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The olfactory bulb (OB) is a highly plastic brain region involved in the early processing of

olfactory information. A remarkably feature of the OB circuits in rodents is the constitutive

integration of new neurons that takes place during adulthood. Newborn cells in the

adult OB are mostly inhibitory interneurons belonging to chemically, morphologically

and functionally heterogeneous types. Although there is general agreement that adult

neurogenesis in the OB plays a key role in sensory information processing and

olfaction-related plasticity, the contribution of each interneuron subtype to such functions

is far to be elucidated. Here, we focus on the dopaminergic (DA) interneurons: we

highlight recent findings about their morphological features and then describe the

molecular factors required for the specification/differentiation and maintenance of the

DA phenotype in adult born neurons. We also discuss dynamic changes of the DA

interneuron population related to age, environmental stimuli and lesions, and their

possible functional implications.

Keywords: olfactory bulb, dopaminergic neurons, tyrosine hydroxylase, adult neurogenesis, COUP-TFI,

juxtaglomerular neurons, odor enrichment, odor deprivation

INTRODUCTION

In mammals, dopaminergic (DA) neurons are classified in distinct neuronal cell groups (from
A8 to A16) based on their substantial diversity (Björklund and Dunnett, 2007). DA neurons in
the olfactory bulb (OB) belong to the A16 group and represent the major DA system in the
forebrain (Cave and Baker, 2009). Olfactory DA cells are reliably identified by the expression of
tyrosine hydroxylase (TH), the rate-limiting enzyme of catecholamine biosynthesis, since they
represent the only catecholaminergic cell type found in the OB (Cave and Baker, 2009). TH-
positive cells are mostly localized in the OB glomerular cell layer (GL; Figure 1A), where they
account for nearly 10% of all juxtaglomerular cells (JGCs; Parrish-Aungst et al., 2007). TH-
positive JGCs express glutamic acid decarboxylase (GAD), the rate-limiting enzyme for GABA
biosynthesis, and co-release dopamine and GABA on their post-synaptic targets (Liu et al.,
2013). Their electrophysiological properties have been extensively characterized (Pignatelli et al.,
2005, 2009, 2013; Borin et al., 2014). TH-positive cells establish synaptic contacts with the
afferent olfactory receptor neuron terminals and/or with external tufted cells and form extensive
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FIGURE 1 | Olfactory bulb dopaminergic interneurons. New image from previously published experiments (Bovetti et al., 2013; Bonzano et al., 2014). (A)

Photomicrograph showing a coronal section of the olfactory bulb (OB) in a 2-month-old wild-type mouse. DA cells immunopositive for TH (green) are mostly confined

within the OB glomerular layer (GL). (B) BrdU-positive adult born DA cell (arrow) in a representative confocal image of the OB GL double-stained for BrdU (red) and TH

(green) in a mouse that received BrdU at 2 months of age and analyzed 42 days after. B′ shows higher magnification and re-slicing of the BrdU/TH double positive

cell. (C) Multiple labeling of the OB GL in a 2-month-old TH-GFP transgenic mouse line (Sawamoto et al., 2001). GFP (green) is expressed under the control of TH

promoter; TH-immunopositive cells are shown in blue and COUP-TFI immunopositive nuclei in red. C1 shows higher magnification of a cell that is triple labeled for

GFP/TH/COUP-TFI (white arrow) and a cell that is double labeled for GFP and COUP-TFI (white arrowhead). C2 shows higher magnification of a cell that is double

labeled for GFP and TH (yellow arrow). C3 shows a cell that is triple labeled for GFP/TH/COUP-TFI (white arrow) and a cell that is GFP-positive only (yellow

arrowhead). (D) Venn diagram showing the overlap of the labeling for TH-GFP, TH and COUP-TFI immunoreactivity based on our previously published data (Bovetti

et al., 2013). A fraction of TH-GFP positive cells is negative for both TH and COUP-TFI. As previously reported these cells are likely immature DA neurons not

expressing yet TH protein (Pignatelli et al., 2009). There is a high overlap between TH-GFP/TH/COUP-TFI labeling indicating that COUP-TFI expression is tightly

associated with the DA phenotype. Scale bar in A = 500 µm. Scale bar in B and C = 50 µm. Scale bar in inset B′
=10 µm. Scale bar in inset C1 = 10 µm and refers

to C2 and C3. ONL, olfactory nerve layer; GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer; IPL, internal plexiform layer; GcL, granule cell layer;

RMS, rostral migratory stream of the OB.

interglomerular connections (Kiyokage et al., 2010; Kosaka
and Kosaka, 2011), participating to the early steps in odor
information processing that occur in the input layer of the OB.
Accordingly, a recent study demonstrated a key function for
DA cells in implementing gain control and reducing correlation
of odor representations in the main output neurons (i.e.,
mitral/tufted cells) (Banerjee et al., 2015). In line with a central
role for DA cells in the encoding of odor stimuli, several studies
support the impact of the DA system in fundamental features

of odor-driven behaviors (Kruzich and Grandy, 2004; Pavlis
et al., 2006; Tillerson et al., 2006; Wei et al., 2006; Serguera
et al., 2008; Lazarini et al., 2014). Moreover, olfactory dysfunction
is associated to pathological states affecting the DA system,
such as in Parkinson disease (Doty, 2012). Although olfactory
dysfunction in PD patients could also involve OBDA cells, recent
data in rodents indicate this is mostly attributable to depletion
in the DA nigro-olfactory projection system (Höglinger et al.,
2015).
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Olfactory DA neurons have attracted significant attention
over the years, because they are involved in substantial activity-
dependent plasticity, regulating the level of TH expression and
dopamine release according to the sensory input (Nadi et al.,
1981; Baker et al., 1983, 1984; Cummings et al., 1997). Moreover,
DA cells are constantly generated throughout life and recent
reports pointed to a specific integration of this juxtaglomerular
cell population in the GL circuits in an activity-dependent
manner (Sawada et al., 2011; Bonzano et al., 2014). Because
of their continuous generation throughout life, DA cells are
also regarded as a potential target to exploit adult neurogenesis
for dopamine system repair in the brain (see Cave et al.,
2014). Here we focused on emerging aspects related to DA
cells heterogeneity, molecular determinants of adult born DA
neurons, their plasticity and function in the OB.

OLFACTORY DA INTERNEURONS BELONG
TO TWO MAIN MORPHOLOGICALLY
DISTINCT CELL POPULATIONS

The view that DA cells in the OB consist of distinct types emerged
many years ago from the immunohistochemical identification
of two different categories of TH-positive neurons in the
rat and mouse OB (Halász et al., 1981; Baker et al., 1983;
McLean and Shipley, 1988). Based on their soma size and
location, TH-positive cells were initially classified either as
small periglomerular cells (PG, soma diameter about 5–10 µm),
positioned in the GL and representing the large majority of
olfactory DA cells, or large external tufted cells (ET, soma
diameter about 10–15 µm), positioned mostly at the boundary
between the GL and the external plexiform layer (EPL) and
rarely found within the EPL. Interestingly, DA cells belonging
to the larger type are born earlier during development than
the smaller ones (McLean and Shipley, 1988), possibly from
local OB progenitors in the E13.5 mouse embryo (Vergaño-
Vera et al., 2006), before precursors from the main germinal
niches for OB interneurons (i.e., LGE, pallium, and septum) start
to populate the OB and differentiate into multiple interneuron
subtypes (Bovetti et al., 2007; Alvarez-Buylla et al., 2008).
Furthermore, Kosaka and Kosaka (2009) showed that adult
subventricular zone (SVZ) progenitors do not contribute to
the generation of the larger type of DA cells, indicating this
population does not undergo the neuronal turnover typical of
most GL interneurons, including small-medium sized DA cells
(Bovetti et al., 2009).

Morphometric investigation of TH-positive neuronal
projection in the GL has successively revealed that DA cells
extend processes into multiple glomeruli (Kosaka and Kosaka,
2008; Kiyokage et al., 2010), suggesting that they should be
more appropriately classified as short-axon (SA) cells instead
of PG and ET cells, whose processes are mostly confined to
one single glomerulus (Pinching and Powell, 1971; Kiyokage
et al., 2010). Importantly, Kiyokage et al. (2010) described two
distinct types of SA TH-positive cells, oligoglomerular and
polyglomerular, based on their process extension and average
number of contacted glomeruli. The vast majority of DA cells

falls within the first category (i.e., oligoglomerular), having
processes spanning a relatively short region of the GL and
contacting in average nearly 6 glomeruli. Polyglomerular cells
show more extensive projections, contact in average nearly 40
glomeruli and are likely to correspond to the large DA cells
previously described to establish long-range interglomerular
connections by Kosaka and Kosaka (2008). An additional feature
that allows differentiating distinct types of olfactory DA cells
is the presence/absence of an axon. Both in vivo (Kosaka and
Kosaka, 2011) and in vitro (Chand et al., 2015) studies clearly
indicated that larger DA cells possess an axon initial segment
(AIS), reminiscent of an axonal process, while the other, smaller
in size do not.

Overall, most evidences point to the existence of two main
morphologically and possibly functionally separate populations
of olfactory DA cells, of which only one (i.e., small/medium-
sized DA neurons) undergoes continuous neurogenesis during
adulthood (Figure 1B).

MOLECULAR DETERMINANTS OF THE DA
PHENOTYPE IN THE ADULT OLFACTORY
BULB

The generation of OB interneuron subtypes has been
demonstrated to depend on a transcriptional code that is
regulated in a spatio-temporal manner (Bovetti et al., 2007;
Alvarez-Buylla et al., 2008). Distinct progenitor lineages
differentially contribute to the generation of TH-positive cells
during development or in adult mice. By means of genetic fate
mapping Kohwi et al. demonstrated that while in neonates
OB TH-positive cells only marginally (4%) derive from Emx1-
expressing pallial progenitors, in adult age 42% of TH-positive
OB interneurons are derived from this lineage (Kohwi et al.,
2007). A prominent pallial origin of postnatal/adult DA
interneurons is further supported by data obtained through
adenoviral-mediated labeling of regionally restricted radial glial
stem cells, showing that TH-positive neurons largely derive from
progenitors located in the dorsal portion of the SVZ (Merkle
et al., 2007). Several transcription factors (TFs), namely Pax6,
Dlx2, Id2, Klf7, ER81, Sall3, Nurr1, and Meis2 (Saino-Saito et al.,
2004, 2007; Hack et al., 2005; Kohwi et al., 2005; Brill et al., 2008;
Havrda et al., 2008; Cave et al., 2010; Caiazzo et al., 2011; Heng
et al., 2012; Agoston et al., 2014; Vergaño-Vera et al., 2015)
have been shown to be required for proper differentiation of
olfactory DA neurons. Here we will limit the review to those
TFs whose function in the control of olfactory DA fate has
been directly demonstrated in adult born neurons (Table 1).
Among these, Pax6 and Dlx2 play a major role (Hack et al.,
2005; Kohwi et al., 2005; Brill et al., 2008; de Chevigny et al.,
2012). The use of retroviral-mediated overexpression of Dlx2
in neuronal precursors along the rostral migratory stream
(RMS) provided data supporting a cell-autonomous role for this
TF in promoting specification of adult born neurons toward
DA fate (Brill et al., 2008). Similar results, implying increased
generation of DA interneurons, were previously described
by over-expressing the TF Pax6 in adult neuronal precursors
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TABLE 1 | Transcription factors involved in the control of adult born olfactory DA fate specification and maintenance.

TF % of JGC type

among TF+

cells

% of TF+

among TH+

cells

Experimental strategies Phenotype References

Type of approach Cellular/area targets

Pax6 TH 78%

CR 2%

CB 10%

95% - RV stereotaxic injection

(overexpression)

RMS/SVZ (adult born) Increase in adult born

TH+ cells

(14/21/90 dpi)

Hack et al., 2005

-RV stereotaxic injection

(loss of function)

RMS (adult born) Decrease in adult born

TH+ cells

(21 dpi)

Hack et al., 2005

-Transplantation of dLGE

Pax6-deficient E16.5

progenitors

Recipient: wt adult SVZ Decrease in TH+ cells

among grafted cells

(40 dpt)

Kohwi et al., 2005

-Conditional KO (Dat-Cre*

Pax6fl/fl)

Unspecific to adulthood

(mature DA cells)

Decrease in TH+ cells;

Decrease in DA cell

survival

Ninkovic et al.,

2010

-Pax6+/SeyDey Unspecific to adulthood Decrease in adult born

TH+ cells; decrease

in DA cell survival

(15–60 dpBrdU)

Curto et al., 2014

-Pax6-ORF-GFP plasmid

electroporation

- Ectopic Pax6 expression in

lateral SVZ

Postnatal lateral SVZ Increase in TH+ cells

(15 dpe)

de Chevigny et al.,

2012

Dlx2 TH unknown

CR none

CB unknown

Virtually all -RV stereotaxic injection

(overexpression)

RMS (adult born) Increase in TH+ cells

paralleled by

decreased CR+ cells

(21–56dpi)

Brill et al., 2008

Meis2 Unknown

exactly

89% − − − Allen et al., 2007

94% -RV stereotaxic injection

(loss of function)

RMS (adult born) Loss of adult born

TH+ cells (21/60 dpi)

Agoston et al.,

2014

COUP-TFI TH 70%

CR 1%

CB 2%

80% -LV stereotaxic injection

(loss of function)

RMS (adult born) Decrease in adult born

TH+ cells (60 dpi);

no changes at 30 dpi

Bovetti et al., 2013

Conditional KO

(Emx1-Cre*COUP-TFIfl/fl)

Unspecific to adulthood Decrease in TH+ cell

population; decrease

in the % of TH+ on

BrdU adult born OB

INs (42dpBrdU); no

changes in DA cell

survival

Bovetti et al.,

2013; Zhou et al.,

2015

TH, tyrosine hydroxylase; TF, transcription factor; CR, calretinin; CB, calbindin; dpi, day(s) post injection; dpBrdU, day(s) post BrdU injection(s); dpe, day(s) post electroporation; dpt,

day(s) post transplantation; RV, Retroviral vector; LV, Lentiviral vector; RMS, Rostral Migratory Stream; SVZ, Sub Ventricular Zone; dLGE, dorsal Lateral Ganglionic Eminence.

migrating along the RMS (Hack et al., 2005). In addition, by
increasing Pax6 protein level in the lateral wall, where normally
Pax6 protein is absent due to post-transcriptional inhibition
by mir-7a, the acquisition of the DA phenotype in the OB is
favored (de Chevigny et al., 2012). Moreover, the effect of Dlx2
overexpression is totally abrogated in the absence of Pax6 and
functional direct interaction/cooperation between Dlx2 and Pax6
is needed to instruct DA fate in adult mice (Brill et al., 2008).
A critical co-factor for Pax6 and Dxl2 function in exploiting
DA fate commitment in adult born OB interneurons has been
recently identified in Meis2, a member of the three amino

acid loop extension class of atypical homeodomain-containing
transcription factors (Agoston et al., 2014). Meis2, together
with Pax6 and Dlx2, is needed to determine the differentiation
toward a DA phenotype over the CR one by directly interacting
with TH regulatory sequences (Agoston et al., 2014). Besides
the instructive role for Pax6 in DA fate commitment in OB
interneuron precursors, Pax6 is also critically involved in OB
DA cell maintenance. Indeed, by conditionally deleting Pax6
in mature DA cells Ninkovic et al. (2010) identified Pax6 as
a positive controller of mature DA cell survival through the
positive regulation of crystallin αA in the adult OB.
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Recently, we have identified a distinct, yet central, role in the
maintenance of the DA phenotype of adult born OB interneurons
for the orphan nuclear receptor COUP-TFI (Bovetti et al.,
2013). Among juxtaglomerular interneurons in the adult mouse
OB, COUP-TFI expression is exclusively found in DA cells,
with nearly 80% of mature TH-positive cells (Figures 1C,D)
and 90% of Pax6-positive cells double positive for COUP-TFI.
Interestingly, the expression of COUP-TFI is mostly confined
to DA cells generated during late postnatal/adult life, and
is regulated by the sensory input. Indeed, odor deprivation
through naris occlusion induces COUP-TFI down-regulation
jointly with TH down-regulation in olfactory DA cells. Moreover,
we observed a net impairment in TH expression in fully mature
cells following ablation of COUP-TFI function in either a) DA
interneuron progenitors by means of conditional COUP-TFI
deletion in the Emx1-lineage or b) post-mitotic adult born
neurons by lentiviral-mediated approach in vivo (Bovetti et al.,
2013). These findings strongly indicate a role for COUP-TFI in
TH expression regulation, as also recently confirmed by another
study (Zhou et al., 2015). Importantly, COUP-TFI ablation on
DA cells does not affect the acquisition and maturation of the
DA phenotype, but impairs immediate early gene expression (i.e.,
egr-1; Bovetti et al., 2013). Overall, these data, together with the
apparent lack of consensus binding sites for COUP-TFI on the
TH promoter, strongly indicate that COUP-TFI regulates TH
expression in OB cells through an activity-dependent mechanism
involving immediate early gene induction and strongly argue
for a maintenance rather than establishment function of COUP-
TFI in the DA commitment. Thus, besides the role of TFs such
as Pax6, Meis2, and Dlx2 that are directly involved in OB DA
fate determination within adult SVZ neural stem cell/precursors,
COUP-TFI must be part of a distinct transcription factor
program that is central for the maintenance of the DA cell
identity over time.

EXPERIENCE-DEPENDENT PLASTICITY
OF OLFACTORY DA NEURONS: A DUAL
MECHANISM INVOLVING TH-EXPRESSION
REGULATION AND ADULT
NEUROGENESIS

Several lines of evidence support the notion that olfactory
DA neurons are unique among OB neurons, being particularly
susceptible to sensory stimuli. A first level of experience-
dependent plasticity of DA cells consists in the regulation of
TH expression and consequently dopamine production/release,
according to the sensory input. Indeed, TH expression in
DA cells is strongly and reversibly down-regulated in animals
subjected to odor deprivation by either chemical or surgical
sensory deafferentation of the OB (Nadi et al., 1981; Kawano
and Margolis, 1982; Baker et al., 1983), or naris occlusion (Baker
et al., 1993). This effect does not seem to be restricted to
a specific DA cell population (see above; Baker et al., 1983)
and applies to both pre-existing and adult generated neurons
(Bovetti et al., 2009; Bastien-Dionne et al., 2010). In parallel

to TH down-regulation, odor deprivation also induces down-
regulation of GAD67, which is selectively co-expressed by
DA cells, but not of GAD65, which is mainly expressed by
other juxtaglomerular cell types (Parrish-Aungst et al., 2011).
Although the view that olfactory DA neurons are exposed to
modulation of their transmitter phenotype by the olfactory input
has long been recognized (Baker et al., 1983, 1984; McLean
and Shipley, 1988), the molecular mechanisms underlying this
phenomenon are just beginning to emerge. A direct link among
the expression of immediate early genes, increased neuronal
activity and TH expression in the GL has been previously
hypothesized (Jin et al., 1996). As reported above, we recently
identified a role for DA cell responsiveness to sensory stimuli
for COUP-TFI, whose depletion in adult generated DA cells
induces both reduced immediate early gene and TH expression
(Bovetti et al., 2013). Moreover, recent studies highlighted the
involvement of epigenetic regulatory mechanisms in the activity-
dependent modulation of the neurotransmitter phenotype in OB
interneurons (Banerjee et al., 2013).

Besides TH expression regulation, sensory activity can
significantly impact on the composition of the DA population
throughmodulation of adult neurogenesis. Indeed, manipulation
of the sensory input by either odor deprivation or enrichment
elicits, respectively, decreased or increased survival of adult
generated juxtaglomerular interneurons (Bovetti et al., 2009), as
previously demonstrated for granule cells (Rochefort et al., 2002;
Mandairon et al., 2006). Increasing evidence points to DA cells
as a selective cellular target for sensory-dependent modulation of
adult neurogenesis in the GL of the OB. Using a paradigm of naris
occlusion in adult mice, Sawada et al. (2011) found that among
different neurochemical types of juxtaglomerular cells, TH-
positive DA cells were the only one to show increased apoptosis.
Interestingly, mice in which the naris was reopened showed
increased integration of new DA cells after a 4 weeks recovery
phase that compensate for the selective loss of DA cells due to
previous deprivation. A restorative role of adult neurogenesis
has been also demonstrated in another experimental paradigm in
which a selective DA neuronal loss, induced by local treatment
with 6-hydroxydopamine (6-OHDA) in the dorsal OB, was
followed by a full recovery of DA cells (Lazarini et al., 2014).
Regulation of DA cell generation in adulthood is not limited
to restorative conditions but occurs also in basal physiological
condition and in response to sensory enrichment. Interestingly, a
net and selective increase in the glomerular DA population with
age has been reported in a long term two-photon imaging study
in vivo (Adam and Mizrahi, 2011). Although the meaning of
these age-dependent changes in the DA population is unknown,
these data reinforce the idea that a certain plasticity of the DA
population is required for OB circuit functions. In a recent
study from our group (Bonzano et al., 2014), a paradigm
of prolonged (2 months) olfactory enrichment with different
aromatic fragrances, which has been previously shown to affect
OB neurogenesis (Rochefort et al., 2002; Bovetti et al., 2009)
and olfactory memory (Rochefort et al., 2002), resulted in a
selective increase in the TH-positive DA population, due to
increased neurogenesis, without changes in calretinin (CR)- and
calbindin (CB)-positive neurons (Bonzano et al., 2014). These
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results further support that adult neurogenesis does not reflect
a simple turnover of the whole GL interneuron population, but it
can finely modulate specific OB neuron subpopulations (i.e., DA
cells) with particular functions in odor processing.

CONCLUSION AND FUTURE
PERSPECTIVE

In the adult OB, DA cells are unique in term of their plasticity
in response to sensory inputs. Although their involvement in
mechanisms underlying the adaptation of the olfactory system to
changes in sensory experience is well established, many aspects
remain still unknown. The heterogeneity of DA cell population
in term of morphology, connections (Kosaka and Kosaka, 2008;
Kiyokage et al., 2010; Chand et al., 2015), origin (McLean and
Shipley, 1988; Vergaño-Vera et al., 2006; De Marchis et al., 2007;
Kohwi et al., 2007; Merkle et al., 2007) and renewal (Kosaka and
Kosaka, 2009) further complicate the understanding of DA cell
role in odor coding, processing and plasticity. New molecular
and optical approaches able to selectively target adult born DA
interneurons will hopefully bring new insights in unraveling their
role in olfactory physiology. The precise in vivo readout of cell

activity now possible exploiting the last generation of calcium
and voltage indicators (Akemann et al., 2010; Chen et al., 2013;
Gong et al., 2015), combined with the capability to selectively
manipulate cell activity through optogenetic and chemogenetic
tools (Boyden et al., 2005; Deisseroth et al., 2006; Liu et al.,
2013; Sternson and Roth, 2014), are the straightforward direction
toward the complete dissection of glomerular network function
and adult born DA cell role in activity-dependent plasticity.
Nonetheless, new molecular and genetic tools may contribute to
further clarify and reach a final consensus on olfactory DA cell
classification.
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