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Nutritional cognitive neuroscience is an emerging interdisciplinary field of research that

seeks to understand nutrition’s impact on cognition and brain health across the life span.

Research in this burgeoning field demonstrates that many aspects of nutrition—from

entire diets to specific nutrients—affect brain structure and function, and therefore have

profound implications for understanding the nature of healthy brain aging. The aim of

this Focused Review is to examine recent advances in nutritional cognitive neuroscience,

with an emphasis on methods that enable discovery of nutrient biomarkers that predict

healthy brain aging. We propose an integrative framework that calls for the synthesis

of research in nutritional epidemiology and cognitive neuroscience, incorporating: (i)

methods for the precise characterization of nutritional health based on the analysis of

nutrient biomarker patterns (NBPs), along with (ii) modern indices of brain health derived

from high-resolution magnetic resonance imaging (MRI). By integrating cutting-edge

techniques from nutritional epidemiology and cognitive neuroscience, nutritional cognitive

neuroscience will continue to advance our understanding of the beneficial effects of

nutrition on the aging brain and establish effective nutritional interventions to promote

healthy brain aging.

Keywords: nutritional cognitive neuroscience, nutritional epidemiology, cognitive neuroscience, nutrient

biomarkers, cognitive aging

NUTRITIONAL COGNITIVE NEUROSCIENCE AND HEALTHY
BRAIN AGING

As the aged population expands, the economic burden of care and treatment of those with age-
related health disorders also increases. Between 2012 and 2050, the United States will experience
significant growth in its older population, with the size of the population aged 65 and over almost
doubling from an estimated 43.1 million in 2012 to 83.7 million in 2050 (Ortman and Guarneri,
2009). Therefore, a successful strategy to promote healthy brain aging is of great interest to public
health efforts and the United States economy. Diet and the many bioactive substances present in
food represent a novel target for interventions that may promote healthy brain aging. Emerging
evidence in nutritional cognitive neuroscience indicates that optimal nutrition may serve as a
potential avenue to preserve cognitive function, slowing the progression of aging and reducing
the incidence of debilitating diseases in healthy aging populations.
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The aim of this Focused Review is to examine recent advances
in nutritional cognitive neuroscience, with an emphasis
on methods that enable discovery of nutrient biomarkers
that predict healthy brain aging. We propose an integrative
framework that calls for the synthesis of research in nutritional
epidemiology and cognitive neuroscience, incorporating: (i)
methods for the precise characterization of nutritional health
based on the analysis of nutrient biomarker patterns (NBPs)
along with (ii) modern indices of brain health derived
from high-resolution magnetic resonance imaging (MRI) of
brain structure and function. We begin by surveying recent
methodological advances in nutritional epidemiology, followed
by a review of contemporary methods for the neuroscientific
study of brain aging. By integrating methods from nutritional
epidemiology and cognitive neuroscience, the burgeoning field of
nutritional cognitive neuroscience will continue to advance our
understanding of the beneficial effects of nutrition on the aging
brain and establish effective nutritional interventions to promote
healthy brain aging.

KEY CONCEPT 1 | Nutritional cognitive neuroscience

Nutritional cognitive neuroscience is an interdisciplinary field of research that

investigates the impact of nutrition on cognition and brain health across the

life span. The aim of this Focused Review is to examine recent advances

in nutritional cognitive neuroscience, specifically highlighting the utility of

nutrient biomarkers in predicting healthy brain aging. Our proposed framework

integrates research across nutritional epidemiology and cognitive neuroscience,

combining: (i) methods for the precise characterization of nutritional status with

(ii) modern measures of brain health.

METHODOLOGICAL ADVANCES IN
NUTRITIONAL EPIDEMIOLOGY

Observational studies indicate that particular nutrients have
beneficial effects on brain aging, including antioxidant nutrients,
calcium, fiber, folate, zinc, omega-3 polyunsaturated fats, and
vitamins A, B12, C, D, and E (Malinin et al., 2011; Mohajeri
et al., 2015; Sheats et al., 2015). However, these findings have
not been consistently replicated in randomized controlled trials
(Wald et al., 2010; Dangour et al., 2012; Mazereeuw et al.,
2012; Clarke et al., 2014; Massee et al., 2015). A primary
source of inconsistency among findings is thought to reflect
methodological limitations in the assessment of dietary patterns
(Zuniga and McAuley, 2015), giving rise to new methods in
nutritional epidemiology that examine blood biomarkers that are
associated with healthy brain aging.

Biochemical Markers of Dietary Intake
Traditional research in nutritional epidemiology has examined
food intake on the basis of self-reported dietary assessment
methods such as food frequency questionnaires, 24-h recall, and
weighed food records (Zuniga and McAuley, 2015). Although
these methods can be implemented in large samples with
relative ease, they are associated with measurement error.
Primary sources of error include energy expenditure under-
reporting, recall errors, and difficulty assessing portion sizes

(Bingham, 2002; Kipnis, 2003). Furthermore, cognitive decline
(e.g., memory loss) may limit recall on self-reported dietary
assessments, and therefore bias nutritional assessment in older
adults (Reuter-Lorenz and Park, 2010; Zuniga and McAuley,
2015). In addition, biases in self-reported dietary data are known
to be influenced by age, gender, socioeconomic status, and
education (Thompson and Subar, 2013). Finally, self-reported
dietary assessment methods fail to account for variability in
nutrient absorption (Scalbert et al., 2014).

Biochemical markers of dietary exposure have been developed
to circumvent the measurement errors of dietary assessment
techniques (Combs et al., 2013). Biomarkers can provide
measures of nutritional status and exposure to bioactive
molecules in foods, and thus can be used as surrogate
indicators of food intake (Potischman and Freudenheim,
2003). Biomarker measurement also permits the identification
of nutrient deficiencies and therefore allows treat-to-target
paradigms, rather than global dietary approaches (Combs et al.,
2013).

Biochemical markers can be analyzed from blood, urine,
or tissue. The concentration of a given marker reflects intake
of a particular dietary component (Jenab et al., 2009; Zuniga
and McAuley, 2015). Epidemiological studies have identified
approximately 100 biomarkers that correlate with dietary intake
(Table 1; Scalbert et al., 2014). These biomarkers can bemeasured
to estimate intake of a wide range of dietary components,
including overall fruit and vegetable intake (Mennen et al., 2006;
Baldrick et al., 2011), citrus fruits (Heinzmann et al., 2010; Lloyd
et al., 2011a; Pujos-Guillot et al., 2013), cruciferous vegetables
(Edmands et al., 2011; Andersen et al., 2014), salmon (Lloyd
et al., 2011b), red meat (Stella et al., 2006; Cross et al., 2011),
soy (Verkasalo et al., 2001), whole grain cereals (Andersson
et al., 2011; Ross et al., 2012), coffee (Nagy et al., 2011; Rothwell
et al., 2014), tea and wine (Hodgson et al., 2004; Mennen
et al., 2006), food additives (Brantsaeter et al., 2009), and food
contaminants (Turunen et al., 2010). As a complement to self-
reported methods, biochemical analyses of nutrient biomarkers
can improve data validity by providing an objective and sensitive
assessment of a wide range of dietary components (Elmadfa and
Meyer, 2014).

Holistic Dietary Patterns
Research in nutritional epidemiology has historically examined
health outcomes in relation to one or a few nutrients. Although
this type of analysis has been valuable, it has several conceptual
and methodological limitations. First, rather than eating isolated
nutrients, most individuals consume diets that consist of complex
combinations of nutrients that have interactive effects. As a
consequence, the single nutrient approach may be inadequate
for taking into account interactions among nutrients. Second,
the effect of a single nutrient may be too small to detect, but
the cumulative effects of multiple nutrients included in a dietary
pattern may be sufficiently large to be detectable. Finally, because
nutrient intakes are commonly associated with certain dietary
patterns, single nutrient analysis may potentially be confounded
by the effect of dietary patterns. Dietary patterns represent a
broader picture of food and nutrient consumption, and may thus
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TABLE 1 | Biochemical markers of dietary exposure.

Vitamins Fatty acids

B1 (thiamine) α –Linolenic acid

B2 (riboflavin) Arachidonic acid

B5 (pantothenic acid) cis-Docosapentaenoic acid

B6 (pyridoxine) cis-Octadecenoic acid

B9 (folate) cis-Palmitoleic acid

B12 (cobalamin) Docosahexaenoic acid (DHA)

C Docosapentaenoic acid (DPA)

D Eicosapentaenoic acid (EPA)

E Eicosadienoic acid

K1 Eicosenoic acid

Nicotinamide Elaidic acid

Carotenoids Lauric acid

α-carotene Linolelaidic acid

β-carotene Linoleic acid

β-cryptoxanthin Myristic acid

Lutein Myristoleic acid

Zeaxanthin Oleic acid

Lycopene Omega-3 polyunsaturated fats

Polyphenols Omega-6 polyunsaturated fats

4-O-Methylgallic acid Palmitic acid

5-Heneicosylresorcinol Petroselaidic acid

5-Heptadecylresorcinol Phytanic acid

5-Nonadecylresorcinol Rumenic acid

5-Tricosylresorcinol Stearic acid

Apigenin Tetradecenoic acid

Caffeic acid trans-Hexadecenoic acid

Chlorogenic acid trans-Octadecadienoic acid

Daidzein trans-Octadecenoic acid

DHBA Vaccenic acid

DHPPA Amino acids

Dihydrodaidzein 1-Methylhistidine

Dihydrogenistein 3-Methylhistidine

Enterodiol Organic compounds

Enterolactone Taurine

Equol Aliphatic acyclic compounds

Eriodictyol Urea

Gallic acid Chemical elements

Genistein Nitrogen

Glycitein Food contaminants

Hesperetin Aflatoxins

Isorhamnetin Mercury

Kaempferol PCBs

Luteolin Cooking products

m-Coumaric acid Acrylamide

Naringenin 1-Hydroxypyrene glucuronide

ODMA Endogenous metabolites and enzymes

Phloretin 5-Hydroxytryptophol

Quercetin ALAT

Resveratrol ASAT

Tamarixetin GGT

(Continued)

TABLE 1 | Continued

Inorganic compounds

Iodine

Phosphorous

Potassium

Selenium

Sodium

Zinc

Iron

Calcium

be more predictive of cognitive function and brain health than
individual foods or nutrients (Barberger-Gateau, 2014).

The importance of studying dietary patterns has become
increasingly recognized in the scientific community, motivating
an investigation of the role of specific dietary patterns in
cognitive aging. A dietary pattern that has received significant
attention is the Mediterranean (MEDI) diet (Willett et al., 1995;
Trichopoulou et al., 2015). The MEDI diet is comprised of foods
that are known to deliver beneficial nutrients, including olive
oil that provides monounsaturated fats and polyphenols, fish
that delivers omega-3 polyunsaturated fats and vitamin D, and
fruits and vegetables that provide vitamins C and E, carotenoids,
folate, and polyphenols (Sofi et al., 2013). Combinations of
these nutrients may optimize the protective vascular, antioxidant,
and anti-inflammatory mechanisms promoted by these nutrients
(Sofi et al., 2013). Meta-analytic reviews provide evidence to
support the efficacy of the MEDI diet, suggesting that this dietary
pattern may have protective effects on cognitive aging (Sofi et al.,
2013).

Recent studies further indicate that specific dietary patterns
may have targeted effects. For example, the Dietary Approach
to Stop Hypertension (DASH) diet, which consists of nutrient
dense foods and low-sodium intake, is associated with reduced
hypertension and improved psychomotor speed (The Seventh
Report of the Joint National Committee on Prevention,
Detection, Evaluation, and Treatment of High Blood Pressure,
2004; Smith et al., 2010). The promising effects of both the MEDI
and DASH diets have motivated a fusion of these dietary patterns
in theMediterranean-Dietary Approach to Systolic Hypertension
Diet Intervention for Neurodegenerative Delay (MIND) diet.
The MIND diet is known to slow age-related cognitive decline
in episodic memory, semantic memory, and perceptual speed
(Morris et al., 2015). Thus, evidence indicates that the MEDI,
DASH, andMIND diets may prevent or slow age-related changes
in brain health, motivating the use of blood biomarkers to better
characterize the effects of these dietary patterns on brain aging.

Nutrient Biomarker Patterns
Scientific advances in the characterization of dietary patterns
and the analysis of nutrient biomarkers have led to new
methods in nutritional epidemiology for the measurement of
nutrient biomarker patterns (NBP). This approach applies
Principal Component Analysis to capture the effects of nutrients
in combination, enabling discovery of patterns of nutrient
biomarkers. This method detects NBPs in plasma and therefore
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avoids methodological problems in traditional food frequency
questionnaires, such as faulty recall of dietary intake and failure
to account for variability in nutrient absorption (Scalbert et al.,
2014). Each NBP represents a linear combination of individual
plasma nutrients that load heavily within each biomarker pattern.
Each participant receives a standardized NBP score for each
pattern, and this score can subsequently be used to assess
the relationship between nutrient patterns, cognitive function,
and brain health. Early applications of this method have
revealed multiple nutrient patterns that influence cognition and
brain aging, including an NBP composed of antioxidants C
and E, B vitamins, and vitamin D associated with enhanced
global cognitive function; and an NBP consisting of omega-
3 polyunsaturated fatty acids eicosahexaenoic acid (EPA) and
docosahexaeonic acid (DHA) associated with white matter
integrity (Bowman et al., 2012).

KEY CONCEPT 2 | Nutrient biomarker patterns

Modern methods in nutritional epidemiology provide an objective measure of

nutritional status based on nutrient biomarker patterns derived from exploratory

or hypothesis-driven analysis techniques.

Metabolomics provides a second approach to characterizing
NBPs based on high-throughput analytic chemistry technologies
that assess all small molecules associated with metabolism,
known as the metabolome (Scalbert et al., 2014). The human
metabolome is not a single entity—it consists of many
components, including the endogenous metabolome, which
represents cellular metabolism, the food metabolome, which
reflects chemicals derived from digestion and metabolism of
food, and xenobiotics acquired from the environment and
drugs. Metabolomics provides the opportunity to investigate
the complex interactions between dietary components, as well
as between dietary components and the human body. This
method allows researchers to measure hundreds to thousands
of metabolites at a time (Scalbert et al., 2014). In doing so,
biomarker panels common to particular foods or dietary patterns
and the mechanistic effects of diet on metabolic pathways can be
examined (Gibbons et al., 2015).

By characterizing individual dietary phenotypes with an
unprecedented scope and level of precision, metabolomics can
identify biomarkers of aging and elucidate the mechanisms of
health status in an effort to improve early diagnosis, facilitate
accurate prognosis, and assist in monitoring of patient response
to therapy (Dunn et al., 2011). Metabolomics has identified
potential biomarkers for a variety of foods and dietary patterns,
including raspberries (Lloyd et al., 2011b), broccoli (Lloyd et al.,
2011b), citrus fruits (Heinzmann et al., 2010), overall fruit
and vegetable intake (O’Sullivan et al., 2011), high meat diets
(O’Sullivan et al., 2011), and theWestern diet (Bouchard-Mercier
et al., 2013). Research applying metabolomics to investigate the
relationship between the food metabolome and brain aging,
however, remains at an early stage, with no published studies
conducted to date (Zuniga and McAuley, 2015). Given the
complexity of the foodmetabolome, validation of dietarymarkers
is still underway (Scalbert et al., 2014), along with efforts to
identify specific patterns within the food metabolome that are
associated with healthy brain aging (Scalbert et al., 2014).

MAGNETIC RESONANCE IMAGING
MEASURES OF BRAIN AGING

Magnetic resonance imaging (MRI) enables the study of
structural and functional brain changes associated with aging
and the prediction of neuropathological processes in the aging
brain (Buckner, 2004). Even within cognitively normal brains,
neurodegenerative processes can be present and measured using
MRI (Wilson et al., 1999; Mungas et al., 2002; Rusinek et al.,
2003). MRI methods therefore provide the foundation for
investigating structural and functional changes in the aging brain
and examining the impact of nutrition on healthy brain aging.

KEY CONCEPT 3 | Magnetic resonance imaging

Contemporary neuroscience methods provide measures of brain structure and

function on the basis of high-resolution magnetic resonance imaging.

Structural Neuroimaging
Structural MRI enables high-resolution imaging of age-related
changes in gray and white matter structure, including: (1)
total and regional brain volume (volumetry), (2) integrity of
white matter fiber tracts (diffusion tensor imaging), (3) axonal
microstructure of brain tissue (MR-elastography), and (4) altered
mineral content (MR-gradient echo imaging) (Grady, 2000;
Lockhart and DeCarli, 2014). Application of these methods has
revealed the heterogeneous nature of brain aging. Although
atrophy across the whole brain is evident with aging, these
changes vary by region and tissue type. Differential effects of
aging are particularly evident in the cerebral cortex, in which
the superior frontal, middle frontal, and superior parietal cortex
are most susceptible to steady age-related atrophy (Lockhart and
DeCarli, 2014). Other cortical regions have fluctuating rates of
change, with some areas showing accelerated atrophy early in
aging, others demonstrating accelerated atrophy late in aging,
and others showing a combination of early and late acceleration
(Figure 1; Lockhart and DeCarli, 2014; Claassen et al., 2016).
Subcortically, the caudate nucleus, cerebellum, and hippocampus
show susceptibility to age-related structural degeneration (Raz
et al., 2005). A particularly common age-related disruption
to brain tissue is the deterioration of cerebral white matter,
known as white matter lesions (Lockhart and DeCarli, 2014).
White matter lesions are more extensive in individuals with
cardiovascular risk factors; however, even borderline changes in
blood pressure can result in white matter lesions (Longstreth
et al., 1996; Swan et al., 1998). In addition to lesions, white
matter also shows reduced microstructural integrity of tracts in
the frontal lobe, parietal lobe, and corpus callosum (Nusbaum
et al., 2001; O’Sullivan et al., 2001). Finally, aging demonstrates
changes in mineral content, as indicated by microhemorrhages
measured via MR-gradient echo imaging (Cordonnier et al.,
2010), and changes in the axonal microstructure of brain tissue,
as measured by magnetic resonance elastography (Arani et al.,
2015). Structural neuroimaging techniques can provide a precise
index of brain health by measuring the extent of changes in brain
structure associated with healthy aging.

As a precise method of measuring age-related changes in
the brain, structural neuroimaging is vital to the development
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FIGURE 1 | The effect of aging on brain structure (cortical thickness) in

healthy older adults (mean age 63.38 ± 12.23 years). Regions highlighted

in green follow a linear rate of atrophy. Regions highlighted in orange show

decline early in aging, stabilize, and then decline again late in aging. Regions

highlighted in red show decline early in aging (decrease quickly early in aging

but stabilize late in aging). Regions highlighted in yellow show decline late in

aging (remain structurally intact early in aging but decrease quickly late in

aging). Modified from Claassen et al. (2016) in Aging and Disease licensed

under CC BY.

of predictive dietary patterns of brain aging. Indeed, several
structural aspects of brain health have been shown to be amenable
to diet, indicating that neuroimaging can be a useful tool to
characterize the relationship between nutrition and brain aging
(Table 2). However, research in this area stands to benefit from
the examination of nutrient biomarkers of dietary intake, along
with the assessment of established dietary patterns, such as the
MEDI diet (Willett et al., 1995), and the application of data-
driven methods to further investigate the interactive nutrient
combinations that are associated with healthy brain aging.

Functional Neuroimaging
Functional neuroimaging methods enable the investigation of
functional brain changes that are associated with cognitive
aging. Functional magnetic resonance imaging (fMRI) measures
the ratio of oxygenated to deoxygenated hemoglobin in the
blood as a marker of change in neural activity related to
cognitively demanding tasks or rest (Lockhart and DeCarli,
2014). Functional neuroimaging has demonstrated that age-
related decline in cognitive processes begins early—even when
the prevalence of concomitant disease is low (Park and Reuter-
Lorenz, 2009). These changes in brain activity are known to
reflect alterations in underlying neurotransmission and brain

TABLE 2 | Summary of evidence examining the role of nutrition in

structural changes associated with brain aging.

Structural component Dietary component

WHOLE BRAIN MEASURES

Brain volume Docosahexaenoic acid (Tan et al., 2012)

Mediterranean diet (Gu et al., 2015)

Vitamin E (Mangialasche et al., 2013)

Vitamin C (Whalley et al., 2003)

Cortical thickness Vitamin D (Walhovd et al., 2014)

Mediterranean diet (Gu et al., 2015)

Vitamin E (Mangialasche et al., 2013)

REGIONAL MEASURES

Temporal cortex volume Vitamin D (Hooshmand et al., 2014)

Omega-3 polyunsaturated fats (Conklin et al.,

2007)

Eicosapentaenoic acid (Samieri et al., 2012)

Parietal cortex volume Vitamin B6 (Erickson et al., 2008)

Vitamin B12 (Erickson et al., 2008)

Mediterranean diet (Gu et al., 2015)

Cingulate cortex volume Vitamin B6 (Erickson et al., 2008)

Omega-3 polyunsaturated fats (Conklin et al.,

2007)

Mediterranean diet (Gu et al., 2015)

Frontal cortex volume Vitamin B6 (Erickson et al., 2008)

Omega-3 polyunsaturated fats (Zamroziewicz

et al., 2015)

Mediterranean diet (Gu et al., 2015)

White matter lesions Vitamin D (Annweiler et al., 2014)

Vitamin B12 (de Lau et al., 2009)

Docosahexaenoic acid (Tan et al., 2012)

Choline (Poly et al., 2011)

Mediterranean diet (Gardener et al., 2012)

Marine omega-3 polyunsaturated fats

(Bowman et al., 2012)

Intracerebral hemorrhage volume Calcium (Inoue et al., 2013)

structure that are concentrated in the prefrontal and temporal
cortices (Tomasi and Volkow, 2012). Age-related changes in
brain activity are characterized by greater activity in prefrontal
cortical regions and weaker activity in posterior regions (see
the posterior-anterior shift theory, Davis et al., 2008; Stuss
and Knight, 2013), as well as reduced asymmetry in activity
of the prefrontal cortex (see the HAROLD model, Cabeza,
2002). Furthermore, functional connectivity analyses indicate
that rather than changing interactions across lobes of the brain
in a homogenous way, aging has the strongest effects on
interactions between regions that work together as networks
(Lockhart and DeCarli, 2014). One network that demonstrates
age-related changes is the default mode network, consisting
primarily of regions within the medial prefrontal cortex, the
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posterior cingulate cortex, and the precuneus cortex. This
network is active when an individual is awake and alert (i.e.,
during the “default mode”) but is not engaged during cognitively
demanding, goal-directed tasks (Shulman et al., 1997; Raichle
et al., 2001; Greicius et al., 2003) Funtional connections between
regions within the default mode network are reduced with aging,
suggesting that regions that work together become more weakly
coupled in the aging brain (Figure 2; Andrews-Hanna et al.,
2007). Thus, fMRI provides a powerful tool to investigate age-
related changes in functional brain connectivity and may be
applied to forecast the trajectory of cognitive decline in the aging
brain (Park and Reuter-Lorenz, 2009; Salthouse, 2009).

The use of fMRI methods to characterize the relationship
between diet and brain function, particularly in the context
of brain aging, has been limited. The handful of studies
published on this topic indicate that supplementation of omega-
3 PUFAs modulates neural activity during tasks of working
memory and calculation (Konagai et al., 2013; Boespflug et al.,
2015). These findings motivate the investigation of how other
nutrients and nutrient patterns may benefit age-related changes
in brain function. Although emerging evidence suggests age-
related changes in brain function are amenable to diet, the
mechanisms through which nutrients influence brain function
remain largely unexplored. Thus, integrating contemporary
methods from nutritional epidemiology and neuroscience to
examine the effects of nutrition on healthy brain aging remains
a promising area for future investigation.

AN INTERDISCIPLINARY APPROACH TO
STUDYING NUTRITION’S IMPACT ON
HEALTHY BRAIN AGING

Accumulating evidence indicates that the effects of nutrition
on brain health are complex and multifactorial, reflecting
the influence of particular nutrient combinations on specific
aspects of brain aging. Indeed, nutritional epidemiology has
shown that diets are composed of many nutrients that have
interactive effects. This field has developed methods for deriving
nutrient patterns (a priori hypothesized nutrient patterns such
as MEDI and data-driven analyses such as NBPs) that capture
the robust effects of nutrient interactions. Furthermore, cognitive
neuroscience has shown that brain aging is a heterogeneous
process characterized by widespread changes in structure and
function. This field has developed neuroimaging methods to
measure these changes with high-resolution. Predictive nutrient
patterns of healthy brain aging will emerge from the integration
of methods that sensitively capture variability in both diet and
brain aging (Figure 3).

Recent findings from Zamroziewicz et al. (2015) indicate that
gray matter volume of the anterior cingulate cortex mediates the
relationship between omega-3 PUFAs and executive functions,
demonstrating that the beneficial effects of nutrition on cognitive
performance are mediated by cortical volume within specific
brain regions (Zamroziewicz et al., 2015). Thus, this finding
provides an example of how an interdisciplinary approach may

FIGURE 2 | Whole-brain exploratory analyses show reduced

connectivity within the default network with aging. (A) For a seed placed

in the medial prefrontal cortex, positive correlations with the medial prefrontal

cortex time course exceeding a threshold of r = 0.1 are colored in red to

yellow and averaged for all young participants (top) and all old participants

(middle). A direct comparison of the two groups using the young-old contrast

(bottom) highlights voxels at a significance level of p < 0.01. The young group

shows higher correlations with many regions comprising the network. (B) The

reverse scenario when a seed is placed in the posterior cingulate/retrosplenial

cortex. Functional correlations between the posterior cingulate/retrosplenial

cortex and both the medial prefrontal cortex and the bilateral lateral parietal

cortex, as well as some hint of the hippocampal formation, decline in old age.

Reprinted with permission from Andrews-Hanna et al. (2007).

be applied to study nutrition’s impact on cognitive performance
and brain health.

Research at the frontiers of nutritional cognitive neuroscience
seeks to establish a personalized approach to nutritional

interventions that takes into account individual variability in
nutritional status and brain health. The goal of personalized
nutrition is to enhance the precision of nutritional intervention
and to enable novel applications to psychological health, aging,
and disease. To achieve this goal, considerably more research
is needed to elucidate the complex interactions within nutrient
patterns, within processes of brain aging, and finally, between
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FIGURE 3 | Diet and brain aging are multifaceted in nature. The interactive effects of nutrients in the diet may be captured using nutrient patterns, such as the

Mediterranean diet (MEDI; Willett et al., 1995), the Dietary Approach to Stop Hypertension (DASH; Smith et al., 2010), the Mediterranean-Dietary Approach to Systolic

Hypertension Diet (MIND; Morris et al., 2015), and Nutrient Biomarker Patterns (NBPs; Bowman et al., 2012). Likewise, the widespread changes in brain structure and

function associated with age may be best measured using high-resolution neuroimaging methods. In order to understand the beneficial effects of nutrition on the

aging brain, each of these complex entities must be characterized using precise methods.

nutrient patterns and brain aging. Unanswered questions to
guide future research are as follows:

1. How do the individual interactions between nutrients within
dietary patterns benefit the aging brain?

2. How does age-related structural decline relate to changes in
functional activity, and what mechanisms underlie associated
declines in cognition?

3. How can variability in both diet and brain aging be captured
and linked to build predictive patterns of healthy brain aging
in precise and comprehensive ways?

4. How might known moderating variables—including age,
genes, environment, and lifestyle—determine nutrition’s
impact on cognitive function and brain health?

KEY CONCEPT 4 | Nutritional interventions

By integrating methods from nutritional epidemiology and cognitive

neuroscience, nutritional cognitive neuroscience seeks to elucidate nutrition’s

impact on the aging brain and to drive innovation in the design of nutritional

interventions that promote healthy brain aging.

CONCLUSION

Recent innovations in nutritional cognitive neuroscience hold
promise for addressing the problems posed by a rapidly changing
demographic landscape. This Focused Review highlights recent
advances in nutritional cognitive neuroscience, with a focus on

methods that investigate nutrient biomarkers that predict healthy
aging. By applying cutting-edge techniques from nutritional
epidemiology (nutrient biomarkers in a priori hypothesized
dietary patterns and data-driven methods) and cognitive
neuroscience (high resolution MRI measures of brain structure
and function), the burgeoning field of nutritional cognitive
neuroscience will continue to advance our understanding of the
beneficial effects of nutrition on the aging brain. Ultimately,
the development of predictive nutrient patterns for healthy
brain aging will provide an empirically sound foundation
for developing nutritional therapies that support the targeted
treatment of cognitive and neurological impairments in the aging
brain.
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