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Autism spectrum disorder (ASD) is a pervasive neurodevelopmental condition, affecting

cognition and behavior throughout the life span. With recent advances in neuroimaging

techniques and analytical approaches, a considerable effort has been directed toward

identifying the neuroanatomical underpinnings of ASD. While gray-matter abnormalities

have been found throughout cortical, subcortical, and cerebellar regions of affected

individuals, there is currently little consistency across findings, partly due to small sample-

sizes and great heterogeneity among participants in previous studies. Here, we report

voxel-based morphometry of structural magnetic resonance images in a relatively large

sample of high-functioning adults with ASD (n = 66) and matched typically-developing

controls (n = 66) drawn from multiple studies. We found decreased gray-matter volume

in posterior brain regions, including the posterior hippocampus and cuneus, as well as

increased gray-matter volume in frontal brain regions, including the medial prefrontal

cortex, superior and inferior frontal gyri, and middle temporal gyrus in individuals with

ASD. We discuss our results in relation to findings obtained in previous studies, as well

as their potential clinical implications.
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by abnormal
social interactions and communication, repetitive behaviors, restricted interests, and atypical
sensory processing (American Psychiatric Association, 2013). Advances in neuroimaging
techniques and analyses over the past two decades have led to a burgeoning of structural studies
aimed toward identifying the neuroanatomical underpinnings of ASD. Overall, findings suggest a
complex neurodevelopmental trajectory, characterized by an early brain overgrowth (Courchesne
et al., 2003; Zielinski et al., 2014; Zwaigenbaum et al., 2014), followed by arrested growth later in
childhood and early adolescence (Courchesne et al., 2001; Mak-Fan et al., 2012), and accelerated
neural atrophy later in adulthood (Courchesne et al., 2011; Lange et al., 2015). While studies
were able to localize the neuroanatomical alterations in ASD to specific brain regions (Carper and
Courchesne, 2005; Schumann et al., 2010; Scheel et al., 2011; Zielinski et al., 2014; Dierker et al.,
2015; Libero et al., 2015), structures (Stanfield et al., 2008; Schumann et al., 2009; Via et al., 2011;
Nickl-Jockschat et al., 2012; Maier et al., 2015) and networks (Ameis et al., 2011; Barttfeld et al.,
2011; Solso et al., 2015), reports have been largely inconsistent.
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The inconsistency in neuroanatomical findings of previous
studies may have stemmed from several factors, including
differences in methodology, data acquisition, analytical
approaches, clinical and demographic characteristics of the
samples, as well as small sample-sizes. As ASD is a complex
condition with multiple etiologies, risk factors, and diverse
clinical manifestations (Amaral et al., 2008; Ecker et al., 2013b;
Chen et al., 2015), there is an inherent variability among
individuals with ASD that is likely related to variations in
neuroanatomical abnormalities. Indeed, ASD is linked to a great
variety of gene mutations, each of which has the potential to
affect neural development through different pathways and in
different ways, including gene transcription, expression and
regulation, protein synthesis and translation, synaptic formation
and function, as well as cell migration (Persico and Bourgeron,
2006; Sahin and Sur, 2015). The clinical manifestation of ASD
symptoms can also vary between affected individuals (Amaral
et al., 2008), and there is an ongoing debate among scientists and
clinicians regarding the inclusion of previously diagnostically-
segregated groups (e.g., Asperger’s syndrome vs. autism) under
the unifying umbrella of the new guidelines for ASD diagnosis
(Mcalonan et al., 2008; Toal et al., 2010; Mandy et al., 2012).
In addition, intelligence quotient (IQ) scores vary significantly
between individuals with ASD, with intellectual disability in the
majority of affected individuals, but average or above-average
scores in the high-functioning end of the spectrum (Toal et al.,
2010).

In order to address the inconsistency in neuroanatomical
reports of ASD, recent studies have used meta-analytic
approaches (Cauda et al., 2011; Duerden et al., 2012; DeRamus
and Kana, 2015), larger sample-sizes (Toal et al., 2010; Ecker
et al., 2012; Haar et al., 2014; Itahashi et al., 2015; Sussman et al.,
2015), and stricter inclusion criteria according to age (Raznahan
et al., 2009; Toal et al., 2010; Greimel et al., 2013), gender (Ecker
et al., 2012; Itahashi et al., 2015), IQ (Ecker et al., 2012; Itahashi
et al., 2015; Maier et al., 2015), and diagnosis (Mcalonan et al.,
2008; Toal et al., 2010; Via et al., 2011). Multivariate classification
techniques were also used in an attempt to better characterize the
complex patterns of neuroanatomical alterations in ASD (Ecker
et al., 2010a,b; Jiao et al., 2010; Uddin et al., 2011; Haar et al.,
2014). Only a few studies, however, investigated brain anatomy
in large, matched samples of high-functioning adults with ASD
and typically-developing controls (TDC) (e.g., Ecker et al., 2012).

To mitigate issues of sample variability and inconsistent
findings, we conducted a neuromorphometric study in a
relatively large sample of high-functioning adults with ASD
(n = 66) and gender, age, and IQ-matched TDC (n = 66).
The samples were selected from the Autism Brain Imaging
Data Exchange (ABIDE) database (Di Martino et al., 2014),
and included data from ASD and TDC participants collected
in a previous study from our lab as well. We used voxel-
based morphometry (VBM) (Ashburner and Friston, 2000), an
automated, unbiased, and conservative approach, to investigate
alterations in regional gray-matter (GM) volume of individuals
with ASD. We also examined the possible contributions of
gender, age, and ASD symptom severity by including them as
regressors in our model.

MATERIALS AND METHODS

Participants
The samples were selected from the ABIDE database (Di
Martino et al., 2014), which is a multicenter database containing
anatomical MRI scans, clinical measures, and demographic data
from approximately 1000 participants, with age range of 6–65
years. The ABIDE database offers a non-precedent opportunity
for investigating neuroanatomical alterations in large samples
of individuals with ASD. The MRI data selected for this
study were collected from ASD and TDC adult participants
in three different sites: New York University Langone Medical
Center (NYU), Social Brain Lab at the Research School of
Behavioral and Cognitive Neurosciences, NeuroImaging Center,
UniversityMedical Center Groeningen andNetherlands Institute
for Neurosciences (SBL), and Katholieke Universiteit Leuven
(KUL). Only participants with T1 images and sites that provided
a relatively large number of adult participants (at least 12
in each group) were included. Participants who could not be
matched according to their demographic data were excluded.
MRI data from a previous study conducted in our lab at the
Icahn School of Medicine at Mount Sinai (ISMMS; Eilam-Stock
et al., 2014) were also used. The total number of participants
was 66 in the ASD group and 66 in the TDC group (NYU
n = 19; SBL n = 15; KUL n = 14; ISMMS n = 18).
Demographic information for the combined samples are shown
in Table 1.

Selected participants with ASD were all in the high-

functioning end of the spectrum (IQ > 80), and received a

DSM-IV-TR diagnosis of Autistic Disorder, Asperger’s Disorder,

or Pervasive Developmental Disorder Not-Otherwise-Specified.
Detailed information regarding the diagnostic protocols for

the ABIDE database at each site are publicly available on the

ABIDE website (http://fcon_1000.projects.nitrc.org/indi/abide).
After matching for gender, the ASD and TDC groups were

matched on age across sites [t(130) = 0.2; p = 0.99] and
within each site separately [NYU t(36) = 0.23; p = 0.81;
SBL t(28) = 0.40; p = 0.69; KUL t(26) = −1.10; p =

0.28; ISMMS t(34) = 0.18; p = 0.86]. The ASD and TDC
groups were also matched on full score IQ (FSIQ) across sites
[t(113) = 1.7; p = 0.9] and within each site [NYU t(36) =

−1.16; p = 0.25; KUL t(26) = −0.72; p = 0.48; ISMMS
t(34) = 1.25; p = 0.22], with the exception of participants
from the SBL dataset for whom FSIQ scores were not available.
Of note, however, all ASD and TDC participants from the
SBL dataset were tested for FSIQ, and their scores were all
within the normal range (http://fcon_1000.projects.nitrc.org/
indi/abide/).

All sites contributing to the ABIDE database received

approval from their local Institutional Review Boards for

the acquisition of their data. In addition, all data retrieved

from the ABIDE database are completely anonymous with

no inclusion of protected health information, as required by

the HIPAA guidelines (http://fcon_1000.projects.nitrc.org/indi/

abide/). For the data acquired at ISMMS, all participants provided
written informed consent, approved by the Institutional Review

Board.
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TABLE 1 | Demographic information.

Group n Age (years) Gender Full Scale IQ

Mean SD Max Min M F Mean SD Max Min

TDC

Total 66 27 7 43 18 60 6 114 12 143 89

SBL 15 34 7 42 20 15 – – – –

KUL 14 23 3 29 18 14 113 10 134 98

NYU 19 25 5 32 18 15 4 113 12 139 91

ISMMS 18 28 7 43 20 16 2 117 15 143 89

ASD

Total 66 27 8 64 18 60 6 110 14 143 80

SBL 15 35 10 64 22 15 – – – –

KUL 14 22 4 32 18 14 109 13 128 89

NYU 19 25 6 39 18 15 4 108 13 137 80

ISMMS 18 28 6 42 19 16 2 111 17 143 87

TDC, typically-developed controls; ASD, autism spectrum disorder; SD, standard deviation; the two samples (TDC, ASD) did not differ in age [t(130) = 0.20; p = 0.99] and in IQ [t(113) =

1.70; p = 0.90].

Voxel-Based Morphometry Analysis
To measure differences in GM volume between the ASD and
TDC groups, we conducted VBM analyses using the VBM8
toolbox (http://dbm.neuro.uni-jena.de/vbm) and Statistical
Parametric Mapping (SPM8, Welcome Trust Centre for
Neuroimaging, University College London, UK) in MATLAB
R2012b (Mathworks Inc., Sherborn, MA). First, all T1-weighted
images were manually reoriented to the anterior commissure—
posterior commissure plane to improve the coregistration of T1
images to the template. Then, each image was segmented into
six tissue classes (i.e., GM, white matter, cerebrospinal fluid,
bone, non-brain soft tissue, and air outside of the head and in
nose, sinus, and ears) using the SPM standard tissue probability
map (Mazziotta et al., 1995) with default parameters. Segmented
GM images were spatially normalized to the “IXI500_MNI152”
template, using the DARTEL algorithm (Ashburner, 2007)
with default parameters. Non-linear warping for the effect of
spatial normalization was corrected to generate these modulated
normalized images, which represent relative volume after
correcting for brain size. Each image was then smoothed using
an 8-mm full width at half maximum Gaussian kernel.

A two-sample t-test was conducted for smoothed GM volume
images from the ASD and TDC groups using a random-effect
general linear model (GLM), with gender and age as nuisance
regressors. Because the scans were taken at multiple sites which
may have different MRI scanners and scanning protocols, an
inherent variability may exist within the data. Therefore, we
included an equal number of ASD and TDC participants within
each site. We also used the locations as a dummy variable in
our model. As suggested by the VBM8 manual, an absolute
threshold mask of 0.1 was used for all the second-level analyses.
To test the relationship between autism symptom severity and
GM volume, we conducted an additional second-level GLM
analysis for ASD participants, using their Autism Diagnostic
Observation Schedule (ADOS) scores (Lord et al., 2000) as a
regressor. Higher ADOS scores are indicative of increased ASD

severity. Forty ASD participants for whom the ADOS scores were
available (ABIDE n = 27; ISMMS n = 13) were selected from
the original sample for this analysis. The significance level for
the height of each voxel was set to p < 0.005 (uncorrected),
with a contiguous-voxel extent threshold k> 17 voxels, to correct
for multiple voxel comparisons. This threshold was estimated by
using 10,000 Monte Carlo simulations with a customized Matlab
program (Slotnick et al., 2003). The corrected a priori height
threshold was p < 0.05.

RESULTS

Between-Group Differences in Gray-Matter
Volume
A between-group comparison of GM volume revealed increased
volume in frontal, temporal, and cerebellar brain regions in
the ASD group, compared to the TDC group. These regions
included the medial prefrontal cortex (extending to the right),
left superior frontal gyrus, left inferior frontal gyrus—pars
opercularis (Broca’s area), left inferior frontal gyrus—pars
orbitalis, left middle temporal gyrus, and left cerebellum VIIb
(Figure 1 and Table 2). In addition, compared to the TDC
group, decreased GM volume in posterior brain regions in the
ASD group was found, including the left posterior hippocampus
and the cuneus bilaterally (Figure 1 and Table 2). These results
remained consistent following an additional GLM analyses with
age, gender, and site as nuisance regressors.

Neuroanatomical Correlations with ASD
Symptom Severity
To assess the relationship between ASD symptom severity
and GM volume, ADOS scores of 40 participants with ASD
were used as a regressor in our GLM model. Results revealed
negative correlations between symptom severity and GM volume
in the right superior frontal gyrus, left middle frontal gyrus,
inferior frontal gyri—pars orbitalis bilaterally, restrosplenial
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FIGURE 1 | Differences in gray-matter volume between the ASD and TDC groups. Red indicates areas of increased gray-matter volume in ASD (ASD > TDC).

Blue indicates areas of decreased gray-matter volume in ASD (ASD < TDC).

TABLE 2 | Brain regions with abnormal gray-matter volume in ASD.

Region L/R BA x y z T Z K

ASD < TDC

Posterior Hippocampus L 36 −35 −36 −3 3.53 3.44 283

Cuneus L 18/19 −12 −83 23 3.48 3.40 83

Cuneus R 18 17 −72 32 2.82 2.77 31

ASD > TDC

Superior frontal gyrus L 8 −21 12 44 3.85 3.74 455

Superior frontal gyrus (medial) R 10 2 54 11 3.50 3.41 634

Inferior frontal gyrus L 44 −39 15 32 3.37 3.29 91

Inferior frontal gyrus L 44 −51 11 26 3.35 3.27 196

Middle temporal gyrus L 21 −62 −12 −14 3.12 3.06 86

Middle temporal gyrus L 21 −59 −27 −12 3.06 3.00 35

Superior frontal gyrus (medial) L 10 −18 62 21 2.97 2.91 28

Inferior frontal gyrus R 45 44 29 26 2.92 2.87 18

Cerebellum VIIb L −33 −57 −41 2.91 2.86 24

Inferior frontal gyrus L 47 −50 39 −15 2.87 2.82 34

Height threshold: T = 2.72, p < 0.005, Extent threshold: k > 17.

cortex bilaterally, supplementary motor area bilaterally, right
middle cingulate cortex, thalamus bilaterally, and putamen
bilaterally (Figure 2 and Table 3), indicating that decreased GM
volume in these regions is associated with more severe ASD
symptoms. No significant positive correlations between symptom
severity and GM volume were found.

DISCUSSION

Gray-Matter Volume Abnormalities along
the Anterior-Posterior Axis
Our results show a general pattern of increased GM volume
in anterior brain regions and decreased GM volume in
posterior brain regions in the ASD group, relative to TDC.
A few theoretical accounts for the lobular specificity of

neuroanatomical abnormalities in ASD across development
have emerged, and may shed light on the differences in GM
volume found in our study. Research on brain development
in ASD across the lifespan has demonstrated a complex
neurodevelopmental trajectory in affected individuals,
characterized by an early brain overgrowth (Courchesne
et al., 2003; Zielinski et al., 2014; Zwaigenbaum et al., 2014),
followed by arrested growth later in childhood and early
adolescence (Courchesne et al., 2001; Mak-Fan et al., 2012),
and accelerated neural atrophy in adulthood (Courchesne et al.,
2011; Lange et al., 2015). Studies in very young individuals
with ASD (i.e., 2–4 years old) observed an increase of 5–12% in
brain volume that was specifically localized to the frontal and
temporal lobes (Carper et al., 2002; Redcay and Courchesne,
2005; Courchesne et al., 2007). This significant enlargement
in anterior brain regions is reduced in older ages, though
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FIGURE 2 | Correlations between gray-matter volume and ASD symptom severity as indicated by the ADOS scores of each participant (n = 40). All

significant correlations found were negative and are indicated in blue.

TABLE 3 | Correlations between gray-matter volume and ASD symptom severity.

Region L/R BA x y z T Z K

NEGATIVE

Inferior frontal gyrus R 47 54 24 −9 4.35 3.88 301

Inferior frontal gyrus R 45 54 32 3 3.18 2.97

Corpus mamillare R 3 −12 −12 4.27 3.82 1342

Restrosplenial cortex L 30 −15 −41 −6 3.67 3.36

Thalamus R 9 −18 −3 3.54 3.26

Thalamus L 6 −19 −3 3.33 3.09

Mid cingulate cortex R 6 14 −11 50 4.26 3.81 77

Restrosplenial cortex R 30 8 −42 0 4.04 3.65 193

Inferior frontal gyrus L 47 −47 23 −6 3.70 3.39 178

Supplementary motor area R 6 6 0 74 3.69 3.38 198

Mid cingulate cortex R 23 8 −39 48 3.24 3.02 139

Precuneus L 7 −14 −59 56 3.22 3.00 19

Putamen R 30 2 −9 3.10 2.90 143

Middle frontal gyrus L 8/9 −32 36 44 3.07 2.87 20

Putamen L −30 −6 −6 2.97 2.79 95

Supplementary motor area L 6 −9 9 51 2.96 2.78 79

Superior frontal gyrus R 6 21 −6 59 2.90 2.73 25

n = 40, Height threshold: T = 2.72, p < 0.005, Extent threshold: k > 17. Structures listed below clusters with a K-value were within that same cluster with different local maxima.

GM volume in these regions continues to be greater in ASD
participants relative to TDC throughout development (1–3%
increase) (Redcay and Courchesne, 2005; Courchesne et al.,
2007). By contrast, the occipital lobe is not enlarged in young
children with ASD (Carper et al., 2002; Courchesne et al.,
2007). The occipital lobe is phylogenetically older than the
frontal and temporal lobes, and its maturation occurs earlier in
development (Ecker et al., 2013b); while the frontal and temporal
lobes continue to develop throughout the first years of life, the
occipital lobe does not change dramatically across the life span
in typically developing individuals (Gogtay and Thompson,
2010).

Models of ASD suggest that the frontal and temporal
enlargements that characterize early brain development in ASD
may be a result of increased numbers of excitatory pyramidal
neurons in these regions (Courchesne and Pierce, 2005a;
Courchesne et al., 2007, 2011; Santos et al., 2011). This localized
overgrowth may damage the local connectivity patterns within
these regions, as well as the large-scale connectivity between these
regions and the rest of the brain (Courchesne and Pierce, 2005b;
Courchesne et al., 2007; Geschwind and Levitt, 2007; Ecker et al.,
2013b; Chen et al., 2015). In the typically-developing brain, the
connectivity patterns that develop throughout the first years of
life allow for the higher-level cognitive skills that develop at
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the same time, including socio-emotional skills, language, and
executive functions (Akshoomoff et al., 2002; Courchesne et al.,
2007). Thus, it is reasonable to hypothesize that the aberrant
connectivity patterns in ASD within the overgrowing frontal and
temporal lobes, as well as between these regions and the rest of
the brain, are at the core of the cognitive and behavioral deficits in
ASD (Akshoomoff et al., 2002; Geschwind and Levitt, 2007). As
individuals with ASD reach adulthood, processes of accelerated
neuronal atrophy take place throughout the brain (Courchesne
et al., 2011; Lange et al., 2015), perhaps to compensate for
the early overgrowth in these individuals. The early localized
enlargement of the anterior brain in ASD, together with the later
broader neuronal atrophy in these individuals may, therefore,
account for both our and others (e.g., Ecker et al., 2012) findings
in adult ASD samples. The accelerated atrophy in adulthood may
cause a GM volume decrease in both anterior parts of the brain,
which are still greater relative to TDC though to a lesser extent,
as well as in the posterior brain (mainly in the occipital cortex),
which is now reduced relative to TDC.

Gray-Matter Volume Abnormalities in
Cortical and Sub-Cortical Brain Regions
ASD is a complex disorder with multiple symptoms affecting
both high-level (e.g., socio-emotional processing, self-referential
processing, language) and low-level (e.g., sensory processing)
functions. It is not surprising, therefore, that the extent
of neuroanatomical alterations found in our study, as well
as in previous empirical investigations, encompasses regions,
structures, and neural networks throughout the brain. A
hallmark of ASD is abnormal socio-emotional processing,
including deficits in theory of mind (i.e., the ability to understand
other’s beliefs, intentions and perspectives; Baron-Cohen et al.,
1985; Baron-Cohen, 2000; Pilowsky et al., 2000), affective
evaluations (Hill et al., 2004; Dapretto et al., 2006), and empathy
(Minio-Paluello et al., 2009; Fan et al., 2013; Hadjikhani et al.,
2014; Gu et al., 2015). Theory of mind relies on several
neural regions, including the medial prefrontal cortex, lateral
orbitofrontal cortex, middle frontal gyrus, superior temporal
gyrus, temporal pole, temporoparietal junction, and cuneus
(Frith and Frith, 1999; Gallagher and Frith, 2003; Saxe and
Kanwisher, 2003; Amodio and Frith, 2006; Völlm et al., 2006). In
our study we found GM abnormalities in the medial prefrontal
cortex (increased GM volume) and cuneus (decreased GM
volume). We also found negative correlations between GM
volume in the middle frontal gyrus and ASD symptom severity.
These structural abnormalities may be related, therefore, to the
commonly seen theory of mind deficits in individuals with ASD.
Our finding of increased GM volume in the medial prefrontal
cortex in ASD may also explain the emotional evaluation
difficulties commonly seen in this disorder, as this region plays
a role in that domain as well (Phan et al., 2002; Harris et al., 2007;
Etkin et al., 2011).

Our results of GM abnormalities in the inferior frontal
gyrus, but not the ventromedial prefrontal cortex, may be
related to a specific deficit in emotional empathy (e.g.,
feeling another person’s pain) but preserved cognitive empathy

(e.g., understanding that another person is in pain) in ASD
(Minio-Paluello et al., 2009; Fan et al., 2013; Hadjikhani et al.,
2014). Indeed, a recent lesion study demonstrated an anatomical
dissociation between the cognitive and emotional components
of empathy, such that the ventromedial prefrontal cortex is
necessary for cognitive empathy, while the inferior frontal gyrus
is essential for emotional empathy (Shamay-Tsoory et al., 2009).
Additionally, in a functional MRI study investigating brain
regions associated with empathy for pain, we found abnormal
brain activation in the inferior frontal gyrus in ASD, with no
group differences in ventromedial prefrontal cortex activation
(Gu et al., 2015).

Our findings also point to several GM abnormalities in
ASD that may be related to limited self-referential processing
(Lombardo et al., 2007, 2010; Uddin, 2011) and autobiographical
memory (Bowler et al., 2000; Crane and Goddard, 2008; Lind
and Bowler, 2010) in this disorder. Studies that investigated
the neural substrates of self-referential processing in typically-
developing samples found that these processes activate a set of
regions along the medial axis of the brain, commonly termed
cortical midline structures (Northoff et al., 2006), including the
medial prefrontal cortex/pregenual anterior cingulate cortex, the
dorsomedial prefrontal cortex/middle cingulate cortex, and the
precuneus/posterior cingulate cortex (Kelley et al., 2002; Northoff
et al., 2006; Lombardo et al., 2010). The left inferior frontal gyrus
was also found to be activated during self-related judgments
(Kelley et al., 2002). In addition, the posterior hippocampus
is involved in the storage and retrieval of autobiographical
memories (Fernández et al., 1998; Kim, 2015). Our results of
increased GM volume in the medial prefrontal cortex and the
left inferior frontal gyrus, decreased GM volume in the posterior
hippocampus, and negative correlations between GM volume in
the middle cingulate cortex and precuneus and ASD symptom
severity, may be related, therefore, to aberrant self-referential
processing and autobiographical memory in individuals with
ASD.

The increased GM volume in the left inferior frontal gyrus
and left middle temporal gyrus in the ASD group in the present
study may be related to altered language functions in affected
individuals, especially in the semantics domain. Although
language abilities vary greatly across the ASD spectrum, ranging
from a severe language delay to normal language development,
there is empirical evidence suggesting that semantic processing
is compromised even in high-functioning individuals with ASD
who do not exhibit any language delay (Harris et al., 2006;
Kamio et al., 2007). High-functioning adults with ASD also
showed significantly reduced activation in the left inferior
frontal gyrus (Broca’s area) during semantic processing (Harris
et al., 2006). Indeed, the left inferior frontal gyrus, together
with the left middle temporal gyrus, is involved in semantic
processing in the typically-developing brain (Goel and Dolan,
2001; Visser et al., 2012). In our study, both of these regions were
identified as areas of increased GM volume in ASD, which may
serve as neuroanatomical substrates for the abnormal semantic
processing in this disorder.

Although we did not find GM alterations in the thalamus
in ASD, we did find a significant negative correlation between
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thalamic GM volume and ASD symptom severity. In addition,
we observed decreased GM volume in the cuneus in the ASD
group. The thalamus is a main hub for sensory processing across
modalities, and it can affect sensory perception by integrating
and relaying feedforward and feedback information between the
sensory cortices and higher-order cortical regions (e.g., frontal
lobe; Alitto and Usrey, 2003; Cudeiro and Sillito, 2006; Briggs
and Usrey, 2008). The cuneus is a secondary visual area which
may play a role in modulation of visual processing (Vanni
et al., 2001). Abnormal sensory processing (both hyper-and-
hypo-sensitivity) have been extensively documented in the ASD
literature, especially in the visual modality (Behrmann et al.,
2006; Vandenbroucke et al., 2008), and are now included in the
ASD diagnostic criteria in the diagnostic and statistical manual
of mental disorders (DSM-5) (American Psychiatric Association,
2013). Together, these findings may be related to the abnormal
sensory processing commonly seen in individuals with ASD.

LIMITATIONS

Although our results are consistent with some previous reports,
they did not replicate other findings of GM alterations in adults
with ASD. For example, in a study that specifically examined
between-group differences in the amygdala and hippocampus in
30 high-functioning (IQ > 100) adults with ASD and gender,
age, and IQ matched control participants (Maier et al., 2015),
increased hippocampal volume bilaterally was found in ASD,
opposite to our results. Yet, other studies failed to find any
significant differences in GM volume between adults with ASD
and TDC (Haar et al., 2014; Riedel et al., 2014; Riddle et al.,
2016). This variability in structural findings may be due to
relatively small sample sizes (Riedel et al., 2014; Maier et al.,
2015) or differences in methodology and sample characteristics
(Haar et al., 2014; Riddle et al., 2016). Thus, large-sample studies
of different sub-groups within the ASD spectrum will likely
promote a better characterization of neuroanatomical alterations
that contribute to ASD symptomatology.

The current study took advantage of the relatively large sample
of participants with ASD provided by the ABIDE database,
and limited the inclusion criteria (i.e., high-functioning adults)
to increase statistical power and reduce variability. However,
as ASD is a complex condition with multiple contributing
factors and etiologies, it is possible that our sample was not
sufficiently homogeneous. While we attempted to control for
different variables that may have contributed to the previously
reported inconsistent findings, such as age and IQ, there are
many other factors we did not take into account, such as genetic
factors or clinical presentations. On the other hand, when using
stricter inclusion criteria, the generalizability of the data is
inevitably reduced. For example, it is possible that our findings
represent neuroanatomical alterations in high-functioning adults
with ASD only, and are less applicable to the majority of the
ASD population, which has lower level of functioning and greater
symptom severity. Studies with more individuals across the
spectrum and higher severity of autism may shed a different light
on the matter entirely. Future studies that continue to investigate

neuroanatomy in large samples of affected individuals from
different clinical and demographic subgroups, will, therefore,
significantly contribute to our understanding of neuroanatomical
alterations in individuals with ASD.

We measured GM volume using voxel-based morphometry,
as this is one of the most informative and commonly used
measures in the study of neuroanatomical abnormalities in
clinical populations. However, other neuroanatomical measures
were used in previous studies of ASD, which may also be useful
indicators of structural abnormalities. These include measures of
cortical folding and sulcal depth (Nordahl et al., 2007), cortical
thickness (Hyde et al., 2010), cortical surface area (Ecker et al.,
2013a), local gyrification index (Wallace et al., 2013), as well
as diffusion tensor imaging for white-matter tract (Ameis et al.,
2011; see Ecker et al., 2015 for review). Multivariate classification
techniques were also recently used as a viable method for
identifying complex patterns of neuroanatomical alterations in
ASD (Ecker et al., 2010a,b; Jiao et al., 2010; Uddin et al., 2011;
Haar et al., 2014). It would be valuable, therefore, to conduct
studies with large samples that look at other structural measures
as well.

CLINICAL IMPLICATIONS

Our study adds to the growing literature investigating
neuroanatomical abnormalities in ASD. The research endeavor
to characterize the profile of brain anatomy in ASD across
development may have clinical implications, as it may facilitate
identification of biomarkers for different subgroups within the
ASD spectrum (Ecker et al., 2013b, 2015). While the behavioral
markers of ASD have been extensively investigated and are
relatively defined and agreed upon by researchers and clinicians,
the neuroanatomical, neurofunctional and genetic profiles of
ASD still warrant rigorous research. Once our knowledge of the
different markers of ASD has been sufficiently advanced, the
different pieces of the puzzle will come together to create a clear
picture of this currently ill-understood disorder. This will allow
for better diagnosis and treatment for ASD, which may be more
specific to individuals or subgroups within the spectrum.
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