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Schizophrenia is a complex psychiatric disorder characterized by the presence of

positive, negative, and cognitive symptoms that lacks a unifying neuropathology. In

the present paper, we will review the current understanding of molecular dysregulation

in schizophrenia, including genetic and epigenetic studies. In relation to the latter,

basic research suggests that normal cognition is regulated by epigenetic mechanisms

and its dysfunction occurs upon epigenetic misregulation, providing new insights into

missing heritability of complex psychiatric diseases, referring to the discrepancy between

epidemiological heritability and the proportion of phenotypic variation explained by

DNA sequence difference. In schizophrenia the absence of consistently replicated

genetic effects together with evidence for lasting changes in gene expression after

environmental exposures suggest a role of epigenetic mechanisms. In this review we

will focus on epigenetic modifications as a key mechanism through which environmental

factors interact with individual’s genetic constitution to affect risk of psychotic conditions

throughout life.
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INTRODUCTION

We define schizophrenia as a complex psychiatric illness characterized by the presence of positive,
negative, and cognitive symptoms that affect multiple aspects of mental activity, including
perception, thought, attention, memory, and emotion. The age at onset is typically in adolescence
or early adulthood, with a median lifetime prevalence of 4.0 per 1000 and a morbid risk of 7.2
per 1000. The ratio of observed deaths to expected deaths for all-cause mortality is 2.6 for patients
with schizophrenia compared to the general population. The concordance rates of schizophrenia
for monozygotic twins have been estimates to be about 40–50%, and heritability around 80%
(Gejman et al., 2010). To date, this disorder lacks a unique and defining pathophysiology, despite
the abundance of basic and clinical research. In fact, the massive quantity of information generated
during the last decades has been seen as an indicator of uncertainty and confusion in searching for
pathognomonic signs or symptoms, more than a useful tool (Maj, 2011).

However, several research approaches give reason for more optimism, focusing on a link that
remains undefined: the neurobiological and behavioral basis of the disease that correlate with the

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00202
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00202&domain=pdf&date_stamp=2016-05-11
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:raul.alelu@uah.es
http://dx.doi.org/10.3389/fnins.2016.00202
http://journal.frontiersin.org/article/10.3389/fnins.2016.00202/abstract
http://loop.frontiersin.org/people/344725/overview
http://loop.frontiersin.org/people/310847/overview


Cariaga-Martinez et al. Neurobiology of Schizophrenia: An Update

patient’s clinical features (Tandon et al., 2009). In this regard,
the development of the Reseach Domain Criteria (RDoC)
represents a new and integrative way to classify mental disorders
based on dimensions of observable behavior and neurobiological
measures (Cuthbert and Insel, 2013). The proposal is, at
least, ambitious; RDoC implies both conceptual and practical
differences compared to traditional classification systems, that is,
DSM or ICD. First, RDoC goes from pathophysiology to clinical
aspects, including a dimensional approach that encompass
the full range of variation, from normal to abnormal, trying
not to focus on at one end or the other of the continuum
rather than focus on those zones of very mild or transient
psychopathology. This approach could help us to achieve a more
precise specification of the genetic, epigenetic, molecular and
cellular aspects of mental disorders.

Here we will briefly review the main findings in studies of
linkage and association, genome wide association, quantitative
trait loci, endophenotypes, and structural and functional
neuroanatomy, describing advantages and possible limitations of
each one. Finally, we will focus on the role of epigenetics as a
more recent scientific approach that may help us to understand,
from an RDoC paradigm, the complex ways in which nature
interacts with nurture to sometimes produce a severe mental
illness.

LINKAGE AND ASSOCIATION STUDIES

Parametric and nonparametric linkage analysis have been applied
with success in studies of Mendelian disorders, which are
characterized by the presence of a single major locus with
rare highly penetrant alleles (Badano and Katsanis, 2002).
In complex non-Mendelian illnesses, such as schizophrenia,
a genetic model for linkage studies is difficult to establish
(Risch, 1990), and former research attempts to identify different
schizophrenia susceptibility loci showed poor replication (i.e.,
6p24-22, 6q25, 6q23, 10q24, and 17q21)(Straub et al., 1995;
Lindholm et al., 2001; Lerer et al., 2003; Williams et al., 2003;
Escamilla et al., 2009). Even more, a recent meta-analysis
(Walters et al., 2014) demonstrated, after computational data
cleaning, substantial differences in results reported in older
linkage studies, underscoring the limitations of those previous
analysis. Why linkage analysis fails to describe schizophrenia
susceptibility genes? Although at the beginning the results
obtained in other complex diseases—such as breast cancer or
familiar Alzheimer—led to believe that linkage approach could
be a fruitful strategy to aid in first identifying genetic and then
other etiological factors important in the disorder (Goate et al.,
1991), as we mentioned above, linkage has proven to be a method
of immense power for Mendelian disorders that differs from
schizophrenia in critical ways which make successful much more
difficult. The former have full penetrance, the manifestation
of their typical symptoms is due to the disease mutation,
environment has no incidence in the disease development, exists
a clear distinction between affected and non-affected individuals
and the same gene is responsible for all the cases of illness
in a pedigree. On the contrary, in schizophrenia genes have

reduced penetrance, symptoms can be produced by different
conditions, environmental factors are critical to account for
observed patterns of risk and, finally, does not exist a clear
distinction between affected and non-affected individuals (Riley,
2004).

A more powerful technique than linkage analysis are
association studies (Risch and Merikangas, 1996), that test
differences in allele frequency between cases (individuals with
schizophrenia) and control subjects. Unlike linkage, association
studies have a higher spatial resolution and sufficient power to
detect common genetic variants (Mantripragada et al., 2010).

To its last updated version (2011) the SZGene database
(www.szgene.org) collect 1727 association studies, taken from
thousands of those published in specialized literature. Meta-
analysis from this database identifies 43 candidate genetic
variants (“top candidates”), highly associated to schizophrenia
phenotypes (Allen et al., 2008). Also, Shi et al. (Shi et al., 2008)
selected association studies for 12 of these “top” candidates and
its meta-analysis showed significant allelic associations across
different populations in genes involved in the metabolism of
key neurotransmitters (e.g., DAO, DRD4, PPP3CC, serotonin
transporter SLC6A4) as well as genes related to DNAmethylation
(e.g.,MTHFR), apoptosis and neurodevelopment (e.g., TP53).

Other studies also found genes involved in the regulation
of neurotransmitters implicated in the disorder, such as COMT
(Chen et al., 2004; Shifman et al., 2004), DTNBP1 (Straub et al.,
2002; Maher et al., 2010), or RGS4 (Chowdari et al., 2002;
Talkowski et al., 2006) or aspects of neural development such
as NRG1 (Stefansson et al., 2002; Munafo et al., 2008) or DISC1
(Pletnikov et al., 2008; Schumacher et al., 2009).

This approach has important advantages and disadvantages
when compared to linkage: although in association studies is
possible to study individual patients, the regions of the genome
analyzed are smaller than linkage studies, that means that the
data obtained must be used for the assessment of candidate
genes or regions only. Moreover, association studies can lead to
false positives which has a direct incidence in the reliability of
the technique and the lack of replication between independent
studies (Riley, 2004; Sullivan, 2007).

GENOME WIDE ASSOCIATION STUDIES
(GWAS)

According to NIH guidelines (National Health Institute–United
States), GWAS is defined as any study of genetic variation across
the entire human genome that is designed to identify genetic
associations with observable traits (such as blood pressure or
weight), or the presence or absence of a disease or condition
(Health, 2008). Likened to a survey of the entire human genome
for regions that are correlated with disease severity or onset,
GWAS assumes that any region across the genome can be a
focus for influencing phenotypic variation (Hirschhorn andDaly,
2005; Wang et al., 2005; Girard et al., 2011; Lee et al., 2012) and
represents a powerful alternative to the aforementioned analyses
given the possibility to study single nucleotide polymorphisms
(SNPs) and copy number variants (CNV). As we indicate on
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Table 1, several groups have employed this methodology (Mah
et al., 2006; Lencz et al., 2007; O’Donovan et al., 2008; Shifman
et al., 2008; Sullivan et al., 2008; Kirov et al., 2009; Liu et al.,
2009; Need et al., 2009; Purcell et al., 2009; Shi et al., 2009,

2011; Stefansson et al., 2009; Athanasiu et al., 2010; Wang et al.,
2010; Chen et al., 2011; O’Dushlaine et al., 2011; Ripke et al.,
2011; Williams et al., 2011; Yue et al., 2011; Liou et al., 2012)
implicating a number of SNPs and various susceptibility loci for

TABLE 1 | Summary of the most relevant findings in GWAS studies in schizophrenia.

Number of

Schizophrenic

Samples

Type of Samples Genes of Interest Chromosome/Locus References

320 Peripheral blood DNA PLXNA2 1q32.2 Mah et al., 2006

158 Peripheral blood DNA CSF2RA Xp22.32, Yp11.3 Lencz et al., 2007

479 Peripheral blood DNA ZNF804A 2q32.1 O’Donovan et al., 2008

660 Peripheral blood DNA RELN 7q22 Shifman et al., 2008

738 Peripheral blood DNA AKT1, CSF2RA, IL3RA, PRODH, RGS4,

ZDHHC8, COMT, DAOA, DISC1, DRD3,

DTNBP1, HTR2A, NRG1, PLXNA2, SLC6A4

14q32.33, Xp22.33,

22q11.21, 1q23.3, 22q11.21,

13q33.2, 1q42.1, 3q13.3,

6p22.3, 13q14-q21, 8p12,

1q32.2, 17q11.2

Sullivan et al., 2008

574 Peripheral blood DNA CCDC60 12q24.23 Kirov et al., 2009

119 Peripheral blood DNA JARID2 6p23 Liu et al., 2009

900 Peripheral blood/saliva DNA ADAMTSL3 15q25.2 Need et al., 2009

3322 Peripheral blood DNA MHC, MYO18B, ZNF804 22, 6p, 22q11.2 Purcell et al., 2009

8008 Meta-analysis HIST1H2AG 6p22.1 Shi et al., 2009

2663 Peripheral blood DNA MHC region, NRGN TCF4 6p21, 11q24, 18q21 Stefansson et al., 2009

201 Peripheral blood DNA PLAA, ACSM1, ANK3 9p21, 16p12, 10q21 Athanasiu et al., 2010

17,198 Meta-analysis CMYA5 5q14.1 Chen et al., 2011

3322 Peripheral blood DNA NRXN1, CNTNAP2, CASK, CDC42, PRKCZ, 2p16.3, 7q35, Xp11.4,

1p36.1, 1p36.33-p36.2

O’Dushlaine et al.,

2011

1172 Meta-analysis ASTN2, GABR1, CNTNAP2 9q33.1, 6q15, 7q35 Wang et al., 2010

9394 Meta-analysis MIR137 PCGEM1 TRIM26 CSMD1 MMP16

CNNM2 NT5C2 STT3A CCDC68, TCF4

1p21.3, 2q32.3,

6p21.3-p22.1, 8p23.2,

8q21.3, 10q24.32, 10q24.33,

11q24.2, 18q21.2, 18q21.2

Ripke et al., 2011

18,945 Meta-analysis ZNF804A 2q32.1 Williams et al., 2011

626 Peripheral blood DNA ELAVL2 9p21 Yamada et al., 2011

746 Unknown ZKSCAN4, NKAPL, PGBD1, TSPAN18 6p21, 6p22.1, 6p22.1,

11p11.2

Yue et al., 2011

795 Peripheral blood DNA SLAMF1, NFKB1, RIPK4, DOCK4, RGMB,

AKAP9, CSMD1, ZCCHC14, ZNF492

1q23.3, 4q24, 21q22.3,

7q31.1, 5q15, 7q21.2,

8p23.2, 16q24.2, 19p12

Liou et al., 2012

1169 (+2569 in the

follow-up study)

Peripheral blood DNA AMBRA1, DGKZ, CHRM4, MDK and TCF4,

CUX1

11q1 and 18q21.2, 7q22.1a Rietschel et al., 2012

5001 Peripheral blood DNA CACNA1C, CACNB2, TSNARE 12p13.33, 10p12.32, 8q24.3 Ripke et al., 2013

9379 Peripheral blood DNA MHC, CACNA1C, MIR137, MMP16, CSMD1,

STT3A

6p21.33, 12p13.33, 1p36.22,

8q21.3, 8p23.2, 11q24.2

Cross-Disorder Group

of the Psychiatric

Genomics, 2013

36,989 Peripheral blood DNA and

brain tissue DNA.

DRD2, GRM3, GRIN2A, CACNA1I, GRIA1,

SRR, CLCN3, RIMS1, KCTD13, NLGN4X

(Selected from 108 loci)

11q23.2, 7q21.12, 16p13.2,

22q13.1, 5q33.2, 17p13.3,

4q33, 6q12-13, 16p11.2,

Xp21.33-32.

Schizophrenia Working

Group of the

Psychiatric Genomics,

2014

34,241 (+698) Meta-analysis + peripheral

blood DNA

CACNA1C, CSMD1 12p13.33, 8p23.2 Takahashi et al., 2015

1955 Meta-analysis NKAIN2, LSM6, GLRA1 (associated to

negative symptoms presence) and KIAA1430,

NRG1, PHACTR3 (associated to positive

symptoms presence)

6q22.31, 4q31.22, 5q33.1.

4q35.1, 8p12, 20q13.32 a
Edwards et al., 2015

aGenome Browser UCSC/hg38 assembly.
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the disorder, such as RELN (rs7341475 on chromosome 7q22),
RBP1 (rs893703 on chromosome 3q23), PLXNA2 (rs752016
on chromosome 1q32), ZNF804A (rs1344706 on chromosome
2q32.1), NRGN (rs12807809 on chromosome 11q24), or TCF4
(rs9960767 on chromosome 18q21) and chromosome regions
1q32.2, 5q33.2, and 8p21-22, among others, as well as deletions
and/or duplications in several chromosomal regions (Lee et al.,
2012). Even more, an entire researcher confederation, the
Psychiatric Genetic Consortium (PGC), is actively working
in genetic data sharing, meta-analysis and data cleaning and
organization from GWAS, leading to an important body of
information in schizophrenia genetics (Schizophrenia Psychiatric
Genome-Wide Association Study, 2011; Schizophrenia Working
Group of the Psychiatric Genomics, 2014; Rees et al., 2015;
Takahashi et al., 2015). Efforts from PGC in finding risk
or susceptibility loci were recently successful by reporting
an association of schizophrenia risk with genetic markers
across the major histocompatibility complex (MHC). Data
from the Schizophrenia Working Group of the PGC found
that SNPs in C4 alleles affect its expression in the brain,
leading to putative synapse elimination in schizophrenic patients
(Sekar et al., 2016).

Although the objective of GWAS studies is to survey the
entire genome in the most systematic and unbiased way possible,
and despite the optimism generated in the beginning (Sullivan
and 96 Psychiatric Genetics Investigators, 2012), limits for this
technique were soon clearly indicated (Pearson and Manolio,
2008) including the potential for false-positive results and
genotyping errors, lack of information on gene function, the
requirement for large sample sizes, and possible biases due to
problems in matching cases and controls or stratification.

In addition, the extent of phenotypic variation accounted
for by GWAS to date is quite low and, therefore, some have
suggested that, to develop an integrativemodel of the relationship
between genotype and clinical phenotype, we need to integrate
GWAS with other functional findings that would allow a better
appreciation of possible biological basis underlying the clinical
characteristics of schizophrenia (Lee et al., 2012). In this sense,
Wang et al. recently developed a Covariate-Modulated Mixture
Model (CM3) that combine auxiliary information to GWAS data
from PGC, in order to generate an “enrichment score” for each
SNP. This score might help to estimate more accurately the
replication probabilities for each SNP in a GWAS analysis (Wang
et al., 2016).

Given that GWAS studies were unable to find a definite
association of unique SNPs to schizophrenia, another option is
to consider the sum of modest association of single SNP, that do
not reach levels of significance, taking into account the possibility
of polygenic contribution to mental illness development as
proposed 50 years ago (Gottesman and Shields, 1967). This
Polygenic Risk Score (PRS) is an interesting approach that
summarize genetics data and risk odds ratios and was recently
used as a way for stratification of schizophrenic patients, although
its sensibility and specify was not enough to support its use
as a predictive tool (Schizophrenia Working Group of the
Psychiatric Genomics, 2014). However, some reports use PRS
in order to find clinical correlations: Tesli et al., find significant

association between schizophrenic or bipolar patients and its
correspondent PRS (Tesli et al., 2014); Agerbo et al. also observed
an association between schizophrenia and PRS in a recent meta-
analysis (Agerbo et al., 2015) and, finally, Jones et al., recently
reported an association between PRS and negative symptoms in
adolescents (Jones et al., 2016).

Although these observations and correlations shed some light
on the genetic liability to schizophrenia, the main limitation of
PRS dwells in its origin as a calculated measure that do not clearly
points to any specific underlying biological aspect of mental
illness onset (Kendler, 2016). Also quality control of GWAS data
and sample size are key for its possible use as a predictive tool, so
its complete usefulness is far from established (Dudbridge, 2013).

QUANTITATIVE TRAIT LOCI (QTL)

QTL analysis is a method of localizing chromosomal regions
harboring genetic variants that affect a continuously distributed
polygenic phenotype (Watanabe et al., 2007), which involves the
search for multiple genes each of which is neither necessary
nor sufficient for the development of a specific trait. Results
to date suggest linkage between different cognitive domains
of schizophrenia and particular chromosomal loci 1q32.2
(D1S196), 5q (D5S111), 8p21-22 (D8S503, D8S1771), 11q23.3-
24 (D11S934), 19q (D19S220), and 20q12.1-11.23 (D20S112;
Silverman et al., 1996; Straub et al., 1997; Gurling et al., 2001;
Sklar et al., 2004; Almasy et al., 2008) although for a disease with
complex inheritance (such as schizophrenia) this type of analyses
can only produce limited inferences as the nature and localization
of genes related to illness susceptibility (Gurling et al., 2001).

Moreover, QTL present several problems that made more
difficult the data interpretation, such as the large confidence
intervals obtained from segregating populations, the difficult
to distinguish two QTL that are less than 20cM apart, or the
presence of too many false negatives.

As a possible solution to these disadvantages, the massive
data collected from sequencing and GWAS recently allowed
generating a new approach: the expression quantitative trait
loci (eQTL). Unlike QTL mapping, focused in chromosomal
regions that limits the number of analyzed regions, eQTL uses
gene expression levels (i.e., from DNA microarrays data) as the
quantitative trait (Gilad et al., 2008). The underlying assumption
is if genetic expression is affected (the phenotype), a potential
polymorphic marker, and probably near of the gene locus,
might be responsible for this change (i.e., SNPs at regulator
sequences of the gene). So, a statistical and computational
approach correlates data from genetic patterns of all markers
with the expression of all measured genes (Michaelson et al.,
2009). With regard to schizophrenia, this approach allowed to
find several new risk loci in blood samples (3p21 and 10q24 and
SNPs in two calcium-channels subunits genes; Cross-Disorder
Group of the Psychiatric Genomics, 2013) and also was recently
used to evaluate the potential role of microRNA in its etiology
(Williamson et al., 2015) or the genetic pleiotropy between
immune and psychiatric disorders (Andreassen et al., 2015;Wang
Q. et al., 2015).
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ENDOPHENOTYPES AND
SCHIZOPHRENIA

Some authors suggest genetic analyses might be more productive
if, instead of focusing on such a heterogeneous diagnostic
entity, they addressed simpler biological or behavioral traits as
intermediate phenotypes. These so-called “endophenotypes”
have been defined as relatively simple and quantifiable
biobehavioral characteristics that segregate with the illness
and may suggest primary susceptibility genes that can be
reliably assessed by laboratory-based measures. Based on
reviews of studies in this area, it established that criteria
or the selection of endophenotypes should reflect a trait
characteristic of the disorder and be (1) highly heritable,
indicating a robust deficit in both patients and unaffected
family members; (2) rapid and easy to measure with minimal
subject cooperation or effort, (3) reliable, state independent and
reproducible in an individual subject, and (4) reflect an known
underlying neurobiological mechanism believed relevant to the
pathophysiology of the disorder and indicative of the action
of a limited number of genes (Gottesman and Gould, 2003;
Braff and Light, 2005; Bearden and Freimer, 2006; Turetsky
et al., 2007; Braff et al., 2008; Rissling and Light, 2010; Glahn
et al., 2014). The literature, as reviewed by Allen et al. (2009)
reflects wealth of data on endophenotypes in schizophrenia
and their first-degree relatives and very few reviews of
prevalence rates within both groups and healthy controls,
mainly in sensory processing and event-related potential
measures, physiologic abnormalities, minor physical anomalies,
measures of impaired cognitive skills, and neurobiological
markers. In this report is also remarkable the aware about
the normal distribution in determining endophenotypes
traits, assumption that could lead to false correlations
(Allen et al., 2009).

Although the endophenotype approach aims to simplify the
path to understanding the biological basis of schizophrenia,
its complexity is still hard to address. By way of an example,
a recent association analysis of different candidate genes
and schizophrenia-related endophenotypes showed extensive
evidence for pleiotropy, revealing associations with three or
more phenotypes and often with schizophrenia as well (see
Supplementary Table 1; Greenwood et al., 2012). Further,
although a recent report seems to indicate that behavioral and
molecular endophenotypes could reveal heritable abnormalities
in glutamatergic neurotransmission, the low sample size (34
probands with first episode psychosis, 34 first-degree relatives,
and 35 unrelated healthy controls) together with a lack of
replication limits inferences (Scoriels et al., 2015).

The search for valid endophenotypes, nevertheless, remains
as a promising approach in filling the gap between the
genetics and the development of schizophrenia. For example,
the Consortium of Genetic of Schizophrenia (Gur et al., 2007)
has confirmed the heritability of some traits considered as
useful endophenotypes (Light et al., 2014; Seidman et al.,
2015) leading the United States Food and Drug Administration
(FDA) to accept demonstrated cognitive endophenotypes as
therapeutic treatment targets (Braff, 2015), or the intermediate

phenotypes associated to sensoriomotor function considered,
by some authors, as promising intermediate phenotype for
psychotic disorders (Reilly et al., 2014; Lencer et al., 2015).

STRUCTURAL AND FUNCTIONAL
NEUROANATOMICAL FINDINGS

Although several structural and functional neuroimaging and
post-mortem studies suggest that schizophrenia is characterized
by altered neural circuits, no neuroanatomical abnormality has
been clearly and consistently linked to the disorder. Despite of the
controversial data obtained, these studies represent an important
information source, trying to establish the mechanisms that
underlie the pathophysiology of the disease. One of the earliest
and most consistent findings is the ventricular enlargement in
older patients with a diagnosis of schizophrenia (Andreasen et al.,
1982; Nasrallah et al., 1982, 1986; DeLisi et al., 1983; Schulz
et al., 1983; Reveley et al., 1984; Obiols Llandrich et al., 1986;
Davis et al., 1998; Wright et al., 2000; Gaser et al., 2004; Horga
et al., 2011), although a recent meta-analysis suggested that these
differences could be artifacts of illness duration, age of onset,
or abnormal control samples (Sayo et al., 2012). This lack of
rigorous analyses could be extended to other structures, such
as the prefrontal cortex, the orbitofrontal cortex, and middle
frontal gyrus and structures that play an important role in the
information processing, highlighting the thalamus (Lesch and
Bogerts, 1984; Andreasen et al., 1990; Arciniegas et al., 1999;
Konick and Friedman, 2001; Byne et al., 2002; Mileaf and Byne,
2012). On the contrary, hippocampal abnormalities are one of
the main findings observed in schizophrenia patients, including
changes in its volume (van Erp et al., 2015) and shape (Dean
et al., 2016). Although, some reports did not find differences of
hippocampal volumes between schizophrenic patients and their
healthy siblings (Staal et al., 2000), reduced hippocampal volume
was observed in schizophrenia but not in psychotic bipolar I
disorder, leading to the authors to propose it as a differential
biomarker (Arnold et al., 2015).

Regarding limbic structures, several authors suggest reduced
volumes in schizophrenia including hippocampus and amygdala
(Velakoulis et al., 2006), temporal gyrus (Hu et al., 2013; Guo
et al., 2014) and anterior cingulate cortex (Mouchlianitis et al.,
2015), findings supported by several meta-analyses (Wright et al.,
2000; Arnone et al., 2009; De Peri et al., 2012).

Can these anatomical abnormalities account for the
development of schizophrenia? By using functional magnetic
resonance imaging (fMRI) it was observed that some brain
networks show a temporal coherence, reflecting a putative
functionally connection both at rest and during a task. These
networks, called Intrinsic Functional Brain Networks, represent
a new and interesting research field with a high potential
impact for understanding the origin of mental illness (Calhoun
et al., 2009). Also, changes in the Amplitude of Low-Frequency
Fluctuations (ALFF), an fMRI measure associated to this
spontaneous neuronal activity in specific areas of the brain, were
used to investigate the underlying pathophysiology of mental
disorders (Zang et al., 2007).
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An evenmore powerful approach is to combine these data and
techniques. In this sense, a combination of fMRI and gray matter
(GM) volume measures in a joint-independent component
analysis model, allowed to Wang et al. to discriminate healthy
controls and bipolar patients from schizophrenic patients. The
latter group showed higher ALFF for temporal structures, with
reduced volumes of GM, suggesting that both temporal lobe
function and structure might be disturbed in these patients
(Wang Z. et al., 2015).

Finally, a recent report also combined electroencephalogram
(EEG) data and gray matter volumes (GMV) changes. By
using a joint independent component analysis, Soh et al.,
demonstrated that EEG oscillations (posterior alpha activity)
and GMV variations (decreased volume in inferior parietal lobe,
supramarginal, parahippocampal gyrus, middle frontal, inferior
temporal gyri, and increased volume of uncus and culmen) might
be a putative specific biomarker for schizophrenic patients (Soh
et al., 2015).

All the aforementioned data shed some light about the
structure-function relationship in the healthy and in the
schizophrenic brain, but we also need to go deeper in order
to translate these structural-functional observations to cellular
processes to have a more integrated point of view for diagnosis
and treatment of mental illness (Maj, 2011). In this regard,
some genes previously described have been linked to altered
neural circuitry characteristics of the disorder. By way of an
example, rs1344706 (ZNF804A) is associated to increased white
matter volume, which is consistent with previous reports of
increased white matter volume in first-degree relatives of patients
with schizophrenia (Marcelis et al., 2003), and individuals
with schizotypal personality disorder (Hazlett et al., 2008).
Difficulties, again, reside in replicating the results obtained.
Probably we need to go beyond genetics to understand how
nature interacts with nurture to produce a complex mental
disease.

EPIGENETICS: AN INTRODUCTION

Many common human diseases are influenced by a set of
several genetic and environmental factors that genetics alone
cannot explain (Melkonian et al., 2015). The stress-vulnerability
model of etiology assumes that genetic factors operate by
making individuals selectively vulnerable to environmental
risks. Accordingly epigenetics refers to the interplay between
environment and genes that initiate and maintain heritable
patterns of gene expression and function without changing the
sequence of the genome (Urdinguio et al., 2009). Like the DNA
sequence, the epigenetic profile of somatic cells is preserved
during mitosis but, unlike the DNA sequence which is stable
and strongly conserved, epigenetic processes are highly dynamic
even within an individual, being involved in the regulation of
many developmental processes including the programs of gene
expression that result in the development of different organs and
tissues (Shipony et al., 2014).

In humans, the most widely studied epigenetic modification
is the methylation of cytosine residues at the carbon 5 position
(5mC) within the dinucleotide CpG (Laird, 2010) mediated
by DNA methyltransferases (DNMTs), a family of enzymes

that catalyze the transfer of a methyl group from S-adenosyl
methionine to the DNA. These CpG dinucleotides are not
randomly distributed throughout the human genome but are
usually concentrated in regions called CpG islands, preferentially
located at gene promoters and, although usually unmethylated
in all normal tissues and mostly associated with transcriptional
expression—its methylation is associated with a closed chromatin
structure and transcriptional silence of the associated genes—
some physiological processes require its methylation, such as the
silencing of imprinted genes, the inactivation of X chromosome
in females, the regulation of germline-specific genes and, finally,
the silencing of tissue-specific genes in cell types in which they
should not be expressed (Schubeler, 2015).

Although DNA methylation has been most widely described
at CpG islands, it does not occur exclusively in these regions.
First, CpG island shores, regions of lower CpG density
closeness to CpG islands are associated with transcriptional
inactivation by methylation. Conversely, in gene bodies DNA
methylation is also common in ubiquitously expressed genes
where it increases prolongation efficiency prevents spurious
initiations of transcription; is positively correlated with gene
expression and is also present in repetitive elements to
protect chromosomal integrity by preventing the reactivation of
endoparasitic sequences (Portela and Esteller, 2010), indicating
the necessity to look beyond promoters, at least in human brain
(Maunakea et al., 2010).

A second epigenetic mechanism is histone modification,
which entail dynamic and reversible post-translational
modifications of the residues at N- terminal tails of histones that
are mediated by sets of enzymatic complexes that site-specifically
attach or remove the corresponding chemical groups (Tessarz
and Kouzarides, 2014).

The histone modifications described to date include
acetylation, methylation, phosphorylation, ubiquitination,
SUMOylation, and ADP-ribosylation, with a main role in
processes such as DNA repair, DNA replication, alternative
splicing, and chromosome condensation (Fnu et al., 2011; Park
et al., 2011; Petruk et al., 2012; Zhou et al., 2012). This epigenetic
mechanism has been associated with both transcriptional
repression and activation and can be modified at different sites
simultaneously, giving rise to cross-talk among the different
markers, so its combination in a nucleosome or region plus the
DNA methylation pattern specifies the outcome. In general,
the acetylation of the ε-amino groups of conserved lysine
residues present in histone tails due to action of histone
acetylases has long been linked to a more relaxed chromatin
state and, therefore, facilitates gene transcription, while histone
methylation by histone methyltransferases is both associated
with transcriptional activation and repression (Greer and Shi,
2012; Molina-Serrano and Kirmizis, 2013).

EPIGENETICS IN THE HUMAN CENTRAL
NERVOUS SYSTEM: BRAIN ANATOMY
AND COGNITION

Dynamic relationships between DNA methylation and histone
modifications reach the highest levels of complexity in the central
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nervous system (CNS). A great deal is known about variations
in gene expression that distinguish brain regions, although the
epigenetic connection to brain anatomy has not been enough
explored (Ladd-Acosta et al., 2007). In this regard the epigenetic
signature depends on the brain area analyzed (Ladd-Acosta et al.,
2007); DNA methylation patterns vary not only from one brain
region to another, but between cell types and, even, among
different subpopulations of a given cell type (Iwamoto et al.,
2011; Kozlenkov et al., 2014), i.e., interneurons and projection
neurons. These specific epigenetic markers may help to explain
brain region-specific and cell type-specific differences in gene
transcription, and it could be critical to analyze the degree to
which brain epigenetic signatures might be altered in disease
(Ladd-Acosta et al., 2007). Moreover, recent studies that compare
inter-tissue and inter-subject methylation variability reported
greater correspondence of methylation patterns within a tissue
across subjects than within a subject across tissues (Lokk et al.,
2014; Walton et al., 2016), which indicates that the researchers
interested in the epigenetic analysis of mental disorders should
be careful when interpreting DNA methylation data assessed in
peripheral tissues such as blood (Walton et al., 2016).

Animal models have recently shed light on a role of epigenetic
mechanisms in various cognitive domains, including memory
(Swank and Sweatt, 2001; Korzus et al., 2004; Oliveira et al.,
2007). Early studies reported DNA methylation changes at
specific gene promoters including RELN, BDNF, and the memory
suppressor gene PP1 in the adult hippocampus in response
to fear conditioning (Levenson et al., 2006; Lubin et al.,
2008; Feng et al., 2010). In addition to DNA methylation, it
is well established that memory formation requires changes
in histone modifications altering chromatin accessibility and
the transcription of genes relevant to memory, mainly by an
increase in histone acetylation (Guan et al., 2002). Conversely,
a chromatin compaction that makes transcription difficult by
the presence of an increase of histone deacetylases (HDAC),
specifically type 2, results in a decrease of synapse number and
impairs memory, whilst lower levels of this enzyme facilitate
emotional memory, spatial working memory and increased
synapse formation (Guan et al., 2009). Even more, a recent
paper described how small RNAs can regulate memory storage
in the adult brain through the epigenetic regulation of the
transcription factor CREB2 (Rajasethupathy et al., 2012) through
a serotonin-dependent methylation of a conserved CpG island in
the promoter region of CREB2 that leads to enhanced long-term
synaptic facilitation.

Also, the cognitive map (the spatial representation of a
determined environment) could be regulated by changes in
methylation patterns of place cells (hippocampal neurons that
increase its activity according to specific environments). Roth
et al. recently demonstrated that the methylation pattern of Bndf,
a gene implicated in neural plasticity, differs in place cells of rats
that were exposed to new environmental setups compared to a
control group (rats only exposed to familiar places; Roth et al.,
2015), leading to the notion that spatial experiences also alter
DNA methylation patterns in specific brain regions.

Another interesting research field is focused on the epigenetic
regulation of the oxytocin receptor (OXTR) levels, whether by

changes in its own methylation pattern or by changes in the
methylation patterns of miRNA that regulates OXTR RNA levels
and its subsequent expression (Kumsta et al., 2013). In this
sense, hypomethylation of miR-142 promoter and upregulation
of microRNAs that target the oxytocin receptor gene was found
in prefrontal cortex of patients diagnose with autism (Mor et al.,
2015). It is well-known that the oxytocinergic system acts as
a neuromodulator of social cognition and emotion recognition
(Bukovskaya and Shmukler, 2015). In this sense, a recent report,
that combines fMRI data with genetic data from blood samples,
indicates that DNA methylation of the oxytocin receptor gene
might predicts neural response to ambiguous social stimuli
(Jack et al., 2012) and also, it was recently demonstrated that
epigenetic modification of the oxytocin receptor gene could
influence social cognition in humans (Puglia et al., 2015; Rubin
et al., 2016). Although this is an exciting approach to epigenetic
and psychological connection, the main findings with regard
to methylation patterns were in blood peripheral cells, so its
relevance is not clear.

EPIGENETICS AND DISEASE. A FOCUS ON
SCHIZOPHRENIA

In schizophrenia the absence of consistently replicated genetic
effects together with evidence for lasting changes in gene
expression after environmental exposures suggest a role of
epigenetic mechanisms in its pathophysiological mechanisms
(Ibi and Gonzalez-Maeso, 2015; Shorter and Miller, 2015).

The rationale for epigenetic exploration into psychiatric
diseases is based in two sets of findings. First, evidence from
basic research suggests that normal cognition is regulated
by epigenetic mechanisms and its dysfunction occurs upon
epigenetic misregulation. Second, a review by Labrie et al.,
suggest that epigenetic research is providing new insights into
missing heritability of complex psychiatric diseases, referring
to the discrepancy between epidemiological heritability and the
proportion of phenotypic variation explained by DNA sequence
differences (Labrie et al., 2012).

To date, most studies exploring epigenetic mechanisms
in schizophrenia have employed post-mortem human brain
samples. Pioneering studies have focused on different genes
that have been related with the pathophysiology of the disease,
including differences in the amount of S-adenosyl methionine
(Guidotti et al., 2007) or an overexpression of HDAC1 in the
prefrontal cortex of patients with schizophrenia (Sharma et al.,
2008). Other studies reported an increase in DNMT mRNA and
protein levels in the cortical GABAergic system of individuals
with schizophrenia (Veldic et al., 2004, 2005; Ruzicka et al., 2007;
Zhubi et al., 2009; Figure 1), suggesting that the down-regulation
of GABAergic transcripts is due to hypermethylation of their
gene promoters (Abdolmaleky et al., 2005; Grayson et al., 2005),
results not confirmed by the pyrosequencing method in a later
study (Tochigi et al., 2008).

In addition to the GABAergic system, epigenetic
modifications in schizophrenia have been described in
serotoninergic (Abdolmaleky et al., 2011, 2014; Carrard et al.,
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FIGURE 1 | Major epigenetic findings in schizophrenia. Above, histone modifications that result in euchromatin or heterochromatin states, allowing transcription

factors access to genes or blocking transcription at specific loci. Below, hyper- and hypo-methylation patterns associated with schizophrenia in GABA, glutamate,

serotonin, and dopamine neurotransmitter systems.

2011; Ghadirivasfi et al., 2011), dopaminergic (Abdolmaleky
et al., 2006), and glutamatergic systems (Mill et al., 2008)
reporting altered CpG methylation of glutamate receptors genes
NR3B and GRIA2, glutamate transporters VGLUT1 and 2 and
the serotoninergic receptor HTR2A.

Regarding theMB-COMT promoter, an unmethylated pattern
that correlates with hypomethylation of the dopamine D2
receptor gene has been described in the schizophrenic frontal
lobe (Abdolmaleky et al., 2006) and in saliva (Nohesara et al.,
2011), changes not replicated in an independent study (Mill et al.,
2008). A brief summary of these findings is showed in Figure 1.

The failure of replication could be due to a number of factors,
including the considerable heterogeneity of theDNAmethylation
patterns between individuals (Kaminsky et al., 2009) or even
the use of tissue homogenate that is comprised of an extremely
heterogeneous mixture of different cell types (Akbarian, 2010).
Besides inter-individual differences, other factors could influence
on DNA methyltransferases, changing the methylation pattern
of different genes, such as the social environment (Rampon
et al., 2000; Weaver et al., 2004), the environmental toxins
(Desaulniers et al., 2005; Bollati et al., 2007) or antipsychotic
drugs (Shimabukuro et al., 2006; Cheng et al., 2008; Abdolmaleky
et al., 2015); by way of an example, the administration in clinically
relevant doses of different antipsychotics in mice, specifically
clozapine and sulpiride in association or not with valproate,
down-regulate Reln and Gad1 promoter methylation in the
frontal cortex and striatum (Dong et al., 2008).

Lastly, we found that several thousand individual CpGs
demonstrated small, but statistically significant, differences in
DNAm levels between adult patients with schizophrenia and
controls that did not appear confounded by cellular composition
or smoking. The differences found between patients and controls
appear to represent epigenetic marks that principally associate
with early neurodevelopment and not with events that herald
the onset of the disorder or that characterize adult brain biology.
Overall, the data suggest that both the genetic and environmental
risk components of schizophrenia involve early developmental
influences.

Up to now, we focused on specific marks at specific genes
but what do we know about the distribution of aberrant DNA
methylation in the human genome? Although it remains very
superficially and inadequately studied (Schumacher et al., 2006),
the development of new technology makes it possible to carry
out epigenome-wide association studies (EWAS) to analyze the
DNA methylation status of a great number of CpG, (i.e., 450.000
methylation sites per sample at single-nucleotide resolution),
which is directly comparable to highly successful GWAS chips.

As an example of the usefulness of this approach, a recent
study carried out by Jaffe et al. characterized the methylation
pattern in prefrontal cortex in 335 healthy controls and 191
patients with schizophrenia. This research has demonstrated that
shifts in neuronal composition across lifespan are associated to
changes in DNA methylation patterns and by assessing 485,000
sequences of the epigenome, authors found that these changes
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were mainly concentrated in genomic regions that might confer
clinical risk for schizophrenia development (Jaffe et al., 2016).
Although this work does not clearly reflect a specific methylation
signature for schizophrenia development, it shed some light
about the role of epigenetic changes as an intermediate for mental
illness onset. In this regard, the increasing body of data obtained
by applying this approach with post-mortem brain tissue and
whole blood DNA suggest several genes that could be associated
with different aspects of the pathophysiology of the disease
(Mill et al., 2008; Dempster et al., 2011; Kinoshita et al., 2013).
On Table 2, we collect a brief summary of the main findings
obtained by applying the EWAS approach in order to study the
schizophrenic brain.

The main second epigenetic mechanism, histone
modification, has been less explored in schizophrenia, both
in peripheral blood cells or post-mortem brain tissue. Focusing
on the distribution of two histone markers, H3K4me3 and
H3K27me3, a shift has been reported in prefrontal cortex in the
chromatin surrounding GAD1 promoter that is accompanied
by a decrease in GAD1 mRNA (Huang and Akbarian, 2007).
A more recent report also demonstrated that, in fact, the
complete 3D chromosomal structure (heavily influenced by
its histones marks) is necessary to allow the correct regulation
of this gene (Bharadwaj et al., 2013). Reinforcing the role of
chromatin structure and specific histone marks, the mRNA levels
of the highly related isoform GAD2 in prefrontal cortex were

similar between schizophrenic patients and their healthy relative
(Glausier et al., 2015).

A third histone marker, the methylation of histone H3 at
arginine 17, a marker of closed chromatin state and, therefore,
transcriptional repression, has been involved in the down-
regulation in schizophrenia of several metabolic genes such as
CRYM, OAT, MDH, and CYC1 (Akbarian et al., 2005; Figure 1).
Also, higher mRNA levels of G9a, GLP, and SETDB1 (three
histone methyltransferases that catalyzes the methylation of H3
at lysine 9, a well-known epigenetic repressive mark) were
observed in brain samples of schizophrenic patients compare to
healthy controls. In fact, levels of G9a mRNA were significantly
correlated with increased negative subscales scores on the PANSS
(Positive and Negative Syndrome Scale; Chase et al., 2013).

Finally, Kurita and colleagues found a relationship between
long treatment with antipsychotics and down-regulation of
GRM2, a metabotropic glutamate 2 receptor, through decreased
histone acetylation at its promoter region in the human frontal
cortex, which could represent a promising new target for
schizophrenia treatment (Kurita et al., 2012).

FUTURE DIRECTIONS

The study of the epigenetic mechanisms at defined gene regions
in schizophrenia samples represents a new approach that could
potentially uncover molecular mechanisms of deregulated gene

TABLE 2 | Epigenome-wide association studies in schizophrenia.

Number of

schizophrenic

samples

Type of samples Genes of interest Chromosome/Locus References

35 Frontal cortex post-mortem

brain tissue

AUTS2, GRIA2, GLS2, HELT, HCG9, LHX5,

LMX1B, JAKMIP1, NR4A2, PLA2G4B, GIRK2,

RAI1, SLC17A6, SLC17A7, WD Repeat

Domain 18

7q11.22, 4q31.1, 12q13.2,

4q35.1, 6p21.33, 12q24.13,

9q33.3, 4p16.1, 2q24.1,

15q15.1, 21q22.13, 17p11.2,

11p14.3, 19q13.33, 19p13.3

Mill et al., 2008

44 (monozygotic twins) Peripheral blood DNA PUS3, SYNGR2, KDELR1, PDK3, PPARGC1A,

ACADL, FLJ90650, TUBB6

11q24.2, 17q25.3, 19q13.3,

Xp22.11, 4p15.1, 2q34,

5q23.1, 18p11.21

Dempster et al., 2011

30 (6 monozygotic

twins)

Peripheral blood DNA PPP1R13L, PVRL4, CRTAP, HSPA1B,

DEFB123

19q13.32, 1q23.3, 3p22.3,

6p21.3, 20q11.1

Kinoshita et al., 2013

18 Peripheral blood DNA HTR1E, COMTD1, ADAMTS3 6q14.3, 10q22.2, 4q13.3 a Nishioka et al., 2013

63 Peripheral blood DNA Of 2552 CpG sites, 1161 (45.5%)

demonstrated higher DNA methylation

Kinoshita et al., 2014

24 Frontal cortex post-mortem

brain tissue

NOS1, AKT1, DNMT1, SOX10, DTNBP1 and

PPP3CC

12q24.22, 14q32.33,

19p13.2, 22q13.1, 6p22.3,

8p21.3 a

Wockner et al., 2014

39 Cerebellum PIK3R1, BTN3A3, NHLH1, SLC16A7 5q13.1, 6p22.2, 1q23.2,

12q14.1

Chen et al., 2014

20/21 Frontal cortex post-mortem

brain tissue / Cerebellum

GSDMD, RASA3, HTR5A, PPFIA1 8q24.3, 13q34, 7q36.2,

11q13.3 a
Pidsley et al., 2014

2 (2 female

monozygotic twins)

Peripheral blood DNA A) DGKI, DISC1, DRD3, DTNBP1, FXR1,

GRIA1, GRIN2B (among 58 other genes for

twins from family 1) B) DAOA, DGKI, DISC1,

DRD3, IMMP2L, NRG1 (among 13other genes

for twins from family 2)

7q33, 1q42.2, 3q13.31,

6p22.3, 3q26.33, 5q33.2,

12p13.1 13q33.2, 7q31.1,

8p12

Castellani et al., 2015

aGenome Browser UCSC/hg38 assembly.
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expression in this complex disorder. As discussed above, crosstalk
between the different epigenetic markers could explain some
aspects of schizophrenia pathophysiology but, at the same time,
present a complex picture characterized by instability of the
epigenetic code that could be interpreted as a double-edge
sword, that is presenting a plausible mechanism but one that,
by virtue of its complexity is exceedingly difficult to study.
Unanswered questions remains as to whether epimutations
reflect long-lasting and sustained defects in the regulation of gene
expression (Akbarian, 2010) as well as the effects of their genomic
distribution and/or tissue specificity. Of course, wemust carefully
take into account the influence of the sample size, sample type
and epigenomic assay needed to reliably detect disease-associated
epimutations (Labrie et al., 2012) in clinical samples.

As we have pointed out, the link between the molecular basis
of schizophrenia and clinical features remains undefined. To
date, neurobiology of the disorder does not match with its clinical
classification, may be due to the fact that different biological
pathways that lead to schizophrenic symptoms could occur
simultaneously as independent or as interdependent processes,
as it has been proposed by Maric and Svrakic (2012); for
example, down-regulation of telencephalic GABAergic and/or
NMDA receptors genes might accounts for several structural
and functional alterations that could underlie schizophrenic
symptoms (Farber, 2003; Lisman et al., 2008). Although the
non-linear nature of schizophrenia supposes that its clinical
expression and evolution are highly variable among patients, to
look for a link between clinical aspects and molecular biology it

could be fruitful to focus on the study of epigenetic markers in
non-affected siblings of patients with a diagnosis of schizophrenia
(van Os et al., 2010).

A third challenge for identification of specific epimutations in
schizophrenia is to clarify when an epigenetic alteration is casual
or if it is a consequence of the disease. Some authors suggest that
identifying the epimutation in multiple tissues of schizophrenic
patients in the germ line of affected individuals or their fathers,
would favor but not prove a causal relationship (Glatt et al.,
2011), although it has been suggested that the relevance of
findings from of DNA isolated from peripheral blood samples
to brain processes and their relevance as potential biomarkers
for neuropsychiatric disorders is also questionable (Davies et al.,
2012).

The recent description of different methylation patterns at
different CpG sites in the normal human brain highlights that
gene regulation mechanisms in the CNS are highly complex.
In this way, technological trends for epigenetic assays have
shown a great advance that allows researchers to analyze from
selected loci to the complete epigenome using continually smaller
starting populations of cells; for example EWAS approaches
could address that complexity giving us a complete panoramic
picture of the DNA methylation patterns in an specific tissue
or in a cell population; moreover, recently it has been assigned
new functions to the intergenic sequences, acting as DNA
marks for proteins that could influence gene activity (Pennisi,
2012). This approach could enhance our understanding of
the gene regulation processes in the human brain, which are

FIGURE 2 | Summary of the main findings in the neurobiology of schizophrenia. ACC, anterior cingulate cortex; RV, reduce volume. *Main epigenetic findings

in human brain samples.
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heterogeneous across cell types and show different epigenetic
signatures depending on the brain area analyzed (Ladd-Acosta
et al., 2007) and, therefore, its combination with GWAS data in
brain studies with relatively little-studied histone modifications
could uncover genetic-epigenetic interactions in schizophrenia
and establish predisposition factors to this complex psychiatric
disorder.

In summary, as we have pointed before, there are many
findings that have been presented as potential biomarkers
for schizophrenia, including data from linkage, association,
neuroanatomical, or genetic studies (a brief summary of these
findings is showed in Figure 2). This mass of data, characterized
by its absence of reliability and validity, is increasingly seen as a
sign of uncertainty and confusion (Maj, 2011). In this respect,
we want not contribute to this chaos, and therefore, we will
simply point out that epigenetic studies may shed light on the
complex interaction that occurs between nature and genetics
to produce a mental illness; perhaps this is not sufficient to
understand (in terms of Jaspers) what schizophrenia is, but could
help us define some variables that may contribute to its onset
and/or development. However, we think it is important to start
from the beginning and therefore it is necessary to review the
current diagnostic criteria for mental disease which, in general,
and schizophrenia in particular, define a disorder by what it is
not rather by what it is, which involves a recognized limitation
for this approach. In agreed with Sullivan et al., we also need
to keep in mind that, in psychiatric, we are at the end of the
beginning, not the beginning of the end and we will need more

scientific cooperation, a more clever research strategy, and higher
statistical rigor in order to get a complete picture of schizophrenia
neurobiology (Sullivan et al., 2012).
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