined in a least-
squares fit of the model to the data points d = (t(xi, yi))

T ,
1 ≤ i ≤ m in the neighborhood:

a = Cd (7)

with the pseudo-inverse C = (BTB)−1BT of the matrix
containing the polynomial terms (B)pq = xpyq. The vector d

contains the neighborhood points, e.g., in the case of a 3 × 3
neighborhood, d is a 9-vector where the first three elements are
the top row of pixels, etc. Then C is a 3× 9 matrix that computes
the 3 components of a = {a00, a10, a01}. Thus, C is a set of three
3 × 3 kernels {c00, c10, c01} that act on the pixel neighborhood,
where each of kernels is a row of C.

For the specific example of a first order filter that estimates the
first derivatives in a 3 × 3 neighborhood, Equation (7) results in

Frontiers in Neuroscience | www.frontiersin.org 4 April 2016 | Volume 10 | Article 176

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

kernels in {c10, c01} (rearranged to show the spatial operation on
the neighborhood)

c01 =





+ 1
6 + 1

6 + 1
6

0 0 0

− 1
6 − 1

6 − 1
6



 , c10 =





− 1
6 0 + 1

6
− 1

6 0 + 1
6

− 1
6 0 + 1

6





where it should be clear that these kernels estimate the first
derivatives in y- and x-directions as averages in the perpendicular
x- and y-directions.

The convolution coefficients C need only be calculated once
for a certain polynomial order and neighborhood size. A 2D
polynomial fit of degree (n, n) uses k = (n + 1)(n + 2)/2
parameters (e.g., k = 3 for a linear 2D fit), so the neighborhood
must consist of m ≥ k pixels. To obtain the smoothed event
rate function, the k fit parameters apq are calculated once for
the neighborhood of the event in question, using Equation (7).
Now the gradient of this surface can be read out directly from
the first order fit terms. It is not necessary to evaluate the fitted
function over all the points, but these smoothed points could be
computed by inserting each x,y coordinate of the neighborhood
into Equation (6). The results of using the SG filter are presented
in Section 3 under the label LKSG.

2.1.3. Local Plane Fits
We refer to these methods by the acronym “LP.” They are
implemented as the jAER class LocalPlanesFlow7. This algorithm
is based on the method presented in Benosman et al. (2014). It
uses the local properties of events’ spatio-temporal neighborhood
by fitting a plane to an incoming event’s neighborhood on the
surface of recent events. Precise visual flow orientation and
amplitude can be estimated using a local differential approach on
the surface defined by recent events. In contrast to the methods
above, this does not necessitate estimation of spatial and temporal
gradients.

When each event at pixel location (x, y) coming from the DVS
at time t is drawn into a 3d coordinate system (and previous
events at the same location discarded), we obtain the surface of
active events. In analogy to the algorithms in Section 2.1.2, we add
a regularization process by assuming constant local velocity in a
small neighborhood of the event. This makes the flow estimation
robust against noise and compensates for missing events in the
neighborhood of active events where motion is being computed.
In our visualization of events as a surface, this local velocity
constancy corresponds to the neighborhood being locally planar.
The fitting parameters (a, b, c, d) of such a local plane ax + by+
ct + d = 0 are determined by solving a homogeneous system
of equations with least squares regression. The LocalPlanes
algorithm includes an iterative improvement of this initial plane
fit, where events are discarded that are further away from the
plane than a certain threshold timestamp difference th2 (typically
10 ms). The least squares fit is then repeated with the remaining
points. This continues until the square root of the summed
differences between the current fit parameters (a, b, c, d) and the
previous ones drops below a second threshold th1 (typically 0.01).

7LocalPlanesFlow source code.

With the parameters obtained like this, the velocity is given by the
inverse gradient:

[

vx
vy

]

= −c

[

1
a
1
b

]

. (8)

This formulation assumes time to be a strictly increasing function
of space, such that the local derivatives a, b are never zero. In
practice, these derivatives are often zero or very small. When
the DVS records a moving edge, it fires a line of events with
similar timestamp. This line is problematic in the special cases
where the edge is oriented approximately along the x- or y-axis.
The gradient of the resulting local plane will have a vanishing
component along the edge orientation. The equations above
interpret the situation falsely as infinitely fast motion along
the edge, though there really is none. To avoid inverting these
vanishing gradients, the velocity components corresponding to
derivatives with magnitude below a certain threshold (e.g., th3)
can be set to zero. This results in angular quantization: For
instance, the y-components of flow vectors of a rotating edge with
orientation close to the y-axis are truncated to zero, because the y-
derivatives are close to zero. Thus, the flow vectors resulting from
Eq 8 are correct only when the edge orientation is far enough
from being vertical or horizontal.

To correctly deal with vanishing gradients in one direction,
we first use the fact that the true direction of motion is encoded
by the gradient g = (− a

c ,−
b
c) of the fitted plane. But because its

components describe the change of time with respect to space, the
magnitude (and units) does not match. We therefore normalize
this gradient vector and then multiply it by the correct length,
which is given by the inverse of its magnitude: |g| =

√
a2 + b2/c.

The velocity vector is thus obtained as

[

vx
vy

]

=
1

|g|2
g =

−c

a2 + b2

[

a
b

]

. (9)

This formulation is robust against vanishing derivatives a or b.
As a confidence measure for the rare case that both gradients

vanish (flat plane, infinite velocity), we introduce a threshold th3.
If both a and b are below that value, the computed velocity is
interpreted as unrealistically high and discarded. The optimal
value depends on the application; for the present dataset (which
does not containmotions at high speed) we chose th3 of about 1e-
3; because the units of time are microseconds, speeds in excess of
103 pixels/second are not reported.

2.1.3.1. Orthogonality constraint
Brosch et al. (2015) proposed another way to remedy the problem
described above, namely that the surface function is not injective
and thus not invertible when timestamps are similar along an
edge. They derive the exact same formula for the velocity vector
v = (vx, vy)

T by arguing that the plane’s normal vector n =
(a, b, c)T , the contour orientation l = (lx, ly, 0)

T and the velocity

vector vh = (vx, vy, 1)
T defined in homogeneous coordinates

are mutually orthogonal. Solving the three equations nTu =
0, nT l = 0 and uT l = 0 for vx, vy results in Equation
(9). However, using homogeneous coordinates in this way is

Frontiers in Neuroscience | www.frontiersin.org 5 April 2016 | Volume 10 | Article 176

https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/LocalPlanesFlow.java
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

misleading, as it implies checking orthogonality between vectors
of different vector spaces: The normal n is part of euclidean R

3

(with scale c rather than 1 as in vh), whereas l = (lx, ly, 0)
T

interpreted in homogeneous coordinates represents a point at
infinity. Fortunately, Equation (9) can be obtained staying purely
in R

3. Instead of vh, we use the vector containing infinitesimal
increments along the x, y, and t axis: u = (dx, dy, dt)T =
dt(dx

dt
,
dy
dt

, 1)T = dt(vx, vy, 1)
T . This vector is embedded in

the plane and perpendicular to both the normal and the edge
orientation. It is clearly equivalent to vh up to a scale dt, which
drops out in the orthogonality relations. Thus, we arrive at the
same result without the need to change over to projective space.

We implemented both the original method8 (using
Equation 8) and the robust formulation9 (Equation 9). The
results are listed in Section 3; the methods are labeled LPorig and
LProbust respectively.

2.1.3.2. Single fit
How critical for accuracy is the iterative improvement of the
plane fit, as described in the second paragraph of this section?
One could argue that the iterative rejection of distant events
makes sense only when the fit is already good: If the initial
plane happened to misrepresent local motion, a valid event
would be considered an outlier and wrongly removed. Using
simply the initial fit to estimate the gradient substantially reduces
the amount of computations needed: The re-computation of
the plane equation for the whole neighborhood as well as the
eigenvalue-decomposition for the reduced data matrix drop out.
But even for the initial plane fit we can dispense with the costly
eigenvalue-decomposition. The vertical offset d of the plane
ax + by + ct + d = 0 contains no information about the
gradient and therefore does not contribute directly to the optical
flow estimation. It is needed when checking the distance of
an event to the plane during iterative improvement. But when
we confine ourselves to the initial fit, we can divide the plane

equation by d and rearrange it to ãx + b̃y + c̃t = −1. Taking
into account the whole neighborhood, this now gives us an
inhomogeneous system of equations in three variables and can
be solved inexpensively with the pseudo-inverse.

We measured the difference in processing time for both
methods as well as the error right after the initial fit (labeled
LPSF)

10 to see if we can achieve comparably good accuracy with
this simplification. The result is shown in Section 3.

2.1.3.3. Savitzky-Golay filter
In an attempt to smooth the often noisy surface of recent
events without distorting the signal too much, we applied a
two-dimensional linear Savitzky-Golay filter as described above.
The same as for the event rate function, we could obtain the
smoothed surface by calculating the k fit parameters apq once for
the neighborhood of the event using Equation (7) and inserting
each point of the neighborhood into Equation (6). However, if
interested only in the gradient of a linear fit as in the context
of the Local Planes method, this last step can be skipped. After

8OriginalLPmethod in LocalPlanesFlow jAER class.
9RobustLPmethod in LocalPlanesFlow jAER class.
10SingleFit method in LocalPlanesFlow jAER filter.

computing the three parameters (a00, a01, a10)
T of a first-order

Savitzky-Golay filter, the flow vector is given by Equation (9),
where c = −1 to map the Savitzky-Golay fit f (x, y) = a00 +
a10x+ a01y to the plane equation ax+ by+ ct + d = 0.

Computing the parameters a with Equation (7) assumes a
complete grid of valid data points. Due to the sparse nature
of DVS events, most of the time this completeness is not the
case: Locations in the neighborhood may contain old events;
the event surface ahead of a leading edge consists of either
unset timestamps or old events belonging to objects passing
previously. Equation (7) offers no way to discard them robustly.
The solution is to perform the low-level operations that are
contained in the first-order Savitzky-Golay kernels C one by
one, namely estimating the average derivatives in X and Y of
the timestamp surface, taking account of only valid timestamps.
This robust estimation of the slopes iterates over the rows (for
X-derivative) or columns (for Y-derivative) of the timestamp
array and computes the finite differences for valid pairs of points.
The final gradient in X and Y is the average of these individual
derivative estimates. It can be shown that this algorithm is
equivalent to applying a linear Savitzky-Golay fit - with the
benefit of robustness against invalid data points, at the cost of
more computations.

The results of this method are shown in Section 3 under the
label LPSG

11.

2.1.4. Inertial Measurement Unit (IMU)
We refer to this method of computing optical flow as IMU. It
is implemented as the jAER class IMUFlow12. The DAVIS240C
camera13 we used in our experiments includes an IMU (Inertial
Measurement Unit) that provides gyro and accelerometer data,
i.e., the sensors for an electronic vestibular system (Delbruck
et al., 2014). Here we used only the rate gyro information. The
pure camera rotation used in this study allows us to compute the
ground truth true optical flow (the motion field) from the IMU
gyro rates, as follows.

The gyro data is given in rotational angular rates around the
three camera axes (see Figure 1). The angular rates ẋ, ẏ, ż stand
for tilt (up/down), pan (right/left) and roll (camera axis rotation).
To obtain total camera rotational angles x, y, z, these angular
rates are integrated over time and high-pass filtered to deal with
gyro offsets which were sometimes as large as 2◦/s. The first-order
IIR filter with time constant τ (set to 10 s in this study) computes
an integrated angle xn from an IMU sample ẋn taken at time tn
from Equation (10):

xn = ẋn1tn + (1−
1tn

τ
)xn−1 (10)

1tn = tn − tn−1. (11)

The subscript n indicates the position in the sample series (we
drop it in the following). The IMU updates the angular rates at

11LinearSavistskyGolaymethod in LocalPlanesFlow jAER class.
12IMUFlow source code; uses class AbstractMotionFlowIMU in method

calculateImuFlow.
13inilabs.com

Frontiers in Neuroscience | www.frontiersin.org 6 April 2016 | Volume 10 | Article 176

https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/ImuFlow.java
https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/ch/unizh/ini/jaer/projects/rbodo/opticalflow/AbstractMotionFlowIMU.java
https://inilabs.com
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

FIGURE 1 | The rate gyro axes of a DAVIS240 camera including an IMU.

(Graphic adapted from Delbruck et al., 2014.)

FIGURE 2 | Transformation of coordinates due to camera rotation. Lens

distortion is neglected (pinhole model; rectangle conserves its shape). This

assumption works well for lenses with large focal length. (Graphic adapted

from Delbruck et al., 2014.)

a sample rate of 2.5 kHz (the IMU was fully interfaced to the
camera CPLD since publication of Delbruck et al., 2014). When
any of the x, y, z values exceed a certain limit (typically 45◦), then
all are set back to zero. This reset is important during continued
camera rotation and in effect implements saccades to re-center
the transformed output.

These rates offer way to obtain an estimate of true optical flow
produced by a pure rotation of the camera. As shown in Delbruck
et al. (2014), the rotation of the camera transforms a DVS event
address e = (ex, ey) according to Equation (12):

e ′ = R(e− e0 + T)+ e0 (12)

where the 2-vector e ′ is the transformed event address, e0 is the
pixel address nearest the center of the IMU, R is the 2 × 2 roll-
angle image rotation matrix, and the 2-vector T is the translation
of the image due to pan and tilt rotations. An illustration of
how an event is rotated and translated is given in Figure 2.
The DAVIS240C camera has the IMU mounted directly behind
and centered under the image sensor pixel array center at a

distance of about 3 mm from it, so in practice e0 is the center
of the pixel array. Equation (12) assumes a pinhole lens with
no distortion, so that all pixels have the same magnification,
which was approximately the case for the lens used in this study,
although on the periphery, some slight lens distortion is evident
from the data in Figure 4 for the translating sinusoid, where
the bars are slightly curved on the corners of the image (see
Section 2.2.2).

The z image rotation matrix R and x-y image translation
vector T are given by Equation (13):

T = k

[

y
x

]

, R =
[

cos z − sin z
sin z cos z

]

(13)

To scale from camera pan and tilt rotation angle to DVS pixels,
we multiply with the conversion factor

k =
1

tan−1(w
l
)
. (14)

This equation is derived from the trigonometric identity that the
tangent of the angle that subtends one pixel is equal to the pixel
pitch w divided by the lens focal length l. For the camera used
here, w = 18.5 µm and l = 4.5 mm (Kowa, f/1.4 C-mount lens),
thus k = 4.25 pixels/◦.

Once we know the transformed event’s address e′ we obtain
the local optical flow of the motion field from the difference in
coordinates 1r = e′ − e from Equation (12), and the velocity
v(e) = 1r/1t by dividing by the time since the last IMU gyro
rate update.

This computation of course assumes that the objects seen by
the camera are stationary, and the camera is only rotating, not
translating through space. In this study, we excluded camera
translations by fixing the sensor on a rotor (see Section 2.2).

The implemented computation of the motion field based on
integration and then discrete differentiation of the gyro rates
for each event is inherited from the dual use in jAER of the
rate gyro information for stabilizing (derotating) the DVS output
(Delbruck et al., 2014). A direct computation of the motion field
from the gyro rates is also possible.

Optical flow estimated from IMU gyro data is useful as ground
truth where either the visual motion field (not just normal flow)
is measured, or the orientation of the contour is known so that
the ground truth vectors can be projected onto its normal (e.g.,
in direction selective filters).

2.2. Dataset
To evaluate the methods presented above, we created a public
dataset14 consisting of two synthesized samples, two real samples
with simple structure, and one real, more complex indoor scene.
We have also included DAVIS data and an extracted image of a
standard checkerboard pattern useful for camera calibration in
the dataset. An illustrated online README document provides
a guide to the dataset, examples of using it, and a step-by-step
guide to jAER software installation and flow algorithm use. The
real samples were recorded from a 240 × 180 pixel DAVIS240c

14This dataset is hosted at http://sensors.ini.uzh.ch/databases.html.

Frontiers in Neuroscience | www.frontiersin.org 7 April 2016 | Volume 10 | Article 176

http://sensors.ini.uzh.ch/databases.html
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

(Dynamic and Active-pixel Vision Sensor, Brandli et al., 2014).
This vision sensor combines the functionality of a DVS with
frame-based absolute intensity read-out15. Thus, the recorded
dataset contains asynchronous events from the DVS as well as
conventional synchronous frames to support testing state-of-
the-art frame-based methods. The frames are not used in this
study.

Note that the gradient-based and direction-selective methods
discussed here only compute normal flow, i.e., the velocity
perpendicular to the orientation of a moving edge. We therefore
focused on collecting a dataset that contained only normal flow.

2.2.1. Synthesized Samples
Address-events with timestamp and polarity can be created in
Matlab and imported into jAER. The script for creating this
dataset is available in the dataset and the script for importing
these synthetic events is located in the jAER repository in the
matlab folder16. In the simplest case, such samples are clean
signals without occlusion, specularity, shadowing, transparency
etc. Furthermore, the ground truth is known from the underlying
model. The early benchmarking dataset by Barron et al. (1994)
contained two such plain samples. Our synthesized samples
tie in with them and cannot be compared to the Middlebury
artificial samples with respect to complexity. We believe that
these elementary datasets are still justified in testing the relatively
young branch of event-based flow estimation. We will see in
Section 3 that we cannot count on high accuracy even for
relatively simple samples. In any case they are a useful tool to
check that a new implementation works in principle.

2.2.1.1. Translating square
The first is a square of width 40 pixels translating with v =
(20, 20) pixels/s. The events are concentrated solely along the
edges, so this corresponds to an texture-less object with perfect
contours. This sample demonstrates how the algorithms output
normal flow rather than object flow (here: along the horizontal
and vertical axis rather than diagonally toward the upper right
corner).

2.2.1.2. Rotating bar
The second sample is a bar of width 1 pixel and length 50
pixels rotating with rotation rate 0.21 Hz. In this case, normal
flow matches object flow. We expect the flow vector direction to
vary continuously with the rotation angle, and the speed to be
proportional to the distance from the center of rotation.

2.2.2. Real Samples
To record the samples from real input, the DVS was mounted
on a rotor which restricted motion to either pan, tilt or roll,
depending on how the camera was fastened. The pan, tilt and
roll were arranged to create pure camera rotation; in the case of
pan and tilt movements the scene was sufficiently far from sensor
so that the slight camera translation created negligible flow. The

15We write DVS to mean the DAVIS240c throughout this paper, because only

the DVS events from the DAVIS240c were used. However, the dataset includes

synchronous frames.
16Matlab scripts folder in jAER. The synthetic data is exported from matlab using

the script saveaerdat.m.

rotational speed was controlled via a DC-voltage source. The
visual stimulus for the rotating bar and translating sinusoid was
printed on paper and fixed in front of the camera at a distance
of approximately 30 cm. Images of the experimental setup and of
the input stimuli are provided in the supplementary material.

2.2.2.1. Translating sinusoid
The first real sample shows a contrast pattern that varies
sinusoidally in horizontal direction. The camera is panned
clockwise around its y-axis to create the impression that the
sinusoid is shifting to the left. The contours are slightly curved
due to lens distortion. The consequence is that the ground
truth from the IMU is not perfectly normal everywhere on the
contours. This introduces a systematic error of maximum 2.2
pixels or 8◦ at the corners of the image in the flow vectors on
the periphery of the image. Such distortions can be corrected by
the fully-integrated SingleCameraCalibration camera calibration
method, data for which is available in the dataset.

2.2.2.2. Rotating disk
The second sample contains a disk with eight compartments of
varying gray-levels. The camera is rotated around its z-axis (roll)
so the disk seems to turn clockwise.

2.2.2.3. Translating boxes
The third sample shows a table with two cases and books.
The scene contains some shadows, reflective components,
specularities, parts with little contrast between fore- and
background, no highly textured surface, no complex motion
discontinuities, no transparency. The motion is purely
translational and caused only by the panning camera.

2.2.3. Ground Truth
In their concluding remarks, Barranco et al. (2014) call for the
creation of new benchmarks with ground truth for neuromorphic
cameras. There is a variety of approaches to obtaining ground
truth. For synthesized sequences, the true motion field can
be constructed from geometric principles or is known from
the underlying model used to generate the sample. Except for
such synthesized datasets, the ground truth is itself the result
of measurements and therefore to some degree imperfect. In
Barranco et al. (2015), the authors mount a camera on a robot
and use odometry and depth-measurements to collect the ground
truth. In Baker et al. (2010), they spray a fine grid of phosphoric
substance onto the scene and measure the displacements with
UV light. Another possibility to obtain the ground truth for
event-based flow evaluation is to interpolate frame-based datasets
(Barranco et al., 2014, 2015) like the Middlebury dataset, where
the ground truth is provided. We could not make use of this
option because the methods evaluated here produce only normal
flow, and to get meaningful error statistics the ground truth
should also be normal to contours. In Barranco et al. (2015), the
ground truth (derived from theMiddlebury dataset as mentioned
above) is projected onto the gradient direction computed by their
event-based contour estimation. This way they can compare their
measured normal flow to the normal ground truth.

As a novel source of ground truth we propose using the flow
field obtained from IMU gyro data as explained in Section 2.1.4.

Frontiers in Neuroscience | www.frontiersin.org 8 April 2016 | Volume 10 | Article 176

https://sourceforge.net/p/jaer/code/HEAD/tree/scripts/matlab/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

When using a camera that hosts an inertial measurement unit,
the ground truth can be calculated in real time and parallel
to any other filters applied to the incoming frames or events.
Optical flowmeasurements based on visual cues can be compared
directly to the IMU flow, which can serve as feedback or initial
guess and to discard outliers. It has some obvious limitations,
however: the flow field can only be calculated from the IMU, if the
camera is rotating about its axes. Also, the scene has to be static;
objects moving independently in the scene would be labeled with
the same IMU-deduced flow as resting objects. Finally, there is
no depth distinction. For these reasons the dataset created here
does not contain moving objects or non-rigid motion.

2.3. Error Measures
2.3.1. Average Endpoint Error (AEE)
We use the established absolute Average Endpoint Error

AEE =
1

N

N
∑

i=1

√

(vx,i − ux,i)2 + (vy,i − uy,i)2 (15)

as well as the relative AEE, normalized with respect to the ground
truth speed,

AEErel =
1

N

N
∑

i=1

√

(vx,i − ux,i)2 + (vy,i − uy,i)2
1

|ui|
(16)

where the vector vi = (vx, vy)i stands for the i-th sample of
measured flow and ui = (ux, uy)i for the corresponding ground
truth flow vector.

2.3.2. Average Angular Error (AAE)
The endpoint error does not distinguish between angular
deviation and speed difference. Therefore, we measure the
angular error as well. In the frame-based optical flow literature,
the angular error is not purely angular in the image plane, because
it considers the angle in space-time (pixel,pixel,frame), i.e., by
computing it as (Barron et al., 1994)

AE3D = arccos
1+ vxux + vyuy

√

1+ v2x + v2y

√

1+ u2x + u2y

. (17)

This angular error is between vectors in 3D with a constant
third component as arbitrary scaling constant that also prevents
division by zero. To see how this measure combines angular and
length error, compare the angular error between velocity vectors
(1,0) and (2,0): The angular error in the image plane is zero, the
endpoint error is not and neither is Equation (17). The additional
third component in (vx, vy, 1), i.e., the combination of angular
error in the 2D image plane and length error, causes this bias
that has been pointed out in Barron et al. (1994) and Baker et al.
(2010), which leads most authors to favor the AEE. We consider
a purely angular error metric between vectors in the image plane
beneficial, as it helps identify the specific shortcomings of an
implementation. Thus, to separate AE and EE, we compute the

Average Angular Error between the velocity vectors in the image
plane:

AAE =
1

N

N
∑

i=1

arccos
vx,iux,i + vy,iuy,i

|vi||ui|
. (18)

Zero-velocity measurements are not counted in the computation
of Equation (18).

2.4. Statistics
We display the Standard Deviation (SD) instead of the Standard
Error of the mean (SE) because we are interested in the spread of
the data points around the mean rather than the closeness of the
sample mean to the population mean.

In addition to the average and SD, we report similar robustness
measures as in Baker et al. (2010): Rx is the percentage of pixels
that have an error measure above × (e.g., R2.5 in degrees for
angular error and R2 in pixels for endpoint error). However, we
use higher values than the Middlebury evaluation because the
error histograms are considerably wider.

2.5. Processing Time Measurement
The computation time of an optical flow vector for a single event
is usually smaller than the resolution of the time measurement
function used (e.g., Java’s System.nanoTime() has a resolution of
microseconds on our Windows computer). The events have to
be buffered into event packets and the total computation time
then averaged. However, the algorithms discard events during
computation of flow. Not all events can be used: for instance,
the neighborhood of an event may be so sparsely populated that
the data matrix used in the Least-Squares Regression is singular.
Then no motion vector is calculated. Other tests include a
refractory period or a speed control. Dividing the total processing
time of the packet by the initial input size would result in a mean
processing time which could be several orders of magnitude
too small, because not all events actually make it all the way
through the filter. To circumvent this, all unnecessary filters (like
refractory period and speed control) are turned off; in those tests
that are inherent to the flow computation (like invertibility), the
event is assigned zero velocity and continued to be processed
normally, so that no regular part of the filter is skipped. Another
option could be to filter out in a first stage all the events that
would produce invalid results, and in a second stage measure the
computation time for the remaining set with known size.

The real-time cost of processing an event was measured on a
Core i5 @ 2.4 GHz PC running Windows 10 × 64 and Java 1.7.
The overhead on this machine simply to process event packets is
of the order of tens ns/event and can be neglected.

3. RESULTS

Figure 3 illustrates the flow fields produced by all nine methods
for the synthesized samples translating square and rotating bar.

In Figure 4, the flow fields computed by the nine methods are
compared with ground truth based on camera rotation (IMU),
for the translating sinusoid, rotating disk and translating boxes
sample.

Frontiers in Neuroscience | www.frontiersin.org 9 April 2016 | Volume 10 | Article 176

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

FIGURE 3 | First two rows: Flow fields computed with all nine methods, of the synthetic translating square sample. Last two rows: rotating bar. In this and

the following figures, vectors are colored according to the angle of the motion event for better readability. The method LKBD fails to detect the correct direction of

motion in these synthesized samples due to the asymmetry of the backward finite difference approximation (discussed in Section 2.1.2).

The event-density reported in the supplementary material
signifies the fraction of events that passed the filter with valid
flow vector attached. As mentioned in Section 2.5, the algorithms
contain various tests to improve the results and discard outliers.
These tests have a noticeable effect on computation time: For
instance, the refractory period skips computation of affected
events entirely. At the same time, the motion field is thinned out.
The event-density is a direct indicator of these two effects.

3.1. IMU Integration: Verification of Ground
Truth
Table 1 summarizes three rudimentary tests to check proper
functioning of the IMU flow. The horizontal speed of the
translating sinusoid and the box scene as well as the angular
velocity of the rotating disk was measured and compared to
the IMU flow estimate. This manual measurement consisted in
tracing a patch of the moving object for a certain distance and
calculating the speed by the time of flight. The main uncertainty
with this method lay in tracing the exact location and is estimated
to be one pixel.

Without IMU offset correction, the IMU constantly outputs
some non-zero gyro data that results in flow vectors even when

the sensor is at rest. These offsets are computed during stationary
camera conditions by averaging several hundred samples and
then subtracting these offsets from subsequent readings. This
subtraction reduces but not completely removes the error. The
remaining non-zero flow vector at rest is much less than a pixel
per second and the resulting angular error is only a small fraction
of a degree.

See Figure 4 for examples of the motion field flow vectors
produced by the IMU-based method.

3.2. Processing Time
Table 2 summarizes the processing time measurements for each
of the 10 methods (including IMU flow) for the translating boxes
sample. The fastest variant of each method is highlighted in bold.
Table 3 shows the approximate floating point operation count for
each of the methods.

3.3. Accuracy
In Table 4 we summarize the angular accuracy of the nine
methods for all samples; Table 5 shows the relative endpoint
error. The absolute endpoint error as well as robustness measures
for angle and endpoint error are provided in the supplementary
material. Given that the accuracy of each algorithm varies

Frontiers in Neuroscience | www.frontiersin.org 10 April 2016 | Volume 10 | Article 176

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

FIGURE 4 | Ground truth from IMU and flow fields computed with the nine motion flow algorithms, of the three real samples: translating sinusoid,

rotating disk and translating boxes.

TABLE 1 | Comparison of ground truth with manual measurements of

translational / rotational object motion for the three real samples.

Sample Manually IMU Rel. error

translSin 31 px/s 30.05 px/s 3%

rotDisk 0.52 1/s 0.57 1/s 8.8%

translBox 26 px/s 24.5 px/s 6.6%

The relative error is given with respect to the manual measurement.

somewhat across the dataset, it is difficult to detect a trend or
identify the best performing method. Note however that among
the LucasKanade variants, the Savitzky-Golay filter scores best

in terms of angular accuracy on 4 out of 5 samples, as does
the DirectionSelective filter. The Savitzky-Golay variation of the
LocalPlanes method computes accurate angles but struggles with
the correct vector magnitude on three of the samples. This
behavior is discussed further in Section 4.2.

4. DISCUSSION

This study compares accuracy and processing time of nine event-
based optical flow algorithms. A direct comparison with frame-
based methods is possible by applying them on the frames
included in this dataset (which has not been done yet). In order

Frontiers in Neuroscience | www.frontiersin.org 11 April 2016 | Volume 10 | Article 176

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

TABLE 2 | Average processing time per event in microseconds with

standard deviation.

PT [µs] Mean SD

IMU 0.38 0.04

LKBD 5.32 0.21

LKCD1 5.06 0.30

LKCD2 8.99 0.29

LKSG 3.13 0.27

LPorig 4.35 0.31

LProbust 4.51 0.28

LPSF 0.70 0.13

LPSG 0.58 0.03

DS 0.36 0.02

TABLE 3 | Approximate number of floating point operations needed to

calculate the motion vector of one event, for each algorithm.

FLOPs

IMU 100

LKBD 1857

LKCD1 1957

LKCD2 2557

LKSG 1372

LPorig 1827

LProbust 1840

LPSF 1359

LPSG 980

DS 1096

to use existing frame-based benchmarks (e.g., on the Middlebury
database), (Barranco et al., 2015) created synthetic events by
simulating 50,000 frames for every two frames and interpolating
frame-by-frame changes in intensity. This was not feasible here
because our implementations compute normal flow, whereas
the Middlebury ground truth provides 2D flow. However, the
comparison of event- and frame-based algorithms running on
seven samples of the Middlebury dataset, as done by Barranco
et al., offers at least some rough indicator for the performance
of the methods presented here with respect to previous results.
Their novel phase-basedmotion estimation achieves relative AEE
between 16.6 and 42.5% for seven of the Middlebury sequences;
the accuracy of the then best-performing frame-based method
ranges between 1.6 and 46.6% endpoint error on the same
samples. Several of the methods here (evaluated on the dataset
here) perform within this range.

4.1. Processing Time
The fastest method was the direction selective filter with 0.36
µs per event, where no extensive linear algebra is performed.

The next fastest method is the Savitzky-Golay-filter variant of
the Local Plane Fit method, which with 0.58 µs is about eight
times faster than the original version because computing the
fitting parameters does not involve solving a system of equations.
LPSF is almost as fast because it does not repeatedly improve
the initial plane fit. However, it has to solve a linear system of
equations once per event with linear least squares. The standard
Lucas-Kanade methods take between 5 and 9 µs per event,
while its Savitzky-Golay variant ranges at 3.13 µs. Calculating
the motion field with the IMU data is very fast (0.38 µs
per event) because the transformation of the event-coordinates
(rotation and translation) is not costly, and the rotation matrix
and translation vector has to be computed only about every
millisecond when an update from the IMU comes in.

All methods take less than 10µs to calculate the motion vector
of a single event; DS, IMU and LPSG take less than one µs per
event. Thus, they all run in real-time on contemporary PCs17 if
the event-rate does not exceed 1e5 events per second (eps), or
4000 events per frame with a frame-rate of 25 fps. The mean
event rate of our rotating disk sample is 1e5, and 3e5 eps for the
rather dense translating sinusoid, which can still be processed in
real-time by four of the methods. Natural input even from data
recorded by DAVIS240 cameras on moving platforms seldom
exceeds 1e6 eps. In case it does, the sequence would have to
be processed by LPSG or DS, or subsampled to reduce event
density and make it suitable for slower algorithms. Subsampling
is usually unproblematic in global motion estimation (e.g., for
motion stabilization), but might impede local flow estimation
(e.g., object tracking).

The algorithms are implemented in pure Java but became
much faster by relying on just-in-time optimization and
performing most linear algebra explicitly in pure Java rather than
by using numerical libraries like jama or jblas. As pointed out
by Barranco et al. (2014), event-based optical flow algorithms
could potentially be parallelized in graphics processing units
or pipelined in field-programmable gate arrays, although the
challenges of applying what are naturally SIMD hardware to
causal and time-ordered event-based sensor data remain to be
addressed. A solution based on parallel hardware units that
process each pixel independently is not economical because
most such units would be idle most of the time, so developing
hardware units that can perform the necessary computations
on the memory that stores either timestamps, histograms, or
orientation features is not straightforward. If the units pipeline
the operations to deal with a queue of events, then they must
deal with memory bus contention to access the large timestamp
arrays. If the units have dedicated blocks of memory to deal with
blocks of pixels, then they must handle the block edges.

4.2. Accuracy
Methods that performed well in terms of angular error were
the Savitzky-Golay variants of the Lucas-Kanade and Local
Plane Fit algorithm, and - surprisingly, given its limitation
through the quantized angle - the DirectionSelective filter.
The derivative estimation with central finite differences instead

17Which however burn on the order of 100W.

Frontiers in Neuroscience | www.frontiersin.org 12 April 2016 | Volume 10 | Article 176

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

TABLE 4 | Average angular error in degrees with standard deviations.

AAE [◦] translSqu rotBar translSin rotDisk translBoxes

LKBD 135.77± 31.45 73.24±56.52 20.35± 16.46 51.71±45.47 108.07±28.67

LKCD1 7.05± 20.05 29.68±20.54 21.72± 35.31 19.93±21.35 28.98±31.27

LKCD2 9.38± 19.31 32.85±21.17 13.33± 15.18 18.72±19.00 36.07±36.69

LKSG 11.48± 8.80 16.75±8.26 9.56± 15.90 6.37±6.53 12.13±19.84

LPorig 0.00± 0.00 17.54±21.56 38.93± 61.85 28.06±33.39 9.78±32.96

LProbust 0.00± 0.00 9.56±29.97 37.72± 55.76 22.30±32.70 9.46±22.67

LPSF 2.39± 8.98 6.81±24.34 43.99± 48.52 23.39±32.12 9.27±13.11

LPSG 0.00± 0.00 8.72±17.92 28.39± 42.78 18.77±31.74 13.96±23.62

DS 0.63± 5.28 6.88±7.18 32.82± 56.67 16.62±20.36 12.01±31.91

Values in bold face are smallest error for each algorithm.

TABLE 5 | Relative average endpoint error in percent (normalized with respect to the magnitude of the ground truth velocity), with standard deviations.

AAErel[%] translSqu rotBar translSin rotDisk translBoxes

LKBD 123.43± 11.04 414.95±767.50 57.85±16.37 76.65± 31.87 116.95±15.57

LKCD1 12.94± 36.16 197.47±386.69 57.16±25.55 54.46± 34.89 58.13±28.86

LKCD2 32.87± 24.43 183.69±276.91 37.54±21.52 64.53± 24.52 72.54±27.70

LKSG 65.08± 21.08 326.77±253.31 32.50±26.98 49.83± 27.64 35.62±24.68

LPorig 0.00± 0.00 175.08±460.93 62.82±48.67 60.71± 61.76 37.93±35.15

LProbust 0.00± 0.00 91.61±278.97 59.45±37.49 50.57± 37.08 36.13±27.80

LPSF 6.41± 15.13 39.08±63.84 69.62±33.17 58.99± 37.87 33.49±18.01

LPSG 0.00± 0.00 114.56±341.18 54.41±51.27 78.02± 281.03 66.74±44.78

DS 1.06± 8.99 40.37±54.65 62.92±60.50 44.18± 34.91 30.73±34.06

of backward differences clearly improves finding the correct
direction. Similarly, computing the plane fitting parameters
with robust Equation (9) improves performance of the original
version, most distinctly in the rotating bar and disk samples.
There, the original method suffers from angle quantization, as
outlined in Section 2.1.3. Evaluation of the endpoint error reveals
a similar picture, though the LocalPlane Savitzky-Golay variant is
not as good as for the AAE.

The standard deviation is of the same order as the mean,
for all methods and samples. There are at least two possible
explanations. First, the estimated flow vectors stray around the
mean due to the noisy event-structure at contours. Second, a
substantial portion of vectors point quite oppositely to the true
direction of motion (see Section 4.2.1 for a discussion of this
phenomenon). Together with the knowledge that the variation
is a dispersion measure sensitive to outliers (because distances
from the mean are squared), this accounts for the large standard
deviation. A more robust statistic would be the median absolute
deviation around the median, or the mean absolute deviation
around the mean, which are more resilient to outliers.

4.2.1. Lucas-Kanade
A vital part of the Lucas-Kanade variants is the estimation of
intensity derivatives using finite differences. This is a relatively
crude form of numerical differentiation given the highly

FIGURE 5 | The Lucas-Kanade method where the intensity derivative is

approximated by backward finite differences (kernel [−1,1] and

[1, −1]T). Clearly visible is the bias toward left and down; the true direction of

motion is perpendicular to the contour orientation.

discontinuous and noisy intensity (event frequency) function.
Comparing Figure 5 with Figure 6 illustrates how the backward
finite difference is biased toward the left and down, resulting
in large errors (The true direction of motion is orthogonal to
the contour orientation). This bias is lifted by using central
finite differences (see Figure 6 with flow from method LKCD1).
A second order (8-point) central difference derivative (LKCD2)
does not pay off significantly. While for some samples the error
is reduced by a few percent, using a higher order in fact increases

Frontiers in Neuroscience | www.frontiersin.org 13 April 2016 | Volume 10 | Article 176

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

FIGURE 6 | Using a central finite difference derivation removes the bias

of the backward finite difference method: The flow vectors stray

around the true direction of motion (with large variance due to the

noisy contour).

FIGURE 7 | A refractory period of 15 ms is added to the otherwise

identical situation of Figure 6. Events in the back of the edge are filtered

out, which decreases the number of outliers (AAE reduced by 30%).

FIGURE 8 | Lucas-Kanade with a two-dimensional linear

Savitzky-Golay filter to smooth the event frequency function before

numerical differentiation. Note the reduced angular error compared to the

method in Figure 7.

the angular error for other samples by up to 10%. The derivative
is more accurate, but also more susceptible to noise.

The consistent use of second temporal derivatives on the RHS
of Equation (5) is problematic because of the small number of
events in a neighborhood, as outlined by the authors proposing
this modification (Brosch et al., 2015). The effect is similar to
that of LKCD2: Depending on the image sequence, it increases
the error by up to 10% because noise is amplified. Apart from its
influence on accuracy, the second temporal derivative increases

the processing time by about 50% because in our implementation
we now need to loop over the neighborhood twice to find the
number of events at each pixel location in two different time
windows. Note that we did not explicitly include a comparison
between the use of first and second temporal derivative in the
tables in Section 3; all Lucas-Kanade methods there employ the
second temporal derivative.

As visible in Figure 6, high angular errors (flow vectors
oppositely to the true direction) occur at the back side of a
moving edge. Recall that the motion vector points along the
gradient of the intensity function, i.e., from sites with higher
event frequency to those with less. At the front of the edge this
produces correct results. But an event at the back of the moving
edge will see the opposite gradient: When looking at the event
histogram, there are steadily new events toward the direction
of motion, and no more events coming from the homogeneous
center of the moving object, so the flow vector will point the
wrong way. This effect can be reduced by including a refractory
period τrf , which allows skipping the calculation of an event’s
motion flow vector when the pixel has fired its last event within
τrf .

18 The pixels in the back of the edge have most likely fired
recently (within the last 10–100 ms), so by setting τrf = 15 ms
most of them are excluded. In Figure 7, the AAE is thus reduced
by 30% compared to Figure 6. Of course there are some pixels
that have not fired before, even though the edge passed over them;
they will still produce incorrect results. This refractory period
must be adjusted appropriately for the dynamics of any particular
application.

Figure 8 shows how another significant improvement is
achieved by convolving the noisy event-frequency function with
a two-dimensional Savitzky-Golay filter as described in Section
2.1.2.

All Lucas-Kanade variants display considerably higher AEE
on the synthetic samples translSqu and rotBar. This is due to
fact that a moving edge e.g., in translSqu consists of a line of
single events with equal timestamps stepping to the adjacent
pixel location every 50 ms. The event rate function on which the
derivatives are computed thus contains only a constant one event
per time bin, regardless of how fast the edge is moving. (In a real
sample, a faster moving edge would accumulate less events at a
given pixel than a slow one.) These artificial samples thus turn
out to be inadequate for Lucas-Kanade methods.

4.2.2. Local Plane Fit
Local area methods that are causally event-based know nothing
about what lies ahead of a leading edge. This is not a problem
in Lucas-Kanade-like methods above, where the flow vectors
basically point from regions of higher event-rate to those with
less. Local plane fit methods however operate on the surface of
most recent events, where a large portion of the timestamp data
points may lie quite far away (stemming from previous motions

18Besides the positive effect on accuracy discussed here, the refractory period can

also be used to thin down the motion field for better visibility and computation

speed. This does not affect the motion flow calculation of other events: If the

refractory period test returns true, i.e., the filter is told to skip this event and move

on to the next, the filter nevertheless memorizes the event. Thus, it is part of the

neighborhood of the next event close by whose motion flow is calculated.

Frontiers in Neuroscience | www.frontiersin.org 14 April 2016 | Volume 10 | Article 176

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

of other objects), or may have never been set at all (e.g., when
looking from the past to the future side of a moving edge). This
makes estimation of fitting parameters susceptible to noise and,
due to sparse distribution of valid events, often impossible.

The local plane fit as well as Lucas-Kanade methods perform
badly in the presence of texture: A contour moving over a
textured background produces a varying number of events along
the edge and over time because the contrast between edge and
background changes due to the texture. This can be dealt with
by applying Gabor-filtering and using a phase-based instead
of gradient-based method (Barranco et al., 2015). The error is
shown to be reduced by 30%. However, the algorithm does not
run in real-time.

Local plane fits become unreliable when the edge is broad.
Consider an edge moving to the left as in the translating sinusoid
sample. The pixels in the leftmost column of the edge can fire
at almost the same time as pixels in the adjacent column, not
because the edge moved so fast, but because its contrast changes
continuously. This causes large variations in the estimated speed
of the flow and a general overestimation of speed in the Local
Planes methods. The AEE reflecting this can be reduced by a
factor of 2–3 by prefiltering the events with a refractory period19

of τrf ≈ 100ms. This refractory period prevents updating the
timestamps of the surface of most recent events if the pixel has
fired an event within the refractory period. This reduces the
effect of speed errors due to synchronous events in a broad edge.
This refractory period is different from the refractory period
applied to the LucasKanade methods, which skips computing
the flow vector but nevertheless stores the timestamps of events
that fall within the refractory period. This other refractory period
contributes to a more robust estimate of the derivatives of the
event-rate function.

A large neighborhood increases the chances that the surface
of active events contains structure that is not well approximated
by a local plane, while a small neighborhood runs the risk
of containing not enough valid events for a robust fit. Other
contributing factors are multiple motions or transparent motion
stimuli (Brosch et al., 2015). The problem of textured contours is
addressed comprehensively in Barranco et al. (2014).

4.2.3. Direction Selective
Recall that this method computes the flow vectors by first
determining the orientation of a contour, and then looks for
past orientation events perpendicular to it. The speed is then the
pixel distance divided by the average time-difference to this past
event over a search distance (typically 5 pixels). Angular errors
are introduced in the first stage, endpoint (speed) errors in the
second stage. Thus, like the other methods, the direction selective
flow computation suffers from noisy and uneven contours,
because then the local orientations of small contour-patches vary,
and with it the direction of normal velocity. But even if the
algorithm found the correct orientation (low angular error), the
magnitude of the computed velocity (endpoint error) may vary
by a factor of 100. This error is due to the fact that the events
along the direction of motion are by no means homogeneously

19RefractoryFilter source code.

distributed. For an object moving with constant velocity (e.g., the
translating sinusoid), a certain pixel may fire very quickly after
an adjacent pixel (resulting in high speed), while another pixel of
the same edge fires much later than its neighbor (resulting in low
speed). A test stage that filters out speeds far above average helps
remove this effect in large part.

Another source of error is the quantization of vector direction
in bins of 45◦. In our dataset, the DS filter is favored by the use of
pure pan and tilt movements and this bias should be taken into
account by users who desire continuous angle motion vectors.

A different event-based approach to motion estimation using
direction-selective filters has been taken recently by Brosch et al.
(2015). They use biologically inspired spatio-temporal filter-
banks to detect the orientation of an edge. This even allows
distinguishing multiple directions at a single location (e.g., for
transparency). They also include a response normalization stage
that reduces motion ambiguity: The aperture problem faced by
any local gradient-based optical flow algorithm is tackled by
inhibiting normal flow components. Using a dynamic neuron
model, the normal components in the center of a contour
are strongly reduced compared to the ones at corners, thus
biasing the flow vector histogram toward the true direction of
motion. However, this rather sophisticated technique is currently
too expensive for real-time application. A way to handle the
computations more efficiently could be to use spiking neural
network hardware on a neuromorphic processor together with
the event-generating dynamic vision sensor at the front end.

4.2.4. Ground Truth from IMU
The rotation rates used to compute ground truth are updated
with 2.5 kHz. This quantized time is a potential error source
in fast motion. Considering a pure rotation about the z-axis
(roll), each image point describes an arc, but our method
approximates this segment with a straight line, introducing an
error in speed and direction. However, calculating the angle
between the tangent to the endpoint of the circular arc and the
secant line approximating this arc, it becomes clear that this error
is not significant in most situations. For instance, if the sensor
turns with less than 1.39 rounds per second, the error in direction
due to a finite sample rate stays below 0.1 degree. Nevertheless,
a way to make this source of ground truth applicable even to
very fast rotations or slower IMU update rates, one could use
the rotational velocities directly instead of integrating to get the
rotation angle. This would require a rotation about the focal point
and a coordinate transform from the IMU pose to the focal point.
The motion field then follows directly from the well-known
relations between the scene and the sensor.

5. CONCLUSION

In this report we compare nine basic algorithms that compute
optical flow based on address-events from a neuromorphic
dynamic vision sensor. A tenth method is presented that allows
estimation of the motion field in real time using camera
rotation rates obtained from an inertial measurement unit
mounted on the camera. Based on this ground truth, the nine
methods are tested for three real sequences that seem simplistic

Frontiers in Neuroscience | www.frontiersin.org 15 April 2016 | Volume 10 | Article 176

https://sourceforge.net/p/jaer/code/HEAD/tree/jAER/trunk/src/net/sf/jaer/eventprocessing/filter/RefractoryFilter.java
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

but nevertheless reveal fundamental challenges of event-based
motion flow, namely noisy and fissured contours.

Six of the methods presented above are variants of the Lucas-
Kanade algorithm (Benosman et al., 2012) and the Local Plane
Fit (Benosman et al., 2014). LKBD, LKCD1, and LKCD2 evaluate
the performance of three finite difference methods and provide
evidence of how critical the numeric derivative approximation is.
LProbust and the consistent use of a second temporal derivative
in the Lucas-Kanade methods were suggested by Brosch et al.
(2015). The former carries a clear improvement especially in
terms of angular accuracy because the numerical problems of
inverting small derivatives are avoided. The latter does improve
the results on some samples but fails to do so on others, because
the second derivative is susceptible to the coarse and unstable
nature of the intensity function in AER. The Savitzky-Golay
variants were introduced in an attempt to smooth out this noisy
event cloud. These two methods not only speed up processing
time, but show improved angular accuracy.

All methods run in real-time if the event-rate is below 1e5
events per second; DS, IMU and LPSG are able to handle 1e6
events per second, which is rarely exceeded by dense naturalistic
input. Compared to the original Lucas-Kanade (Benosman et al.,
2012) and Local Plane Fit (Benosman et al., 2014) algorithm, our
implementations20 LKBD and LPorig reduced the computational
cost by 26 and 29% respectively.

We also discuss the error statistics used so far and suggest a
purely angular measure between flow vectors in the image plane.
This serves to lessen the bias inherent in the conventional average
angular error and to separate a deviation in direction from speed
error, to better expose aspects requiring improvement.

With the IMU-integration we establish a new performance
measure to compare various motion flow algorithms in situations
where the direction normal to edges is known.

The data set of consisting of a mixture of DVS and DAVIS
data collected for this study has been shared to provide
a baseline for future comparison21. All the algorithms
developed here are open-sourced in the jAER project, in

20http://sensors.ini.uzh.ch/databases.html
21in pure Java rather than C++ as Benosman et al. (2012), both with dual core

processors @ 2.4 GHz.

the Java package ch.unizh.ini.jaer.projects.rbodo.opticalflow22.
The supplementary data to this paper includes images of the
experimental setup and the real data samples. Videos (in the
database repository) of several of the algorithms show how they
behave dynamically for some of the test cases studied here.
Complete result tables compare the algorithm accuracy and cost
for the different test cases, including robustness measures (like
the percentage of flow vectors with angle errors above 3◦).

It is easy to record natural data for which all of the
described algorithms fail rather dramatically, but further pursuit
of accurate event-based methods with DVSs is worthwhile
considering that this neuromorphic hardware fits many of the
challenging demands of real-time applications in terms of low
power consumption, small response latency, and efficient use
of hardware resources. One implication of this report is that

accuracy can be improved with modifications that actually
reduce computation time significantly. We expect that use of
DAVIS and ATIS (Posch et al., 2011) intensity information and
the development of efficient area-matching-based rather than
gradient based methods will further enhance accuracy in the
future.

AUTHOR CONTRIBUTIONS

BR developed the algorithms, collected and analyzed the data,
and wrote the body of the paper. TD contributed guidance and
writing.

ACKNOWLEDGMENTS

This work is supported by the European Union funded
project SEEBETTER (FP7-ICT-2009-6), VISUALISE (FP7-ICT-
2011.9.11), the University of Zurich and the Swiss Federal
Institute of Technology. We greatly appreciate the helpful
reviewers comments, suggestions from G. Orchard, E. Muggler
and M. Osswald regarding camera calibration, M. Milde and
G. Orchard for insights into the original Local Planes method,
and L. Longinotti for his complete integration of the IMU data
acquisition in the DAVIS camera logic.

22jAER Open Source Project, http://www.jaerproject.org.

REFERENCES

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., and Szeliski, R. (2010).

A database and evaluation methodology for optical flow. Int. J. Comp. Vis. 92,

1–31. doi: 10.1007/s11263-010-0390-2

Barranco, F., Fermuller, C., and Aloimonos, Y. (2014). Contour motion estimation

for asynchronous event-driven cameras. IEEE Proc. 102, 1537–1556. doi:

10.1109/JPROC.2014.2347207

Barranco, F., Fermuller, C., and Aloimonos, Y. (2015). “Bio-inspired motion

estimation with event-driven sensors,” in Advances in Computational

Intelligence, Vol. 9094, eds I. Rojas, G. Joya, and A. Catala (Palma de Mallorca:

Springer International Publishing), 309–321.

Barron, J. L., Fleet, D. J., and Beauchemin, S. S. (1994). Performance of optical flow

techniques. Int. J. Comput. Vis. 12, 43–77. doi: 10.1007/BF01420984

Benosman, R., Clercq, C., Lagorce, X., Ieng, S.-H., and Bartolozzi, C. (2014). Event-

based visual flow. IEEE Trans. Neural Netw. Learn. Syst. 25, 407–417. doi:

10.1109/TNNLS.2013.2273537

Benosman, R., Ieng, S.-H., Clerq, C., Bartolozzi, C., and Srinivasan, M. (2012).

Asynchronous frameless event-based optical flow. Neural Netw. 27, 32–37. doi:

10.1016/j.neunet.2011.11.001

Brandli, C., Berner, R., Yang, M., Liu, S.-C., and Delbruck, T. (2014). A 240 ×
180 130 dB 3 us latency global shutter spatiotemporal vision sensor. IEEE J.

Solid-State Circ. 49, 2333–2341. doi: 10.1109/JSSC.2014.2342715

Brosch, T., Tschechne, S., and Neumann, H. (2015). On event-based optical flow

detection. Front. Neurosci. 9:137. doi: 10.3389/fnins.2015.00137

Delbruck, T. (2008). “Frame-free dynamic digital vision,” in Proceedings of

International Symposium on Secure-Life Electronics, Vol. 1, (Tokyo: University

of Tokyo), 21–26.

Frontiers in Neuroscience | www.frontiersin.org 16 April 2016 | Volume 10 | Article 176

http://sensors.ini.uzh.ch/databases.html
http://www.jaerproject.org
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

Rueckauer and Delbruck Event-Based Optical Flow Evaluation

Delbruck, T. (2012). “Fun with asynchronous vision sensors and processing,” in

Workshops and Demonstrations in Computer Vision - ECCV 2012. Lecture Notes

in Computer Science, (Berlin; Heidelberg: Springer), 506–515. doi: 10.1007/978-

3-642-33863-2_52

Delbruck, T., Linares-Barranco, B., Culurciello, E., and Posch, C. (2010). Activity-

driven, event-based vision sensors. IEEE Intl. Symp. Circ. Syst. 2426–2429. doi:

10.1109/iscas.2010.5537149. Available online at: http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=5537149&tag=1

Delbruck, T., Villanueva, V., and Longinotti, L. (2014). “Integration of dynamic

vision sensor with inertial measurement unit for electronically stabilized event-

based vision,” in 2014 IEEE International Symposium on Circuits and Systems

(ISCAS) 2636–2639. doi: 10.1109/ISCAS.2014.6865714

Fleet, D. J., and Weiss, Y. (2005). “Optical Flow Estimation,” in Handbook

of Mathematical Models in Computer Vision (Lisbon: Springer), 237–357.

Available online at: http://link.springer.com/chapter/10.1007/0-387-

28831-7_15

Horn, B., and Schunck, B. (1981). Determining optical flow. Artif. Intell. 16,

185–203. doi: 10.1016/0004-3702(81)90024-2

Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128 × 128 120 db 15 µs

latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ.

43, 566–576. doi: 10.1109/JSSC.2007.914337

Liu, S.-C., Delbruck, T., Indiveri, G., Whatley, A., and Douglas, R., (eds.).

(2015). Event-Based Neuromorphic Systems. Chichester, UK: John Wiley

and Sons Ltd. Available online at: http://eu.wiley.com/WileyCDA/WileyTitle/

productCd-0470018496.html

Orchard, G., and Etienne-Cummings, R. (2014). Bioinspired visual motion

estimation. Proc. IEEE 102, 1520–1536. doi: 10.1109/JPROC.2014.2346763

Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A QVGA 143 dB

dynamic range frame-free PWM image sensor with lossless pixel-level video

compression and time-domain CDS. IEEE J. Solid-State Circ. 46, 259–275. doi:

10.1109/JSSC.2010.2085952

Posch, C., Serrano-Gotarredona, T., Linares-Barranco, B., and Delbruck, T.

(2014). Retinomorphic event-based vision sensors: bioinspired cameras

with spiking output. Proc. IEEE 102, 1470–1484. doi: 10.1109/JPROC.2014.

2346153

Sun, D., Roth, S., and Black, M. J. (2014). A quantitative analysis of current

practices in optical flow estimation and the principles behind them. Int. J.

Comput. Vis. 106, 115–137. doi: 10.1007/s11263-013-0644-x

Thornley, D. J. (2006). Anisotropic Multidimensional Savitzky Golay Kernels for

Smoothing, Differentiation and Reconstruction. Technical Report, Department

of Computing, Imperial College London, London. Available online at: http://

www.doc.ic.ac.uk/research/technicalreports/2006/DTR06-8.pdf (Accessed

April 13, 2016).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2016 Rueckauer and Delbruck. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) or licensor are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 17 April 2016 | Volume 10 | Article 176

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5537149&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5537149&tag=1
http://link.springer.com/chapter/10.1007/0-387-28831-7_15
http://link.springer.com/chapter/10.1007/0-387-28831-7_15
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470018496.html
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470018496.html
http://www.doc.ic.ac.uk/research/technicalreports/2006/DTR06-8.pdf
http://www.doc.ic.ac.uk/research/technicalreports/2006/DTR06-8.pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive

	Evaluation of Event-Based Algorithms for Optical Flow with Ground-Truth from Inertial Measurement Sensor
	1. Introduction
	2. Materials and Methods
	2.1. Event-based Optical Flow Algorithms
	2.1.1. Direction Selective Filter
	2.1.2. Lucas-Kanade Variants
	2.1.2.1. Backward finite difference
	2.1.2.2. Second order temporal derivative
	2.1.2.3. Central finite difference (first order)
	2.1.2.4. Central finite difference (second order)
	2.1.2.5. Savitzky-Golay filter

	2.1.3. Local Plane Fits
	2.1.3.1. Orthogonality constraint
	2.1.3.2. Single fit
	2.1.3.3. Savitzky-Golay filter

	2.1.4. Inertial Measurement Unit (IMU)

	2.2. Dataset
	2.2.1. Synthesized Samples
	2.2.1.1. Translating square
	2.2.1.2. Rotating bar

	2.2.2. Real Samples
	2.2.2.1. Translating sinusoid
	2.2.2.2. Rotating disk
	2.2.2.3. Translating boxes

	2.2.3. Ground Truth

	2.3. Error Measures
	2.3.1. Average Endpoint Error (AEE)
	2.3.2. Average Angular Error (AAE)

	2.4. Statistics
	2.5. Processing Time Measurement

	3. Results
	3.1. IMU Integration: Verification of Ground Truth
	3.2. Processing Time
	3.3. Accuracy

	4. Discussion
	4.1. Processing Time
	4.2. Accuracy
	4.2.1. Lucas-Kanade
	4.2.2. Local Plane Fit
	4.2.3. Direction Selective
	4.2.4. Ground Truth from IMU

	5. Conclusion
	Author Contributions
	Acknowledgments
	References

