
ORIGINAL RESEARCH
published: 13 May 2016

doi: 10.3389/fnins.2016.00181

Frontiers in Neuroscience | www.frontiersin.org 1 May 2016 | Volume 10 | Article 181

Edited by:

Tim Pearce,

University of Leicester, UK

Reviewed by:

Theodore Yu,

Texas Instruments Inc., USA

Siddharth Joshi,

University of California,

San Diego, USA

*Correspondence:

Takuya Nanami

nanami@sat.t.u-tokyo.ac.jp

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 18 January 2016

Accepted: 08 April 2016

Published: 13 May 2016

Citation:

Nanami T and Kohno T (2016) Simple

Cortical and Thalamic Neuron Models

for Digital Arithmetic Circuit

Implementation.

Front. Neurosci. 10:181.

doi: 10.3389/fnins.2016.00181

Simple Cortical and Thalamic Neuron
Models for Digital Arithmetic Circuit
Implementation
Takuya Nanami 1* and Takashi Kohno 2

1Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo,

Tokyo, Japan, 2 Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Trade-off between reproducibility of neuronal activities and computational efficiency is

one of crucial subjects in computational neuroscience and neuromorphic engineering.

A wide variety of neuronal models have been studied from different viewpoints. The

digital spiking silicon neuron (DSSN) model is a qualitative model that focuses on

efficient implementation by digital arithmetic circuits. We expanded the DSSN model

and found appropriate parameter sets with which it reproduces the dynamical behaviors

of the ionic-conductance models of four classes of cortical and thalamic neurons.

We first developed a four-variable model by reducing the number of variables in the

ionic-conductance models and elucidated its mathematical structures using bifurcation

analysis. Then, expanded DSSN models were constructed that reproduce these

mathematical structures and capture the characteristic behavior of each neuron class.

We confirmed that statistics of the neuronal spike sequences are similar in the DSSN

and the ionic-conductance models. Computational cost of the DSSN model is larger

than that of the recent sophisticated Integrate-and-Fire-based models, but smaller than

the ionic-conductance models. This model is intended to provide another meeting point

for above trade-off that satisfies the demand for large-scale neuronal network simulation

with closer-to-biology models.

Keywords: digital silicon neuronal network, qualitative neuron model, nonlinear dynamics, cerebral cortex,

thalamus

1. INTRODUCTION

Silicon neuronal networks have gained remarkable attention in recent years. The silicon neuronal
network is composed of dedicated circuit that solves the differential equations of a neuron and
synapse model. On account of their parallel and distributed structures, silicon neuronal networks
can simulate neuronal activities with low power consumption and in high speed, potentially
realizing an extremely large-scale network comparable to that of the human brain in future.

Their analog circuit implementation consumes ultra-low power down to several nano watts
per silicon neuron (Brink et al., 2013; Kohno and Aihara, 2014; Mandloi et al., 2014), however,
it includes technical hurdles of fabrication mismatch and temperature dependence to construct
a large-scale network. On the other hand, digital circuit implementation solves this limitation
because it is far less sensitive to these factors, though power consumption tends to be higher
than the analog circuit implementations. A digital silicon neuronal network comprising 1 million
spiking neurons and 256 million synapses has been implemented on a 5.4-billion transistor chip
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(Merolla et al., 2014). This Application Specific Integrated
Circuit (ASIC) chip calculates asynchronously in real-time
and consumes just 63 mW. Merolla et al. adopted the leaky
integrate-and-fire (LIF) model, one of the most simple neuronal
models. The LIF model describes the dynamics of the neuronal
membrane potential, which is perturbed by a stimulus inputs
over time and converges slowly to the resting potential. It
is computationally efficient and suitable for the large-scale
implementation. After refining the synaptic efficacy by a learning
process, the ASIC was applied to a multi-object detection and
classification.

In silicon neuronal networks, diversified neuronal models
are used due to a trade-off between the reproducibility of
neuronal activity and computational efficiency. For instance,
ionic-conductance models can reproduce a neuronal activity
accurately but demands excessive computational resources in
large-scale implementations. In contrast, neuronal models that
approximate a spiking process by resetting the state variable
[integrate-and-fire (I&F) -based models], such as the LIF,
exponential I&F (Fourcaud-Trocmé et al., 2003), adaptive
exponential I&F (Brette and Gerstner, 2005), and Izhikevich
(IZH) models, can be implemented at low computational cost.
However, it has reduced reproducibility of complex neuronal
activities. For example, these models assume fixed maximum
membrane potentials during the spike process, whereas these
potentials are nonuniform in the nervous system (Alle and
Geiger, 2006). Reduction of computational cost benefits the
power consumption, system size, and response speed of silicon
neuronal networks regardless of implementation types (ASIC,
Field Programmable Gate Array, and massively-parallel CPUs).
These factors are particularly important for their application to
neuromorphic systems (e.g., for robot control) that are required
to occupy a small space and operate with restricted power supply.
They are also important to implement with realistic power

FIGURE 1 | Behaviors of the Izhikevich model in the IB class. Stimulus step input Istim rise at t = 0.02, where (A) Istim = 10, (B) 15, and (C) 30, respectively. A

numerical integration step dt is 0.05 ms.

consumption and system size a large-scale network comparable
to the human brain that is composed of about a hundred billion
neurons. The DSSN model (Kohno and Aihara, 2007) is a
qualitative neuronal model designed for efficient implementation
in a digital arithmetic circuit. It is a non-I&F-based model
that can realize several neuronal activities including the Class I
and II in the Hodgkin’s classification (Hodgkin, 1948). Because
this model does not abbreviate the calculation of the spiking
process, it can reproduce the gradient response in Class II
neurons (Wang and Rinzel, 2003). Li et al. (2012) constructed
an auto-associative memory with 256 fully connected digital
spiking silicon neuron (DSSN) models on an FPGA. They
reported that a network of Class II neurons yields higher retrieval
performance than that of Class I neurons in the associative
memory task. Recently, a Hebbian learning rule was applied to
this network (Li et al., 2013). In Osawa and Kohno (2015), it
was reported that the Class II mode of the IZH model with
a standard parameter setting has discontinuous phase resetting
curve (PRC) and the auto-associative memory constructed in the
same way does not deliver higher performance than the Class
I-mode IZH model. Increasing the value of a parameter can
solve this problem, however, it considerably distorts the spiking
waveform.

Pospischil et al. (2008) have found appropriate parameter sets
for an ionic-conductance model that replicate experimental data
in the well-known four classes of cortical and thalamic neurons;
regular spiking (RS), fast spiking (FS), intrinsically bursting (IB),
and low-threshold spike (LTS). A most typical cortical neuron
class, RS is characterized by spike-frequency adaptation; that
is, the spike frequency decreases over time in response to a
constant stimulus input. Conversely, FS neurons maintain firing
at a constant frequency. IB and LTS are the neuron classes
with bursting ability. Neurons in the IB class generate a burst
firing immediately at the onset of a stimulus, then continue
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spiking until its termination. The LTS class also exhibits the
bursting. Neurons in the LTS class generate a burst firing just
after the termination of a sufficient hyperpolarizing stimulus.
Their model equations were constructed by integrating several
ionic-conductance models reported in the previous researches
and contains up to seven variables. For the RS and FS classes,
they applied an auto fitting procedure that minimizes the
error function of spike intervals by the simulated annealing
method. The IZH model supports these four classes. The
Pospischils’ ionic-conductance model for the IB class generates
a long silent phase following the burst firing (Figure 11-
left), but the IZH model produced uniform silent phases
(Figure 1). Moreover, the response to larger inputs evidently
differed from that of Pospischils’ model. Because it is not
elucidated completely what properties of the neuronal activities
are playing the key roles in the information processing in the
brain, developing a simple non-I&F model that supports a wide
variety of neuronal activities can be significant for both scientific
and engineering purposes, even if it consumes computational
resources than I&F-based models.

In Nanami and Kohno (2015), we reduced the dimensions
of Pospischils models by Keplers method and analyzed their
mathematical structures by bifurcation analysis.We also reported
parameter sets where the three-variable DSSN model (Kobayashi
et al., 2011) produces similar activities to our target classes.
While we did not evaluate their similarity, it was clear that
the parameter set for the IB class could not reproduce the
transient firing patterns from the first bursting phase to the
later spiking phase. In this work, we cleared this limitation
as follows. Firstly, we repeated the parameter search and
found three-variable DSSN model parameter sets for RS, FS,
and LTS modes that reproduce corresponding mathematical
structures of the reduced Pospischils models and statistical
characteristics of spiking patterns. Secondly, for the IB class, we
incorporated an additional slow variable and found a parameter
set that reproduces corresponding mathematical structures and
the statistical characteristics of spiking patterns. The statistical
evaluation was performed using Cv and Lv (Shinomoto et al.,
2003) that are utilized to characterize the spiking activities of
neuronal cells.

The remainder of this paper is organized as follows. Section 2
introduces our neuron model, its basic concepts, and details of its
construction. The model is tested and evaluated by simulation in
Section 3. Section 4 summarizes the work and suggests ideas for
future.

2. METHODS

In the nervous system, the neuronal cells are classified by their
intrinsic spike properties (Llinas, 1988; Connors and Gutnick,
1990; Gupta et al., 2000). The quantitative characteristics of
neuronal activity, including the degree of adaptation and
duration of the burst firing, differ even among neurons of the
same class. To accommodate this fact, Pospischil et al. assembled
various experimental data of different nerve cells in each neuron
class, and adjusted the parameters of their ionic-conductance

models’ equations to each dataset. We expanded the DSSNmodel
so that it has a compatible dynamics and behaviors to a typical
parameter of the Pospischil’s model in each class.

2.1. DSSN Model
The DSSN model (Kohno and Aihara, 2007) is a qualitative
neuron model that can simulate several classes of neuronal
activities by Euler’s method with fixed point operation.
Given appropriate parameter sets, it can reproduce the
Class I and II in the Hodgkin’s classification as well as
Class I∗ (Fujii and Tsuda, 2004) which is defined by a
unique mathematical structure named narrow channel.

FIGURE 2 | Waveforms of the Pospischils’ and reduced models in the

cortical and thalamic neuron classes. (A) The excitatory RS class, (B) the

inhibitory RS class, (C) the FS class, (D) the IB class, and (E) the LTS class,

respectively. An excitatory step stimulus is applied in (A–D). An inhibitory pulse

stimulus that starts at 180 ms and ends at 980 ms is applied in (E).
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The differential equations of the model is written as
follows:

dv

dt
=

φ

τ
(f (v)− n+ I0 + Istim),Ko (1)

dn

dt
=

1

τ
(g(v)− n), (2)

f (v) =

{

afn(v− bfn)
2
+ cfn (v < 0)

afp(v− bfp)
2
+ cfp (v ≥ 0),

(3)

g(v) =

{

agn(v− bgn)2 + cgn (v < rg)
agp(v− bgp)2 + cgp (v ≥ rg),

(4)

And Kobayashi et al. derived three-variable DSSN model
(Kobayashi et al., 2011) that realize autonomous bursting
including the square-wave bursting and the elliptic bursting. As
explained in the introduction, we reported parameter sets with
which this model can produce firing patterns similar to the four
classes of cortical and thalamic neuronal activities in Pospischil
et al. (2008) but with limited affinity. The equations of this model
are given by

dv

dt
=

φ

τ
(f (v)− n− q+ I0 + Istim), (5)

dn

dt
=

1

τ
(g(v)− n), (6)

dq

dt
=

ǫ

τ
(h(v)− q), (7)

h(v) =

{

ahn(v− bhn)
2
+ chn (v < rh)

ahp(v− bhp)
2
+ chp (v ≥ rh),

(8)

where v corresponds to the membrane potential, and n and
q are the fast and slow variables, respectively, that abstractly
describe the activity of the ion channels. The Parameter I0
is a bias constant and Istim represents the input stimulus.
Parameters φ, ǫ, and τ control the time constants of the variables.
Parameters rx, ax, bx, and cx, where x = fn, fp, gn, gp, hn,
or hp, are constants that adjust the nullclines of the variables.
All of the variables and constants in this qualitative model are
purely abstract with no physical units. Most existing qualitative
neuronal models replicate the spiking dynamics by a cubed
variable term (FitzHugh, 1961; Nagumo et al., 1962; Hindmarsh
and Rose, 1984). Because multiplication consumes significant
circuit resources in a digital arithmetic circuit, the DSSN model
adopts a piecewise quadratic function so that its numerical
integration step includes only one multiplication between
variables.

2.2. Reduced Model
The Pospischils’ models contain up to seven variables, which
makes an analysis of their mathematical structure difficult.
Therefore, by applying Keplers’ method (Kepler et al., 1992),
we derived three-variable reduced models for the RS, FS, and
LTS classes, and a four-variable reduced model for the IB class.
Their equations and parameter sets are listed in the Appendix
of Supplementary Material. This process reduces the number
of variables without critically altering the models’ intrinsic
structure. The reduced model of the IB class has four variables,
because the time-scale differences among the variables prevent
the division of the variables into three groups without altering

FIGURE 3 | Mathematical structures of the reduced models. Projected mathematical structures onto the Vy − V plane. A stimulus sufficiently strong for periodic

spiking is applied. The saddle-node bifurcation is observed in (A) the excitatory RS, (B) the inhibitory RS, (C) the FS, and (D) the LTS classes.
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the neuronal activity. Comparing the waveforms of the reduced
and Pospischils’ models, we confirmed that the dimensional
reduction imposed no significant changes on their dynamical
properties (Figure 2). In both models, the RS classes have the
spike-frequency adaptation (Figures 2A,B). The FS classes have
little adaptation. The IB classes have burst firing followed by
repetitive single spikes (Figure 2C). The LTS classes generate
rebound bursting after removing the long hyperpolarizing
stimuli (Figure 2D).

2.3. Analysis of Mathematical Structure
This subsection analyzes mathematical structures of the reduced
models derived in the preceding section. The bifurcation
diagrams of the reduced models of the excitatory RS, inhibitory
RS, FS, and LTS classes are displayed on a V–Vy plane
with a Vy–nullcline (Figure 3). The bifurcation analysis was
conducted on the fast subsystem including V and Vx while
varying the remaining slow variable as a bifurcation parameter.
Their mathematical structures are projected onto the V − Vy

planes. The fast subsystem of these neuron classes undergo a
saddle- node on invariant circle bifurcation. Limit cycles which
correspond to the periodic spiking are represented by two curves
that correspond to their maximum and minimum values of V .

The Vy–nullcline represents the continuous points where
dVy

dt

is 0. The state point on the stable limit cycle slows down as it
approaches to the saddle-node point. Therefore, the slow variable
Vy can control the firing frequency, and the variations in the
dynamics of Vy induce the different properties of the neuron
classes.

In our analysis of the IB class, we fixed the slowest variable
Vz while varying the second slowest variable Vy as the parameter
because Vz is sufficiently slower than Vy. The transitions in
the mathematical structure of the fast subsystem induced by
the change in Vz are presented in Figure 4. The fast subsystem
exhibits a homoclinic loop bifurcation and the bistable range of
Vy depends on the slowest variableVz . Here, the bistable region is
where the stable limit cycle overlaps the stable node with respect
to the Vy-axis. In response to an appropriate step input, the
system produces three qualitatively different phases (Figure 4A).
They are burst firing, subsequent long silent, and monotonic
single spiking phase. This phase transition proceeds as the slowest
variable Vz increases (Figure 4B). When Vz is relatively small,
a bursting with many spikes is followed by a long silent phase,
because the system has a wide bistability region where the state
point takes long time to go back to stable limit cycle (Figure 4C).
When Vz gets larger, this region is small and the state point
can generate only one spike while it is on the limit cycle
(Figure 4D).

FIGURE 4 | Mathematical structure of the reduced model in the IB class. (A) Periodic spike waveform of the membrane potential in response to an excitatory

step input. (B) Transition of the slowest variable Vz that controls the mathematical structure of the fast system. The projected mathematical structure for the (C) Vz =

–70 mV and (D) Vz = −58 mV.
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FIGURE 5 | Mathematical structures of the DSSN models. Projected mathematical structures onto the q-v plane. A stimulus sufficiently strong for periodic

spiking is applied. A saddle-node on invariant circle bifurcation is seen in (A) the excitatory RS, (B) inhibitory RS, (C) FS, and (D) LTS.

2.4. Parameter Tuning and the
Four-Variable DSSN Model
To support the RS, FS, and LTS classes by the DSSN model,
we found appropriate parameter sets for it that produce the
same structures as those in the above reduced models. Firstly,
we determined appropriate parameters of the fast subsystem.
They were selected so that the system undergoes a saddle-node
bifurcation as observed in the reduced models for the RS, FS,
and LTS classes (Figure 5). The parameters of the fast subsystem
for the LTS mode was tuned to mimic the hyperpolarizing
response in the reducedmodel. Secondly, we tuned the remaining
parameters, which control the dynamics of the slow system,
to precisely reproduce the distinctive neuronal activities of the
corresponding neuron classes. In the RS mode, we placed the
q-nullcline at relatively low area of the Vy plane so that the
system state converges to the limit cycle at near the bifurcation
point. It induces spike frequency adaptation because the firing
frequency decreases as the slow variable q approaches the saddle-
node bifurcation point. In the FS mode, the q-nullcline was
adjusted in the inverse direction to suppress the adaptation.
For the LTS mode, the parameters for the fast subsystem
were selected to mimic the resting membrane potential in the
Pospischils’ model which is higher than that in the other modes.
Parameters of the slow variable qwere selected so that it decreases
under a hyperpolarizing input. Just after the injection of the
hyperpolarizing input has been terminated, because the state
point is at far from the saddle-node point, it rapidly moves

along the stable limit cycle. This dynamics produces the rebound
bursting.

To support the IB class by theDSSNmodel, we added a slowest
variable in order to vary the bistable area, which was explained in
the last part of the previous subsection. The four-variable DSSN
model is written as follows:

dv

dt
=

φ(u)

τ
(f (v)− n− q+ I0 + Istim) (9)

dn

dt
=

1

τ
(g(v)− n) (10)

dq

dt
=

ǫ

τ
(h(v)− q) (11)

du

dt
=

ǫu

τ
(v− v0 − αu) (12)

φ(u) =







φ0 (v < ru0)
φ1 (ru0 ≤ v < ru1)
φ2 (ru1 < v)

(13)

where, the new variable u dynamically tunes the value of φ.
Because the equation of u does not include multiplication
between variables, and φ is selected in the list of possible
values (φ0, φ1, and φ2), it does not increase the number of
multiplications in a numerical integration step. Its mathematical
structure is illustrated in Figure 6. With no stimulus, the state
point resides at a point which corresponds to the resting
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FIGURE 6 | Mathematical structure of the DSSN model in the IB class. (A) Waveform of the membrane potential in response to a step input that rises at t = 0.2

s. (B) Transition of the complementary variable u. (C) Projected mathematical structure without any input stimulus. Projected mathematical structure under a sustained

stimulus where (D) u < ru0, (E) ru0 < u < ru1, and (F) ru1 < u. Each roman number corresponds to a spiking phase.

FIGURE 7 | Waveforms of Pospischil and DSSN models, corresponding to an excitatory neuron in the RS class. The Pospischils’ model (left) generates

periodic spikes in response to a step input rising at t = 0.2 where Istim is (A) 1.1, (B) 1.5, (C) 2.1 nA. The DSSN model (right) generates periodic spikes in response to

a step input rising at t = 0.2 where Istim is (A) 2.9221, (B) 3.2521, (C) 3.7921.
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state (Figure 6, I). This point is at the intersection of the q-
nullcline and the stable node. In response to a positive sustained
input, the state point jumps into the stable limit cycle and
keep firing repetitively (Figure 6, II). The state point drifts
rightward because most part of the limit cycle is at above
the q-nullcline. Therefore, the state point arrives at the right
endpoint of the stable limit cycle and falls to the stable node.
Subsequently, the state point moves leftward along the stable

node because it is at below the q-nullcline, which corresponds
to the long silent phase (Figure 6, III). Meanwhile, the slowest
variable u exceeds ru0, and the stable limit cycle shifts leftward.
Therefore, the state point goes into the limit cycle again and
makes a few spikes along the limit cycle before returning
to the stable node (Figure 6, IV). When u exceeds ru1, a
single spike is generated on the limit cycle before the state
point goes back to the stable node (Figure 6, V). The DSSN

FIGURE 8 | Waveforms of Pospischil and DSSN models, corresponding to an inhibitory neuron in the RS class. The Pospischils’ model (left) generates

periodic spikes in response to a step input rising at t = 0.2 where Istim is (A) 0.6, (B) 1.1, (C) 1.7 nA. The DSSN model (right) generates periodic spikes in response to

a step input rising at t = 0.2 where Istim is (A) 2.97, (B) 3.57, (C) 4.29.

FIGURE 9 | Waveforms of Pospischil and DSSN models, corresponding to a neuron in the FS class. The Pospischils’ model (left) generates periodic spikes in

response to a step input rising at t = 0.2 where Istim is (A) 0.78, (B) 0.98, (C) 1.22 nA. The DSSN model (right) generates periodic spikes in response to a step input

rising at t = 0.2 where Istim is (A) 2.7, (B) 2.95, (C) 3.25.

FIGURE 10 | Waveforms of Pospischil and DSSN models, corresponding to a neuron in the LTS class. The Pospischils’ model (left) generates periodic

spikes in response to a step input rising at t = 0.2 where Istim is (A) 0.34, (B) 0.79, (C) –0.6 nA. The DSSN model (right) generates periodic spikes in response to a

step input rising at t = 0.2 where Istim is (A) 0.278, (B) 0.308, (C) –1.7. (A,B) Pospischils’ model (left) and DSSN model (right) generate periodic spike in response to a

depolarizing step input rising at t = 0.2. (C) A hyperpolarizing step input is applied from t = 0.2 to t = 1.0.
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model qualitatively reproduces the behaviors of the four neuron
classes by numerical integration with the Euler’s method (dt =

0.0001 s).
The DSSN model qualitatively reproduces the behaviors of

the four neuron classes by numerical integration with the Euler’s
method (dt = 0.0001 s). For example, the calculation of v for IB
classes is conducted as follows;

vnext = v_vv+ v_v+ v_n+ v_q+ v_I + v_c, (14)

v_vvij = v2 · (1t · afj · φi/τ ), (15)

v_vij = v · (1t · (−2) · bfj · afj · φi/τ + 1), (16)

v_nij = n · (−1t · φi/τ ), (17)

v_qij = q · (−1t · φi/τ ), (18)

v_Iij = Istim · (1t · φi/τ ), (19)

v_cij = (b2fj · afj + cfj + I0) · 1t · φi/τ, (20)

v_x =































v_x0n when v < ru0 and v < 0
v_x1n when ru0 ≤ v < ru1 and v < 0
v_x2n when ru1 ≤ v and v < 0
v_x0p when v < ru0 and v ≥ 0
v_x1p when ru0 ≤ v < ru1 and v ≥ 0
v_x2p when ru1 ≤ v and v ≥ 0,

(21)

for x = vv, v, n, q, I, and c.

where, i denotes 0, 1, or 2 and j denotes n or p. In these equations,
we can calculate a product of parameters in advance and store
it as a constant value. Parameters are a sum of at most 7 ( in
average 3.78 ) positive or negative power-of-two numbers so that
the multiplication of a variable and a parameter is realized by
combination of bit shift and add operations. Multiplication is
only used for the calculation of v2.

FIGURE 11 | Waveforms of Pospischils’ model and DSSN model which correspond to a neuron in the IB class. The Pospischils’ model (left) generates

periodic spikes in response to a step input rising at t = 0.2 where Istim is (A) 2.38, (B) 2.6645, (C) 3.0495 nA. The DSSN’ model (right) generates periodic spikes in

response to a step input rising at t = 0.2 where Istim is (A) 0.89, (B) 1.42, (C) 1.81.

FIGURE 12 | Spike sequences and their representation in the CV − LV plane. The LV vs. CV for spike sequences generated by the Pospischil (red) and the

DSSN (blue) models in the excitatory RS mode in response to various magnitudes of step input.
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3. RESULTS

3.1. Comparison of the Waveforms
We compared the waveforms generated by the DSSN and
Pospischils’ ionic-conductance models for several magnitudes of
step inputs. The DSSN model accurately reproduce Pospischils’
model in each neuron class (Figures 7–11). In the excitatory
RS mode, both models exhibit the spike-frequency adaptation,
and their firing frequencies increase as input stimuli become
large (Figure 7). Figure 8 shows the inhibitory RS mode that has
more stronger spike-frequency adaptation than the excitatory RS
mode. Both models in the FS mode fire with almost constant
frequency, which increases as the stimulus is strengthened. In
the LTSmode (Figure 10), bothmodels generate periodic spiking
with spike-frequency adaptation in response to positive step
stimulus and a rebound bursting at the end of a negative stimulus.
Both models in the IB mode exhibit repetitive spiking following a
burst firing in response to a weak positive input (Figure 11). The
frequency of the repetitive spiking gets higher in response to a
stronger positive stimulus.

3.2. CV − LV
To evaluate quantitatively our DSSN models, we adopted the
coefficient of variation (CV ) and local variation (LV ) (Shinomoto
et al., 2003), because the spike frequency cannot capture the
spiking characteristics that changes over time. These statistics
were developed by Shinomoto et al. to classify the spike sequences
in the cortical areas of awake monkeys (Shinomoto et al.,
2003), which have been used at various situations (Koyama and
Shinomoto, 2005; Miura et al., 2006; Shinomoto et al., 2009).
They are defined as follows:

CV =

√

√

√

√

1

n− 1

n
∑

i=1

(Ti − T)2/T, (22)

LV =
1

n− 1

n−1
∑

i=1

3(Ti − Ti+1)2

(Ti + Ti+1)2
, (23)

where Ti denotes the ith interspike interval, T is the average of
Ti, and n is the number of spikes in the sequence. The coefficient
3 in Equation (21) is chosen so that the expectation value of LV
in the Poisson spike sequence equals one. The CV is the standard
deviation divided by the mean spike interval, and LV becomes
large when the duration of the spike intervals locally fluctuates.
Both of CV and LV are zero for a regular spike sequence with
constant Ti. We measured the CV and LV of the spike sequences
generated by Pospischils’ and our DSSNmodels while varying the
strength of the step input. As shown in the Figure 12, the results
are compared by their plot on the CV − LV plane. The CV − LV
characteristics of the Pospischils’ and the DSSN models in each
neuron class are plotted in Figures 13, 14. We confirmed that
both neuron models have similar statistical properties in each
neuron class.

FIGURE 13 | CV − LV characteristics in the RS, FS, and LTS classes.

The CV − LV characteristics of the Pospischil (red) and the DSSN (blue)

models in the excitatory and inhibitory RS, FS, and LTS classes.

FIGURE 14 | CV − LV characteristics in the IB classes. The CV − LV
characteristics of the Pospischil (red) and DSSN (blue) model.

4. CONCLUSION

In this paper, we expanded the DSSNmodel so that it can support
the RS, FS, LTS, and IB classes, according to the following steps.
Firstly, we reduced the number of variables of the Pospischils’
ionic-conductance model utilizing the Keplers’ method. The
reduced models contained three variables for the RS, FS, and LTS
classes and four variables for the IB class. We then elucidated
their mathematical structures, including their structures on the
phase portraits. The FS class is generically considered to exhibit a
Hopf bifurcation; however, it yielded a saddle-node bifurcation in
the Pospischils’ model. Secondly, we determined the appropriate
parameter sets that produce the same mathematical structures
in the DSSN model as those in the reduced models. To support
the IB class, the four-variable DSSN was developed by adding
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a slowest variable. It dynamically tunes the structure of the fast
system. If φ0, φ1, and φ2 are equal to φ, the four-variable DSSN
model is compatible with the three-variable one. Finally, it was
confirmed that the DSSN models behave very similarly to the
Pospischils’ models in response to several magnitudes of step
input. The similarity was quantitatively confirmed by measuring
the CV and LV statistics of the spike sequences, and confirming
that both neuron models have the same statistical properties in
each neuron class. The model is solved by Euler’s method (1t =
0.0001[s]), and is realized by only one multiplier that consumes
significant digital circuit resources.

The DSSN model will consume more circuit resources than
the IZH model because it has more variables, while the number
of multiplication per a numerical integration step is the same.
But it captures more aspects of the neuronal activity because it
is not an I& F-based model. As is apparent from the equations,
the implementation cost of the DSSN model is far lower than the
ionic-conductance models. Circuit implementation of this model
will be reported in our future publication. In software simulation,
the computational cost of the DSSN mode is much lower than
that of the ionic-conductance models, and comparable with that
of the IZH per a numerical integration step. We conducted
simulation of two million spikes, the DSSN and IZH models in
the RS mode consumed 18.51 and 2.76 s, respectively. The DSSN
model required over five times longer calculation, because the
step of the DSSN model (0.0001[s]) is five times smaller than
that of the IZH model (0.0005[s]). If the fixed point operation is
used, it will be simulated faster. The DSSN model may be also

useful for computer simulation in which more realistic model
than I&F-based models are required.

By the expansion in this work, the DSSN model supports the
RS, FS, LTS, and IB classes as well as the Class I and II in the
Hodgkin’s classification, Class I∗, square-wave bursting, elliptic
bursting. We expect it can be a basis for silicon- and software-
based spiking neuronal networks that capture the dynamics in
the nervous system approximately, which can contribute to the
neuroscience from the viewpoint of analysis by construction
and the neuromorphic engineering. In this work, we tuned the
parameters manually. We will work on an auto-fitting method
for the DSSN model with an error function based on the
mathematical structure.
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