
ORIGINAL RESEARCH
published: 08 June 2016

doi: 10.3389/fnins.2016.00255

Frontiers in Neuroscience | www.frontiersin.org 1 June 2016 | Volume 10 | Article 255

Edited by:

Roma Siugzdaite,

Ghent University, Belgium

Reviewed by:

Tatiana Alexandrovna Stroganova,

Moscow State University of

Psychology and Education, Russia

Bharat B. Biswal,

University of Medicine and Dentistry of

New Jersey (UMDNJ), USA

*Correspondence:

Tal Kenet

tal@nmr.mgh.harvard.edu

†
Present Address:

Javeria A. Hashmi,

Department of Anesthesia, Dalhousie

University, Halifax, NS, Canada;

Manfred G. Kitzbichler,

Behavioural and Clinical Neuroscience

Institute, University of Cambridge,

Cambridge, UK

Specialty section:

This article was submitted to

Child and Adolescent Psychiatry,

a section of the journal

Frontiers in Neuroscience

Received: 29 January 2016

Accepted: 23 May 2016

Published: 08 June 2016

Citation:

Khan S, Hashmi JA, Mamashli F,

Bharadwaj HM, Ganesan S,

Michmizos KP, Kitzbichler MG, Zetino

M, Garel K-LA, Hämäläinen MS and

Kenet T (2016) Altered Onset

Response Dynamics in

Somatosensory Processing in Autism

Spectrum Disorder.

Front. Neurosci. 10:255.

doi: 10.3389/fnins.2016.00255

Altered Onset Response Dynamics in
Somatosensory Processing in Autism
Spectrum Disorder
Sheraz Khan 1, 2, 3, 4, Javeria A. Hashmi 1, 2, 3 †, Fahimeh Mamashli 1, 2, 3, Hari M. Bharadwaj 1, 2, 3,

Santosh Ganesan 1, 2, Konstantinos P. Michmizos 5, Manfred G. Kitzbichler 1, 2, 3 †,

Manuel Zetino 1, 2, Keri-Lee A. Garel 1, 2, Matti S. Hämäläinen 2, 3, 6, 7 and Tal Kenet 1, 2, 3*

1Department of Neurology, Massachusetts General Hospital, Boston, MA, USA, 2 Athinoula A. Martinos Center for

Biomedical Imaging, MGH/MIT/Harvard, Boston, MA, USA, 3Harvard Medical School, Boston, MA, USA, 4McGovern

Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA, 5Department of Computer

Science, Rutgers University, Piscataway, NJ, USA, 6Department of Radiology, Massachusetts General Hospital, Boston, MA,

USA, 7Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland

Abnormalities in cortical connectivity and evoked responses have been extensively

documented in autism spectrum disorder (ASD). However, specific signatures of these

cortical abnormalities remain elusive, with data pointing toward abnormal patterns

of both increased and reduced response amplitudes and functional connectivity. We

have previously proposed, using magnetoencephalography (MEG) data, that apparent

inconsistencies in prior studies could be reconciled if functional connectivity in ASD

was reduced in the feedback (top-down) direction, but increased in the feedforward

(bottom-up) direction. Here, we continue this line of investigation by assessing

abnormalities restricted to the onset, feedforward inputs driven, component of the

response to vibrotactile stimuli in somatosensory cortex in ASD. Using a novel method

that measures the spatio-temporal divergence of cortical activation, we found that relative

to typically developing participants, the ASD group was characterized by an increase in

the initial onset component of the cortical response, and a faster spread of local activity.

Given the early timewindow, the results could be interpreted as increased thalamocortical

feedforward connectivity in ASD, and offer a plausible mechanism for the previously

observed increased response variability in ASD, as well as for the commonly observed

behaviorally measured tactile processing abnormalities associated with the disorder.

Keywords: autism spectrum disorders (ASD), magnetoencephalography (MEG), somatosensory cortex,

feedforward, feedback, tactile sensing, cortical connectivity, biomarker

INTRODUCTION

Autism spectrum disorder (ASD) is diagnosed by hallmark abnormalities in social behavior, and
has a complex genetic basis (Berg and Geschwind, 2012; Skafidas et al., 2014; Pramparo et al.,
2015) with no clear disease etiology. The neural correlates of ASD have been extensively explored,
using a wide range of paradigms and non-invasive neuroimaging methods. One of the more
consistent findings in ASD is that the connectivity between different brain areas is abnormal in
ASD (Khan et al., 2013). This has been explored using both anatomical connectivity measures

http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://www.frontiersin.org/Neuroscience/editorialboard
http://dx.doi.org/10.3389/fnins.2016.00255
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2016.00255&domain=pdf&date_stamp=2016-06-08
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:tal@nmr.mgh.harvard.edu
http://dx.doi.org/10.3389/fnins.2016.00255
http://journal.frontiersin.org/article/10.3389/fnins.2016.00255/abstract
http://loop.frontiersin.org/people/64066/overview
http://loop.frontiersin.org/people/352664/overview
http://loop.frontiersin.org/people/129853/overview
http://loop.frontiersin.org/people/76352/overview
http://loop.frontiersin.org/people/159389/overview
http://loop.frontiersin.org/people/126609/overview
http://loop.frontiersin.org/people/4461/overview
http://loop.frontiersin.org/people/144201/overview
http://loop.frontiersin.org/people/352638/overview
http://loop.frontiersin.org/people/79954/overview
http://loop.frontiersin.org/people/66638/overview


Khan et al. Increased Feedforward Connectivity in ASD?

(Wolff et al., 2012; Mueller et al., 2013; Peeva et al., 2013) and
functional connectivity measures (Kana et al., 2011; Müller et al.,
2011; Wass, 2011; Vissers et al., 2012).

The prevailing hypothesis in the field (Rubenstein and
Merzenich, 2003; Just et al., 2004), has been that long-
range functional connectivity is reduced and local functional
connectivity is increased in ASD (Belmonte et al., 2004; Minshew
and Williams, 2007). However, evidence for this dual hypothesis
is inconclusive. In particular, the hypothesis that long-range
functional connectivity, i.e., connectivity between two spatially
distinct brain regions, is universally reduced in ASD has been
challenged by recent studies showing instances of both increased
(Cerliani et al., 2015) and normal (Tyszka et al., 2014) long-range
functional connectivity in ASD.

Previously, we proposed that the inconsistencies in long-range
functional connectivity studies in ASD might be reconciled if
the directionally of the connectivity, i.e., the direction in which
two areas are connected, would be considered. Specifically, we
proposed that long-range feedforward (bottom-up along the
cortical hierarchy) connectivity would be abnormally increased
in ASD, while feedback (top-down along the cortical hierarchy)
long-range connectivity would be abnormally reduced (Khan
et al., 2015; Kitzbichler et al., 2015). In particular, in our
recent study of cortical responses to vibrotactile stimuli in ASD,
we showed that long-range functional connectivity was indeed
significantly increased in the ASD group in the feedforward
direction, from the primary somatosensory cortex (S1), upwards
toward the secondary somatosensory cortex (S2) (Khan et al.,
2015).

In that same study, we also found a significantly increased
onset response in S1 in the ASD group. While the response
in S1 was significantly increased at onset in the ASD
group, it was not possible to determine, based on our prior
analysis, whether this increase was generated locally, or via
abnormal long-range connectivity, such as reduced feedforward
functional connectivity from the thalamus for instance. This
question is important, because increased local connectivity
and increased long-range functional connectivity might have a
similar final signature in the cortex, but would be generated
and mediated by substantially different neural mechanisms, and
thus different neural abnormalities. Thus, delineating the neural
mechanisms that underlie the observed abnormal response in
ASD is absolutely essential for understanding the abnormal
neurophysiology of ASD.

To address this question, we focused here on the transient
component of the response, and specifically on the rising edge
of the evoked response. This transient response window, 30–
70ms immediately following the onset of the cortical response,
has not been previously studied in relation to abnormal tactile
processing in ASD. Given its timing, this part of the response
is most likely generated at least in part by feedforward inputs
from the thalamus. However, the mere observation of an
increased response amplitude during that period is not sufficient
to indicate whether the processes leading to that increase are
local, or generated by long-range connections. Here, to test our
hypothesis, that the increase in the transient evoked response
observed in ASD is due to feedforward inputs from subcortical

regions, we applied a novel measure that indicates how activation
of a small neural population spreads in adjoining areas to become
locally synchronized (Khan et al., 2009). This method, which
is referred to as Spatio-Temporal Divergence (S-T Div), uses
techniques based on the concept of optical flow, and was recently
adapted tomap the time-course of spatiotemporal propagation of
brain activity across different cortical region (Khan et al., 2011).

RESULTS

Spatial Localization of Evoked Response
to Tactile Vibrations
As expected and as described previously (Khan et al., 2015),
the cortical evoked responses to the 25Hz vibrotactile stimulus
(Figure 1A) localized to the contralateral (left) S1 and S2
(Figure 1B).

Sharper Evoked Response in ASD
There was no group difference in the latency of the response.
The amplitude of the evoked transient response was slightly
increased in the ASD group relative to the TD group, but
this difference was not statistically significant (Figure 2A). In
contrast, when the cortical response was examined over the onset
time window in the time-frequency domain, i.e., with spectral
specificity rather than averaging over the frequency domain as
for the standard evoked response shown in Figure 2A, significant
group differences emerged (Figure 2B, p = 0.0470, corrected).
The difference arose primarily from the higher frequencies, at the
25–60Hz range.

Increased Onset Response Divergence in
ASD
We computed the spatio-temporal divergence (S-T Div) at the
onset component of the response, and specifically at the rising
edge of the first peak (30–70ms). This was done by selecting
the latency for each subject individually, computing S-T Div for
that particular subject at their latency, and then averaging the
results at the group level. At this time window, the ASD groups
demonstrated significantly increased S-T Div in S1 (Figure 3,
p = 0.034, corrected). As a control, we also examined S-T Div
during the steady state component of the response (t = 250–
550ms). As expected, there were no significant group differences
in this later time window.

Correlations with Behavioral Measures and
Prior Neurophysiological Measures
The neurophysiologically derived S-T Div was negatively
correlated with the behaviorally derived ADOS (ASD group,
P < 0.002, r = 0.74, Figure 4A) and touch perception
score (TD group, P < 0.008, r = −0.58; ASD group, P <

0.02, r = −0.63, Figure 4B). Because the participants are
identical to those in our prior study (Khan et al., 2015), we
also assessed whether the onset derived S-T Div correlated with
the steady-state derived neurophysiological measures from our
prior study. Our steady state measures consisted of the LFCi
(“Local Functional Connectivity index”), which estimated local
functional connectivity in S1 during the steady state component
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FIGURE 1 | Stimulus and source localization. (A) 500ms train of pulses at 25Hz (green trace) was delivered via a pneumatic stimulator and experienced as gentle

vibrations on the index and middle right fingers. (B) The estimated cortical sources showing activation in S1 and S2. The contour plot represents average activation on

the cortical manifold. The distance between adjacent contours is 10%.

of the response, and the GCS (Granger Causality score), which
estimated the strength of feedforward connectivity from S1 to S2
during the steady state component of the response. Both were
abnormal in the ASD group, with LFCi abnormally decreased,
and the GCS abnormally increased. Our correlation analysis
showed that LFCi was correlated with S-T Div for both the TD
(Figure 4C, P < 0.002, r = −0.66) and ASD (P < 0.007, r
= − 0.67) groups. In contrast, S-T Div was not correlated with
the GCS (Figure 4D).

Statistical Classification
Lastly, we tested whether S-T Div could be used to blindly
classify participants with ASD (neuroimaging Biomarker) from
TD participants, using a Linear Discriminant Analysis classifier
(LDA). This approach evaluates the sensitivity and specificity,
and thus the relevance, of the assessed neurophysiological
measure to the behavioral phenotype. Using S-T Div alone, the
classifier had 83.3% accuracy (80% sensitivity, 90% specificity).
We then repeated the classifier computations using S-T Div
alongside our two previously derived neurophysiological
measures, LFCi, and GCS. The combination of these three
neurophysiological features yielded a mean classification
accuracy of 91.6%, with 95% specificity and 90% sensitivity
(Figure 5, Figure S1 and Movie M1). In our prior work the
accuracy of the classifier was 89.7%. To assess whether adding
the S-T Div measure significantly improved the classifier,
the prior model (using LFCi, GCA) and the current model
(using LFCi, GCA, S-T Div) were compared using the Akaike
Information Criterion (AIC). The AIC score was −79.98 for the
first model, and−92.17 for the second model. These scores, with
a greater than 12-point difference, indicate that adding S-T Div
significantly improved the model.

DISCUSSION

In the vast majority of studies, abnormal functional connectivity
in ASD and abnormal evoked responses in ASD have been

addressed separately. It is clear that functional connectivity and
evoked responses are not independent from one another, but
instead are tightly coupled. In our prior study using the same
paradigm (Khan et al., 2015), we showed that the observed
increases in steady state responses in the ASD group at 25Hz
in S2, were due to increased feedforward connectivity from S1.
We also hypothesized that the observed increased onset response
in S1 was due to increased feedforward connectivity from the
thalamus, but were not able to test this hypothesis at the time.

The current method (S-T Div) allowed us to test this
hypothesis indirectly, since it measures the flow (magnitude and
velocity of spread) of neural activation in a given region and time
window. The velocity at the onset of the response in S1, at the
rising edge of the response, before local connections are strongly
activated through recurrent loops, is likely to arise entirely or
nearly entirely from feedforward connections into S1, primarily
from the thalamus. While an increase in magnitude might arise
from local recurrent connections, an increase in the velocity
of spread can be attributed with relatively high certainty to an
increase in feedforward inputs (Papadelis et al., 2012). Indeed, we
found that at rising edge of the transient response in S1, this flow
was greatly and significantly increased in ASD relative to TD.

Interestingly, as is evident from the time-frequency plots
presented in Figure 2B, the evoked response in S1 in ASD is
abnormally increased not only at the 25Hz component of the
response, but also at higher frequencies, including the 50Hz
component of the response. This seemingly contradicts our
prior results. In our prior study (Khan et al., 2015), using a
computational model and prior literature, we argued that only
the 25Hz component of the response, which was increased
in ASD, is generated via feedforward connectivity, while the
steady state of the 50Hz component of the response, which was
reduced in ASD, is generated via local connectivity within S1
and its immediate vicinity, i.e., horizontal connections across
layers II/III. Simply put, why would the response in higher
frequencies, and specifically around 50Hz, be increased in
ASD in the transient component immediately following the
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FIGURE 2 | Evoked responses. (A) Evoked responses in S1 (Orange ASD; Cyan TD). Stimulus is represented with green curve at the bottom. Magenta box shows

the window for the first transient peak [30–70ms]. (B) Time-frequency representations of Z-scored phase locking (Z-PL) at S1 in the TD group. (C) Time-frequency

representations of Z-scored phase locking (Z-PL) at S1 in the ASD group. White contour outlines the region where the response was significantly increased in the ASD

group (p = 0.0470, cluster corrected). Magenta boxes show time window for the transient response in the time-frequency domain [0–140ms].

onset, but decreased during the steady state component of
the response? If both the transient onset component and the
steady state component of the cortical response were generated
by the same neural mechanisms (local recurrent connections),
the interpretation of the 50Hz component of the response we
proposed earlier would be inconsistent with the current proposed
interpretation.

The logical resolution of this apparent conflict emerges from
a line of studies affirming the fundamentally different nature of
the onset component of the response relative to the steady state
component (Nangini et al., 2006). For instance, somatosensory
inputs from the thalamus to area 3b have been shown to evoke
fast and slow adapting response patterns in non-human primates
where one set of cortical cells respond only to stimulus onset
and offset, while the other module respond throughout stimulus
presentation (Sur et al., 1984). In contrast, the steady state
response serves to more linearly convey detailed information
about attended stimulus features (Ramcharan et al., 2005;
Sherman, 2012). Furthermore, the corticothalamic pathways
that would be most active during the onset component of the
response, are largely distinct from the interareal corticocortical
pathways that would be most active during the steady state
component of the response (Petrof et al., 2012). Thus, the

opposite patterns we observed in ASD for the onset component
and the steady state components of the response around 50Hz
are not contradictory, as they are probably generated by at least
partially independent neuronal assemblies.

That said, it is worthwhile to note that the strong correlation
we observed between S-T Div and LFCi suggests that while these
two temporally differentiated components of the response are
distinct, they are not independent. However, from the current
data, it is not possible to determine to what extent the abnormal
response in ASD during the steady state component of the
response is influenced by the initial abnormality in the onset
component of the response. Since the two measures, S-T Div
and LFCi, are correlated but not perfectly so, it is plausible that
the reduced steady state response in ASD is a result both of the
state of the neuronal assemblies following the increased onset
response, alongside the previously discussed (Khan et al., 2015)
inherent abnormalities in the local networks that mediate the
steady state component of the response. Furthermore, the results
from our classifier analysis indicate that the S-T Div analysis
of the onset period adds independent information to the prior
analyses of the steady state component of the response.

The differentiation proposed here between the feedforward
dependent onset component of the response and the local
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FIGURE 3 | S-T Div during the onset of the transient tactile response. S-T DIV in (A) The TD group, (B) The ASD group. The colormap represents the

magnitude of divergence, and the purple vectors represent the velocity of the divergence. Black outline represents the area that is statistically significantly different

(p = 0.034, cluster corrected) between the TD and ASD groups.

FIGURE 4 | Correlations between S-T Div and other measures. Correlation between S-T Div and: (A) ADOS score, (B) Touch score, (C) LFCi, and (D) GCS. The

shaded areas (TD in green, ASD in purple) delineate the standard error, and the dashed lines encompass 95% of the confidence interval for the correlation.

feedback dependent steady state component of the response, is in
line with studies of ASD that indirectly infer increased bottom-up
perceptual processing tendencies in ASD (Neumann et al., 2006;
Jarvinen-Pasley et al., 2008; Cook et al., 2012; Amso et al., 2014;
Robertson et al., 2014). They are also in line with prior fMRI-
based studies finding increased thalamocortical connectivity in
ASD, in paradigms that were more likely to activate feedforward
networks (Mizuno et al., 2006; Cerliani et al., 2015). These
results are also intriguing in the context of a recent finding of
increased inter-trial variability in ASD (Dinstein et al., 2012).
Unmodulated, i.e., inconsistently gain controlled, feedforward
inputs, as observed previously in ASD (Peiker et al., 2015),
would likely result in more variable trial to trial onset responses.
Lastly, these results are also relevant in the context of the high
prevalence of behavioral sensory hypo- and hyper- sensitivities
in ASD (Tommerdahl et al., 2007; Marco et al., 2011, 2012).
Increased feedforward inputs and flow of sensory information
would naturally result in hyper-sensitive behavior. It is possible
that the observed hypo-sensitivities are due to generalized down
regulation, as a compensatory strategy to the increased input
intensities. Such a compensatory strategy would likely result in
hypo-sensitivities.

An important limitation of the study is that this method does
not directly measure thalamocortical feedforward connectivity
from the specific thalamic nuclei, since no thalamic activation
has been observed directly. Thus, the proposed interpretation,
while relying strongly on known properties of response onset in
early sensory cortex, and while fitting well with other studies,
remains an indirect interpretation. Alternatively, other processes
may also impact the observed abnormal dynamics of the onset
response. For instance, it has been suggested that excitatory
feedforward drive and feedback input from higher-order cortex
or non-specific thalamic nuclei might also contribute to the onset
component of the response (Cauller and Kulics, 1991; Jones
et al., 2009). In addition, local interactions between excitatory and
inhibitory circuits that occur before theM70 peak (Peterson et al.,
1995) may also impact the abnormal dynamics observed here.

In summary, in our previous studies (Khan et al., 2015;
Kitzbichler et al., 2015), we found increased forward cortical
functional connectivity in ASD during the steady state
component of the cortical response, from S1 to S2. We also
found an increased onset response in S1 in the ASD group. In
the present investigation we used the novel S-T Div measure to
assess the dynamics of the onset response in S1. The observed
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FIGURE 5 | Classifier results, using S-T Div, LFCi and Granger

Causality. Visualization of LDA analysis using the full dataset. Each axis

corresponds to each neurophysiological imaging feature. The probability of a

participant having a diagnosis of ASD is shown as color of the sphere. Plain

sphere represents the TD participants, while sphere with a cross represent

ASD participants. The black line represents classification boundary (see also,

Figure S1 and Movie M1).

dynamics are consistent with an interpretation of increased
feedforward thalamocortical connectivity. The interpretation
proposed here of the result of the S-T Div measure, is consistent
with the conjecture that stronger feedforward connectivity is
likely characteristic of ASD, andmay underlie the behaviorally
observed aberrant somatosensory and vibrotactile processing in
ASD.

MATERIALS AND METHODS

Participants
Participants were 15 males diagnosed with ASD and 20 age-
matched TD males, ages 8–18 (11.6 mean age). ASD participants
had a prior clinically verified ASD diagnosis, met a cutoff
of > 15 on the SCQ, Lifetime Version, and were assessed
with either Module 3 (n = 3) or 4 (n = 12) of the ADOS
(ADOS, Lord et al., 1999), administered by trained research
personnel who had established inter-rater reliability. Individuals
with autism-relatedmedical conditions, e.g., Fragile-X syndrome,
tuberous sclerosis, and other known risk factors, e.g., premature
birth, were excluded from the study. All TD participants were
below threshold on the SCQ and were confirmed to be free
of any comorbid neurological or psychiatric conditions, and of
substance use for the past 6 months, via parent and self-reports.
The ASD and TD groups did not differ in verbal or nonverbal
IQ, as measured with the Kaufman Brief Intelligence Test—II
(Kaufman and Kaufman, 2004). Handedness information was
collected using the Dean Questionnaire (Piro, 1998). Only right-
handed participants were included in the study. Additional
details on the participants are provided in Table T1. Participants
overlapped in full with those studied in our prior publication on
this paradigm (Khan et al., 2015). All the experimental protocols

were approved by The Massachusetts General Hospital (MEG)
Institutional Review Board and all procedures were carried out
in accordance with the approved guidelines. Written informed
consent was obtained from all subjects.

Experimental Paradigms and MEG Data
Acquisition
Vibrotactile stimulation in the MEG consisted of pulses applied
to the index and middle right fingers at 25Hz using a custom
made pneumatic tactile stimulator with latex tactor tips, based
on a published design (Briggs et al., 2004). The duration of
each stimulus train was 500ms with an inter-stimulus interval
of 3 s with a 500ms jitter. The stimuli were presented while
participants were watching a movie. Participants were instructed
to not pay attention to the stimulation and not move their hands.
Hands were kept still using an armrest, and a blanket positioned
over the arm. The sequence of stimuli was presented using the
psychophysics toolbox (www.psychtoolbox.org). A total of 100
trials were collected. The total recording time was 6min per
subject.

MEG data were acquired inside a magnetically shielded room
(IMEDCO, Hagendorf, Switzerland) (Khan and Cohen, 2013)
using a whole-head VectorViewMEG system (Elekta-Neuromag,
Helsinki, Finland), comprised of 306 sensors arranged in
102 triplets of two orthogonal planar gradiometers and one
magnetometer. The MEG signals were acquired at 600Hz, with
a hardware bandpass filter set between 0.1 and 200Hz. The
position and orientation of the head with respect to the MEG
sensor array was recorded continuously with help of four Head
Position Indicator coils (Uutela et al., 2001; Zaidel et al., 2009).
To allow co-registration of the MEG and MRI data, the locations
of three fiduciary points (nasion and auricular points) that
define a head-based coordinate system, a set of points from
the head surface, and the sites of the four HPI coils were
digitized using a Fastrak digitizer (Polhemus, Colchester, VT,
USA) integrated with the Vectorview system. The ECG and
EOG signals were recorded simultaneously to identify epochs
containing heartbeats as well as vertical and horizontal eye-
movement and blink artifacts. During data acquisition, on-line
averages were computed from artifact-free trials to monitor data
quality in real time. All off-line analysis was based on the saved
raw data. In addition, 5min of data were recorded from the
room void of a subject before each experimental session for noise
estimation purposes.

Structural MRI Data Acquisition and
Processing
T1-weighted high-resolution magnetization-prepared rapid
gradient echo (MPRAGE) structural images were acquired using
a 3.0 T Siemens Trio whole body MR scanner (Siemens Medical
Systems, Erlangen, Germany) and a 32 channel head coil. The in-
plane resolution was 1 × 1mm2, slice thickness 1.3mm with no
gaps, and a TR/TI/TE/Flip Angle 2530ms/1100ms/3.39ms/7◦.
Cortical reconstructions and parcellations for each subject were
generated using FreeSurfer (Dale et al., 1999; Fischl et al., 1999a).
After correcting for topological defects, cortical surfaces were

Frontiers in Neuroscience | www.frontiersin.org 6 June 2016 | Volume 10 | Article 255

http://www.psychtoolbox.org
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Neuroscience/archive


Khan et al. Increased Feedforward Connectivity in ASD?

triangulated with dense meshes with ∼130,000 vertices in each
hemisphere. For visualization, the surfaces were inflated, thereby
exposing the sulci (Dale et al., 1999).

MEG Data Pre-Processing
Cleaning and Motion Correction
The data were spatially filtered using the SSS method (Elekta-
Neuromag Maxfilter software) to suppress noise generated by
sources outside the brain (Taulu et al., 2004; Taulu and Simola,
2006). SSS also corrects for headmotion between and within runs
(Taulu et al., 2004). Cardiac and ocular artifacts were removed
by signal space projection (Gramfort et al., 2013). The MEG
data were then further low-pass filtered at 145Hz to remove the
HPI coil signals. The filtered data were then used for all further
analyses.

Epoching
The data were epoched into single trials lasting 2.5 s, from
1000ms prior to stimulus onset to 1500ms following it. Epochs
were rejected if the peak-to-peak amplitude during the epoch
exceeded 1000 fT and 3000 fT/cm in any of the magnetometer
and gradiometer channels, respectively. This resulted in the loss
of 2–20 trials per participant. To maintain a constant signal to
noise ratio across conditions and participants, the number of
trials per condition per participant was fixed at 80, the minimum
number of accepted trials that we had for each condition and
participant. For participants that had more than 80 good trials,
we selected 80 trials randomly from the available trials.

Transient Response Time Window Selection
For the standard evoked response (Figure 2A), we selected the
first transient peak in the time window between 30 and 70ms
from stimulus onset, to evaluate latency and amplitude. For the
response in the time-frequency domain, we needed to account for
smoothing due to the convolution of the seven cycles complex
Morlet wavelet with the data. Therefore, the time window of
interest was 0–140ms from stimulus onset.

Data Quality
There were no group differences in overall quality of the data, and
the number of good (un-rejected) trials per condition was similar
between groups and across conditions. For each participant, the
same set of trials was used for all analyses.

Mapping MEG Data Onto Cortical Space
Source Estimation
The cortical source space consisted of 10,242 dipoles per
hemisphere, corresponding to a spacing of approximately 3mm
between adjacent source locations. The forward solution was
computed using a single-compartment boundary-element model
(Hämäläinen and Sarvas, 1989). The individual inner skull
surface triangulations for this model were generated with the
watershed algorithm in FreeSurfer. The current distribution was
estimated using theminimum-norm estimate by fixing the source
orientation to be perpendicular to the cortex (Gramfort et al.,
2014). The noise covariance matrix was estimated from data
acquired in the absence of a subject prior to each session. We
employed depth weighting to reduce the bias of the minimum
norm estimates toward superficial currents (Lin et al., 2006).

Inter-Subject Cortical Surface Registration for Group

Analysis
A morphing map to optimally align the cortical surface of each
participant to an average cortical representation (FsAverage in
FreeSurfer) was computed in FreeSurfer (Fischl et al., 1999b).

Data Analysis
Phase Locking
Inter Trial Phase Locking (PL) is a method to quantify phase
synchrony across multiple trials. To compute PL, we convolved
the epoched time series with a dictionary of complex Morlet
wavelets (each spanning seven cycles). We then normalized
the resulting complex coefficients by dividing by their absolute
magnitude and averaging the unit-norm phasors across trials for
each time-frequency bin. We then took their absolute value so
that each number ranged between 0 and 1, with 0 representing a
uniform distribution of phase angles and 1 representing perfectly
synchronized phase angles, across trials (Tallon-Baudry et al.,
1996; Makeig et al., 2002). Mathematically PL is defined as:

PL(f , t) =
1

N

∣

∣

∣

∣

∣

N
∑

n=1

eφ
k(f ,t)

∣

∣

∣

∣

∣

Where ØK represent instantaneous phase resulting from
convolution of the trial with the complex Morlet wavelet, and N
is the numbers of trials.

Z-PL (Normalized Phase Locking)
To compute Z-PL (Figure 2), we compared each PL value to
a set of surrogate null distributions, to correct for statistical
biases proportional to the number of epochs. This approach is
non-parametric, and makes no a-priori assumptions besides the
independence across the trials in the experimental data. The
independence across trials was motivated by the fact that there
was an average 3 s time interval between trials, and anticipation
effects were eliminated because our experimental paradigm had a
500ms jitter in Stimulus-Onset Asynchrony. Z-PL was computed
as follows: each trial was first circularly shifted by a random
lag (τǫ(0,T], where T = period (1/f) in samples) and PL was
computed on the shifted epoched data. This process was repeated
500 times. Z-PL was then computed by subtracting the mean and
dividing by the standard deviation of the null distributions from
the actual PL values.

S-T Div Decomposition
S-T Div is composed of two components. The first is the scalar
component of the extent of divergence of the source estimates,
i.e. the magnitude of the divergence, illustrated in Figure 3 as a
colormap. The second is the velocity of this divergence, illustrated
in Figure 3 with purple vectors, to represent both direction and
magnitude. The S-T Div decomposition involves two steps: (i)
The optical flow of distributed MEG/EEG MNE normalized
estimates, where the relative maximum is set to be one unit for
each individual subject, is computed on the cortical manifold.
This step ensures that amplitude does not impact the result, so
that different data sets where signal to noise may not be constant,
can nonetheless be directly compared. (ii) Helmholtz-Hodge
decomposition is then applied to the optical flow computed
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previously. The details and mathematics of the approach were
published previously (Khan et al., 2011). Briefly, optical flow V
is a vector field which defines the motion of scalar quantity I,
defined on a surfaceM and at time t, such that:

∂ t + g (V,∇MI) = 0

Where g(.,.) is the scalar product, modified by the local curvature
of M. Given optical flow vector field V defined on a surface M,
there exists: a scalar field U, a rotational vector field A, and a
harmonic vector fieldH such that:

V = ∇MU + ∇ x A + H The scalar field U is the divergnce
of the scalar field I, and Vdiv = ∇MU is the divergence vector
field component of vector field V defined on a surface M and at
time t. Optical flow and S-T Div are availaible as part of open-
source MEG/EEG toolboxes; Brainstorm (Tadel et al., 2011) and
MNE-Python (Gramfort et al., 2013).

Lastly, it is important to note that S-T Div is not affected by
the point spread of MNE solution. This is because S-T div is
computed by taking the gradient in space and time. The point
spread of MNE results from the regularization of the ill-posed
inverse solution. Therefore, for a particular location in space, the
spread is “constant” across different time points. Thus, because
it is constant, taking the gradient cancels the impact of the point
spread. This is discussed at length in prior publications on the
topic (Khan et al., 2011).

Correlations Analyses
All correlation coefficients and the corresponding P-values were
computed using Pearson correlation (Figure 4). Correlations
resulting in significant P-values were then tested using Robust
Correlation (Pernet et al., 2012), which strictly checks for
false positive correlations using bootstrap resampling and
6 correlation tests (bootstrap Pearson correlation, bootstrap
Spearman correlation, bootstrap Bend correlation, bootstrap
Pearson skipped correlation and bootstrap Spearman skipped
correlation). Significant correlations were further tested for
survival of multiple comparison correction by controlling
for family-wise error rate using maximum statistics through
permutation testing (Groppe et al., 2011).

Linear Discriminant Analysis (LDA)
The performance of LDA was evaluated using 10-fold cross
validation (a model validation technique for assessing how the
results of a model will generalize to an independent data set).
To perform this cross validation, both TD and ASD Subjects (35
total) were randomly partitioned into 10 equal size subsamples.
Of the 10 subsamples, 9 subsamples were used as training data
for model learning and then applied on the remaining subsample
to test the validity of the model. The cross-validation process was
then repeated 10 times, with each of the subsamples used once
as the validation data. Scikit-learn Machine Learning in Python
(Pedregosa et al., 2011) was used for the above analysis.

Akaike Information Criterion (AIC)
Given a set of models for the data, the Akaike Information
Criterion (AIC) is a measure that assesses the quality of each

model, relative to the remaining models in the set. The chosen
model minimizes the Kullback-Leibler distance between the
model and the ground truth. AIC takes into account both
descriptive accuracy and parsimony, since it carries a penalty
for increasing the number of free parameters. The model
with the lowest AIC is considered the best model among
all models specified for the data at hand. The absolute AIC
values are not particularly meaningful since they are specific
to the data set being modeled. The relative AIC value (1AICi

= AICi – min{AICp}) is used to rank models: 1AICi <

2 suggest that models are basically equivalent, whereas a
1AICi > 10 indicates that the model with the minimum AIC
(min{AICp}) is significantly better than the alternative model
(Akaike, 1992).

Statistical Analyses on Cortical Surface
Our statistical analyses (Figure 3) were based on cluster-
based statistics which is a non-parametric method (Maris and
Oostenveld, 2007; Maris et al., 2007) that also corrects for
multiple comparisons. We used 1000 permutations and the test
statistics used were Wilcoxon Rank Sum test.
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Figure S1 | ROCs showing performance of statistical classifier. We

evaluated the performance of the classifier using the standard approach of

measuring the area under the curve (AUC), where an AUC of 0.5 represents

chance (dashed blacked line). Orange line, represent average ROC curve for

10-fold validation, standard error of the folds is represented as shaded area

around the line. (AUC = 0.95).

Movie M1 | Rotating visualization of the 4D depiction of the LDA shown in

Figure 5.

Table T1 | Participants in experimental paradigm. As expected, only ADOS

scores and Touch scores were significantly different between the groups.
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